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ABSTRACT

Digital elevation models (DEMs) are essential tools in environmental science, particularly for hazard assessments
and landscape analyses. However, their application across multiple environmental hazards simultaneously remains
in need for a multi-aspect critical assessment to promote their effectiveness in comprehensive risk management.
This paper aims to review and critically assess the application of DEMs in mapping and managing specific
environmental hazards, namely floods, landslides, and coastal erosion. In this regard, it seeks to promote their utility
of hazard maps as key tools in disaster risk reduction and environmental planning by employing high-resolution
DEMs integrated with advanced geographic information systems. The findings offer valuable insights into opti-
mizing DEM technology for environmental management, contributing to safer and more resilient communities.
The paper addresses an important gap in the geospatial analysis of natural hazards and serves as a foundational
reference for future advancements in the field, emphasizing its importance to academic researchers and practical
stakeholders in environmental and disaster management.
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1 Introduction

Integrating digital elevation models (DEMs) into environmental hazard mapping represents a
pivotal development in geospatial sciences [1–4]. DEMs are essential tools for accurately assessing
and managing environmental hazards such as floods [5,6], landslides [7–9], and coastal erosion
[10–13]. They are widely used in environmental-related studies, particularly in hydrological and
hydraulic models, where the high resolution of these models significantly affects the accuracy of
hazard assessments [13–16]. Their importance is underscored by the increased frequency of these
hazards, driven by climate change and urban expansion. DEMs are fundamental in determining
landscapes and analyzing topography and are instrumental in enhancing the precision and utility of
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hazard maps, which are vital tools in disaster risk reduction [17–20]. DEMs provide fundamental
elevation data that enable researchers to identify regions susceptible to environmental hazards by
determining watershed boundaries, identifying flood plains, highlighting seismic affected areas,
and recognizing steep slopes that can predispose areas to landslides [21–23]. Recent studies have
emphasized the role of DEM resolution in the performance of machine learning models for predicting
flood probabilities, indicating that finer resolutions can substantially improve prediction accuracy
[24–27]. In addition, the technological advancements in DEMs have expanded their application in
environmental management [28–30]. This includes the fusion of multiple DEM sources to enhance
model accuracy, which has proven essential in refining the precision of hazard maps crucial for
disaster risk planning [31,32]. In addition, integrating DEMs with geographic information systems
(GIS) has revolutionized environmental planning and hazard management, allowing for more detailed
and accurate mapping and significantly enhancing disaster preparedness and response strategies [9,
33–35]. The use of LiDAR-derived DEMs has been highlighted for its effectiveness in flood applica-
tions, providing detailed and accurate topographical data that improve flood risk assessments [36,37].
Integrating UAV-derived DEMs demonstrates substantial potential, particularly in small-scale hazard
mapping and monitoring geo-hazards in challenging terrains [38,39].

Although the utility of DEMs in hazard mapping is well-established, existing literature reveals
several current problems. One significant issue is the gap in the simultaneous application across
various types of environmental hazards. Most studies focus on a single type of hazard, leading
to deficiency in comprehensive risk assessments that integrate high-resolution DEMs with other
geospatial technologies across multiple hazard types. This lack of integration limits the ability to
provide a holistic view of environmental risks, which is crucial for effective disaster preparedness. In
addition, there is a gap in the application of machine learning techniques in enhancing DEM-based
environmental hazard mapping. Machine learning methods can significantly improve the predictive
accuracy of hazard maps by learning complex patterns from large and diverse datasets that traditional
methods cannot capture. These techniques can refine the resolution and accuracy of DEMs, optimize
hazard prediction models, and facilitate the development of more robust and comprehensive hazard
assessment tools [40–42].

The potential for machine learning in this context is vast, as it can analyze the interactions
between multiple hazard types and their environmental impacts more efficiently than conventional
statistical methods. For instance, Su et al. [43] demonstrated the application of deep learning for
assessing earthquake disaster chains, suggesting that similar methodologies can enhance multi-hazard
models by integrating various data types and sources, including high-resolution DEMs. In addition,
the integration of DEMs with other geospatial technologies, such as remote sensing and GIS, has been
shown to effectively map hazards such as floods, landslides, and soil erosion, but the simultaneous
use of these technologies across multiple hazard scenarios remains underexplored [44–47]. These gaps
present significant opportunities for future research, where the development of integrated, multi-
hazard assessment models can significantly increase the accuracy and efficiency of hazard maps,
thus improving disaster risk management strategies. This study aims to review and critically assess
the application of DEMs in mapping and managing specific environmental hazards, focusing on
floods, landslides, and coastal erosion. The study seeks to enhance the accuracy and utility of hazard
maps by employing high-resolution DEMs integrated with advanced GIS and innovative machine
learning techniques. These improved maps are expected to provide more detailed and precise hazard
assessments, crucial for effective disaster risk reduction and strategic environmental planning. In
addition, the study aims to develop a robust framework that utilizes the combined capabilities of high-
resolution DEMs, GIS, and machine learning to create a multi-hazard assessment tool, identifying
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potential hazard zones with greater precision and predicting the severity and probable impact of these
hazards under various environmental scenarios. This approach intends to fill existing gaps in current
hazard mapping practices, which often do not simultaneously consider multiple types of hazards or
fully utilize the potential of modern technological advancements. The findings offer valuable insights
into optimizing DEM technology for environmental management, contributing to safer and more
resilient communities. This research addresses an important gap in the geospatial analysis of natural
hazards and serves as a foundational reference for future advancements in the field, emphasizing
its importance to academic researchers and practical stakeholders in environmental and disaster
management.

2 Bibliometric Assessment

A bibliometric assessment was conducted to evaluate the existing literature on the application of
DEMs in environmental hazard mapping. A search was performed on the Web of Science platform,
yielding a total of 2110 documents relevant to the study. The temporal distribution of publications
from 2000 to 2023 is illustrated in Fig. 1, showing a steady increase in research activity over the
years, with growth after 2010. The analysis of keyword co-occurrence within these publications reveals
the most frequently used terms, including “hazard,” “GIS,” “model,” “LIDAR,” “remote sensing,”
“uncertainty,” “risk,” “earthquake,” “vulnerability,” “climate change,” “deformation,” “landslide,”
“evolution,” “susceptibility,” and “logistic regression,” as depicted in Fig. 2. These keywords highlight
the multidisciplinary nature of the research and the integration of various technologies and method-
ologies in the field.
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Figure 1: Number of publications related to DEM applications in environmental hazard mapping over
the period between 2000 and 2023
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Figure 2: Co-occurrence of keywords in research related to DEM applications in environmental hazard
mapping

Additionally, the assessment identified the journals that published the most research on DEM
applications in environmental hazard mapping. The prominent journals include Natural Hazards
and Earth System Sciences, Natural Hazards, Geomorphology, Remote Sensing, Landslides, Envi-
ronmental Earth Sciences, Geomatics Natural Hazards and Risk, and ISPRS International Journal of
Geo-Information, as shown in Fig. 3. These journals are pivotal in disseminating advancements and
findings related to DEM applications in hazard mapping. Citation analysis by country, as presented in
Fig. 4, indicates that China, the USA, Italy, Germany, England, France, India, and Switzerland are the
leading contributors to this research domain. This geographical distribution underscores the global
interest and collaboration in utilizing DEMs for environmental hazard assessment and management.
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The bibliometric assessment demonstrates the evolving and expanding body of knowledge in the appli-
cation of DEMs for environmental hazard mapping, emphasizing the importance of interdisciplinary
approaches and international collaboration in advancing this critical field.

Figure 3: Journals with most publications of research related to DEM applications in environmental
hazard mapping

3 Materials and Methods

This section outlines the materials and methods employed in the study to evaluate the effectiveness
of DEMs in environmental hazard mapping. The methodology is designed to explore the integration of
high-resolution DEMs with advanced GIS and machine learning techniques to enhance the accuracy
and utility of hazard maps. Fig. 5a illustrates the integration process of DEMs, GIS, and machine
learning in creating a comprehensive multi-hazard assessment tool. The framework is divided into
several components, each representing a step in the process from data acquisition to hazard mitigation
and planning. However, Fig. 5b describes the general approach applied in this study. This includes
a step-by-step depiction of the operational workflow, which helps in understanding the systematic
application of integrated technologies and methodologies to address the complexities of environmental
hazard mapping and provides a clear roadmap for achieving the research objectives.
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Figure 4: Citation analysis by country in research related to DEM applications in environmental hazard
mapping

3.1 Data Collection and Sources
The successful application of DEMs in environmental hazard mapping fundamentally depends

on the accuracy of the elevation data. DEMs are pivotal in the mapping process, providing detailed
representations of surface terrains essential for identifying and analyzing various environmental
hazards. The precision of these models is crucial; even minor inaccuracies in elevation data can lead
to significant errors in hazard identification and subsequent mitigation strategies [48,49]. Therefore,
selecting high-quality DEMs, characterized by their resolution, accuracy, and frequency of updates, is
imperative for maintaining the integrity of hazard mapping efforts. This section investigates the diverse
data sources used in hazard mapping, detailing their inherent characteristics such as spatial resolution,
data collection methodologies, and both vertical and horizontal accuracy. It also examines the coverage
of each dataset. The application of each DEM in multi-hazard assessments is discussed, indicating how
their unique attributes meet the specific demands of different environmental hazards, including floods,
landslides, and coastal erosion. This study aims to underscore the vital role of accurate and detailed
elevation data in supporting the capacity for effective environmental and disaster management through
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refined hazard mapping techniques by exploring these aspects. Table 1 lists key factors in developing
effective DEMs for environmental hazard mapping.

Figure 5: Comprehensive framework and methodology for multi-hazard assessment: (a) Conceptual
framework and (b) Schematic illustration of the research methodology
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Table 1: Critical considerations for building an influential DEM for hazard mapping

Consideration Description Purpose

Data source Selecting high-quality, reliable
sources of elevation data (e.g.,
satellite, aerial, LiDAR).

To ensure the elevation data is
accurate and detailed enough for
modeling hazards.

Resolution Choosing the appropriate spatial
resolution (e.g., 1, 10, 30 m) based
on the scale of the area and the
detail required.

Higher resolutions provide more
detail but require more processing
power and data storage.

Accuracy Verification of elevation data
accuracy through ground-truthing
or comparison with known
benchmarks.

To minimize errors in elevation that
can affect hazard analysis outcomes.

Data processing Processing raw data to remove noise
and errors, including filtering and
smoothing techniques.

To create a clean and reliable DEM
that accurately represents the
terrain.

Terrain analysis Analyzing terrain features critical
for hazard mapping, such as slopes,
aspect, and elevation ranges.

To identify areas potentially at risk
of hazards like landslides, floods, or
avalanches.

Model update
frequency

Determining how frequently the
DEM should be updated to reflect
changes in the terrain due to natural
processes or human activities.

To maintain an up-to-date model
that reflects current terrain
conditions and potential hazard
zones.

Interoperability Ensuring the DEM is compatible
with other GIS and hazard
modeling tools.

To facilitate integration with other
data layers and tools for
comprehensive hazard assessment
and mapping.

Scale and coverage Defining the extent of the area
covered by the DEM and the scale
at which the data is presented.

To ensure the model covers all areas
of interest and is suitable for the
level of analysis required.

Data integration Integrating the DEM with other
datasets such as hydrological,
geological, and land use data.

To enhance the model’s capability to
predict various types of hazards
more accurately.

Validation and
testing

Regularly testing the DEM with
historical hazard events to validate
its predictive capability.

To refine the model and improve its
reliability and accuracy in hazard
prediction.

Algorithm 1 depicts a pseudocode for applying DEMs in hazard analysis. The procedure begins
with Data Acquisition, where elevation data is collected from various sources. Following the acquisi-
tion, the Data Preprocessing phase involves filtering and smoothing the data to eliminate noise and
correct errors, which is vital for maintaining the DEM’s accuracy and reliability. In the Construct
DEM phase, a grid structure is created at the desired resolution, and elevation values are assigned to
each grid cell. For cells lacking data, interpolation methods are employed to estimate values, ensuring
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a complete and continuous elevation model. Terrain Analysis follows, calculating essential terrain
attributes crucial for assessing the terrain’s susceptibility to hazards. Integrate Additional Datasets
involves incorporating additional data such as hydrological, geological, and land use information into
the DEM. Hazard-specific modeling then applies risk models based on the DEM and additional data
to define hazard zones. Finally, Validation and Update tests the DEM against historical data to ensure
accuracy.

The accuracy evaluation of DEMs is conducted by comparing the elevation data from the DEMs
to ground control points (GCPs) collected using differential GPS. This process involves statistical
measures such as root mean square error (RMSE) and mean absolute error (MAE) to quantify the
differences [13,50]. High-resolution DEMs from sources such as satellite imagery and aerial surveys
are pre-processed for spatial resolution and coordinate systems consistency. The resulting accuracy
metrics provide a quantitative basis for assessing the reliability of the DEMs in representing the actual
terrain, ensuring the precision required for effective environmental hazard mapping. The generated
hazard maps are also validated using historical hazard event data and field observations. The spatial
extent and severity of the hazards, as predicted by the DEMs, are compared to the actual events to
assess the predictive capability of the models.

Algorithm 1: Pseudocode for DEM application in hazard analysis
Procedure Build DEM for Hazard Assessment

Start
Step 1: Data Acquisition
Acquire elevation data from sources like satellite, aerial, LiDAR
If no data available

Exit “Elevation data required”
End If
Step 2: Data Preprocessing
For each data point in elevation data

Filter and smooth data to remove noise
Correct any known data errors

End For
Step 3: Construct DEM
Create grid structure based on desired resolution
Assign elevation values to each grid cell
If any grid cell lacks data

Use interpolation methods to estimate values
End If
Step 4: Terrain Analysis

For each cell in DEM
Calculate terrain attributes (slope, aspect, elevation range)

End For
(Continued)
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Algorithm 1 (continued)
Step 5: Integrate Additional Datasets
Load additional data (hydrological, geological, land use)
For each dataset

Align dataset with DEM grid
Combine datasets with DEM to enhance the terrain model

End For
Step 6: Hazard-Specific Modeling
Define hazard types (e.g., flooding, landslides)
For each hazard type

Apply risk models to DEM considering relevant terrain and additional data
Determine hazard zones based on thresholds and criteria

End For
Step 7: Validation and Update
Test the DEM model with historical hazard data
If model predictions align with historical events

Validate model effectiveness
Else

Adjust model parameters and retest
End If
Determine update frequency based on terrain changes and data availability
End

End Procedure

Table 2 compares various DEMs, examining how their source, characteristics such as spatial
resolution, and data collection methods impact the accuracy of hazard assessment. It highlights the
trade-offs between high-resolution DEMs, such as those from LiDAR, which provide detailed data
for precise modeling but may be costly and less available.

Table 2: Comparison of different types of DEMs and their effects on hazard assessment accuracy

Type of DEM Source Characteristics Advantages Disadvantages Effect on hazard
assessments
accuracy

References

SRTM (Shuttle
Radar
Topography
Mission)

Space Shuttle
Endeavour
(NASA/USGS)

Provides
elevation data
for the globe,
covering
latitudes
between 60°N
and 56°S.

Wide coverage,
freely available,
moderate
resolution.

Lower
resolution in
vertical and
spatial
dimensions.

Suitable for
regional scale
studies; less
effective for
detailed local
hazard analysis.

Farr et al. [51]

ASTER
(Advanced
Spaceborne
Thermal
Emission and
Reflection
Radiometer)

Terra satellite
(NASA/METI)

Provides global
DEMs with a
resolution of 30
meters.

High spatial
resolution,
global
availability.

Susceptible to
data noise and
artifacts.

Good for
medium-scale
hazard mapping
but may require
validation for
precision tasks.

Tachikawa et al. [52]

(Continued)
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Table 2 (continued)
Type of DEM Source Characteristics Advantages Disadvantages Effect on hazard

assessments
accuracy

References

LiDAR (Light
Detection and
Ranging)

Airborne and
terrestrial
sensors

High-resolution
3D
representation
of the Earth’s
surface.

Very high
resolution,
highly accurate,
3D data.

Expensive,
limited to
smaller, specific
areas.

Excellent for
detailed hazard
analysis and
mitigation
planning in
focused areas.

Hodgson et al. [53]

ALOS PALSAR
(Advanced
Land Observing
Satellite, Phased
Array type
L-band
Synthetic
Aperture Radar)

ALOS Satellite
(JAXA)

Provides
12.5-meter
resolution
DEMs,
particularly
useful in tropical
and subtropical
regions.

Good canopy
penetration,
useful in cloudy
regions.

Less detailed
than LiDAR.

Effective in
vegetation-rich
areas where
optical sensors
are less reliable.

Rosenqvist et al. [54]

Photogrammetric
DEMs

Aerial
photographs
and
high-resolution
satellites

Derived from
stereo pairs of
images, allowing
for detailed
elevation
models.

High accuracy
and detail in
developed
regions.

Requires
extensive
processing, can
be costly.

Highly accurate
for local and
detailed terrain
analysis, crucial
for urban
hazard
assessment.

Baltsavias [55]

UAV-derived
DEMs

Unmanned
Aerial Vehicles
(Drones)

Customizable
and very
high-resolution
DEMs tailored
to specific
project needs.

Flexible,
high-resolution,
cost-effective for
small areas.

Limited by
drone battery
life and flying
regulations.

Provides high
precision for
small-scale
hazard
evaluations,
ideal for
localized
studies.

Nex et al. [56]

Table 3 categorizes different natural hazards, explains how DEMs are applied for each hazard
type, outlines key methodologies used, and discusses the benefits and challenges of employing DEMs
in these settings. It also emphasizes the practical significance of DEMs in enhancing hazard mapping
and mitigation efforts. Fundamental DEM analysis techniques include slope stability analysis for iden-
tifying areas prone to landslides and hydrological modeling for delineating floodplains and analyzing
water flow dynamics. DEMs are also instrumental in tsunami inundation mapping, providing detailed
coastal elevation profiles to predict the inland travel of tsunami waves [57].

Table 3: Overview of DEM applications in hazard mapping

Hazard type Application of DEM Key methodologies Benefits of using
DEM

Key challenges Practical
importance

Flood Flood risk assessment
and inundation
modeling

Hydrological
modeling, surface
runoff simulation

Accurate delineation
of floodplains aids in
flood response
planning

Sensitivity to
resolution and
accuracy of elevation
data

Essential for
emergency
planning and
infrastructure
protection

Landslide Landslide
susceptibility and risk
mapping

Slope stability
analysis, susceptibility
indexing

Identification of
potential landslide
zones

Influenced by terrain
accuracy and
resolution

Crucial for urban
planning and
disaster risk
reduction

(Continued)
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Table 3 (continued)
Hazard type Application of DEM Key methodologies Benefits of using

DEM
Key challenges Practical

importance

Seismic Seismic hazard
mapping and risk
assessment

Ground shaking and
seismic hazard
analysis

Enhances precision in
seismic hazard
assessments

Requires integration
with geological data

Important for
earthquake
preparedness and
building codes

Coastal erosion Coastal erosion
assessment and
shoreline management

Coastal vulnerability
assessments, erosion
modeling

Provides insights into
coastal dynamics and
erosion risks

Needs high-resolution
coastal and
bathymetric data

Vital for coastal
development and
conservation
strategies

Tsunami Tsunami inundation
mapping and
evacuation planning

Tsunami modeling,
evacuation route
optimization

Supports effective
evacuation strategies

Demands detailed
bathymetric and
topographic data

Critical for coastal
city planning and
safety measures

Avalanche Avalanche prediction
and risk management

Avalanche simulation
models

Assists in identifying
potential avalanche
paths

Requires detailed
snowpack and
topographic data

Key for winter
sport areas and
mountain
community safety

Volcanic hazards Volcanic risk
assessment and lava
flow simulation

Lava flow modeling Helps in planning
evacuation and
managing volcanic
crises

Dependent on
accurate DEMs and
volcanic vent data

Essential for
volcanic region
monitoring and
response planning

Probabilistic risk assessment (PRA) is a systematic and comprehensive methodology employed to
evaluate risks associated with safety-critical systems [58,59]. It calculates the probability of adverse
events and their potential impacts to enhance decision-making and boost safety and operational
integrity. The process begins with hazard identification, utilizing tools such as failure mode and
effects analysis (FMEA) or hazard and operability study (HAZOP) to systematically detect and
categorize possible risks. Event tree analysis (ETA) is then employed to explore different accident
scenarios. This technique starts with an initiating event and follows possible progression paths,
incorporating system responses and safety measures. Each path represents events that can lead to
a specific outcome. Simultaneously, fault tree analysis (FTA) analyzes the probability of a particular
adverse event by constructing a logical diagram that lays out various mechanical or human failures
that could lead to the undesired event. This helps identify root causes and system vulnerabilities.
Probability determination is then performed, calculating the likelihood of different failure scenarios
using statistical data, historical failure rates, and expert judgments. This phase often involves complex
mathematical models. The results support risk quantification, combining the probability analysis
with the potential consequences of each event, typically expressed as a risk index to prioritize risks
and evaluate mitigation strategies. Based on the findings, mitigation and decision-support strategies
are developed to reduce the likelihood or impact of hazardous events. PRA provides objective data
crucial for making informed decisions on risk management. Finally, continuous review and update are
essential as systems and environments evolve with regular monitoring and refinement of risk models
to maintain the relevance and effectiveness of the assessment in risk management.

3.2 Case Studies
Applying DEMs in environmental hazard mapping has caused significant advances in managing

and assessing various natural hazards. This section introduces a series of case studies that illustrate the
practical application of DEMs in mapping various environmental hazards. Each case study focuses
on a specific type of hazard, including seismic events, floods, landslides, and coastal erosion, and
illustrates how integrating DEMs with GIS and machine learning techniques can enhance hazard
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assessment and planning [60,61]. This structured approach details the methodology and findings
from each case study and connects them under the broader theme of improving hazard preparedness
through technological innovation. The following case studies underline the versatility and effectiveness
of DEMs in environmental hazard assessment across different contexts.

Manfreda et al. [62] developed a DEM-based method to estimate flood inundation depth.
Al-Areeq et al. [63] demonstrated using DEMs for flood hazard analysis in complex terrains
such as Jeddah, Saudi Arabia, enhancing the understanding of flood dynamics in urban settings.
Sulaiman et al. [64] explored the extraction of DEMs using remote sensing and GIS for flood
risk assessment, providing insights into the practical applications of these technologies in urban
planning. Niyongabire et al. [65] indicated that DEMs in GIS are used for flood susceptibility mapping
in Bujumbura City, highlighting the critical role of geospatial technologies in urban disaster risk
management. Meena et al. [66] highlighted the effect of spatial resolution of DEMs on the accuracy
of landslide susceptibility maps. Rabby et al. [8] evaluated DEM effects in landslide mapping in
Rangamati District, Bangladesh. Brock et al. [9] investigated the impact of the resolution and quality
of DEMs on the performance of landslide susceptibility models and indicated that it heavily relies on
the quality of the underlying DEMs.

Jibson et al. [67,68] developed methodologies for digital probabilistic seismic landslide hazard
mapping, enhancing risk management strategies in seismically active regions. In addition, Li et al. [69]
employed Monte Carlo simulations for probabilistic seismic landslide hazard mapping. They reported
that advancements in computational techniques with reliable DEM data can significantly improve haz-
ard prediction and risk assessment. Haneberg [70] discussed the effects of DEM errors on seismic slope
stability calculations, marking a pivotal study in understanding the impact of DEM errors on seismic
hazard assessments. Ahmad et al. [71] conducted a comprehensive seismic hazard assessment of Syria,
incorporating seismicity, DEMs, slope data, active faults, and GIS. They illustrated the comprehensive
approach required to assess seismic risks effectively. Theilen-Willige et al. [72] performed seismic
hazard analysis along the Koyna Dam area in India, exhibiting the effective integration of remote
sensing and GIS with DEMs to understand and mitigate seismic hazards. Marfai et al. [73] utilized
high-resolution UAV-derived DEMs to plan tsunami vertical evacuation routes in Indonesia, demon-
strating the importance of precise elevation data in coastal hazard planning. Demirkesen et al. [74]
conducted a coastal flood risk analysis in Izmir, Turkey, utilizing Landsat-7 ETM+ imagery and
SRTM DEM. They demonstrated the enhancement of hazard analysis by integrating DEMs with
other geospatial data.

These case studies collectively illustrate the critical role of DEMs in environmental hazard
mapping. They underscore the necessity for high-resolution and accurate DEMs and demonstrate
the diverse applications of this technology across various types of environmental hazards. Each study
contributes to a broader understanding and application of DEMs in risk reduction, emphasizing
their importance to academic researchers and practical stakeholders in environmental and disaster
management.

4 Critical Analysis of DEM Applications in Hazard Mapping

This section presents a critical analysis to explore the applications, benefits, challenges, and
practical implications of using DEMs in environmental hazard mapping, highlighting critical areas
for improvement and future research. The case studies highlighted numerous applications of DEMs
across different environmental hazards [21,63]. Each case study demonstrated the specific capabilities
of DEMs in hazard mapping and revealed the improvements in hazard preparedness enabled by
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technological advancements. The effectiveness of DEMs can vary significantly based on the resolution,
quality, and the specific environmental hazard being assessed [75]. Although high-resolution DEMs
offer greater detail and accuracy, they require substantial computational resources and are more
expensive. Lower-resolution DEMs, while less costly and computationally demanding, cannot provide
sufficient detail for all types of hazard assessments, particularly in complex urban or densely vegetated
areas. Table 4 categorizes strategic measures to enhance the application of DEMs in environmental
hazard mapping. Each category addresses specific aspects, from technical challenges and operational
needs to capacity building and policy support, ensuring a comprehensive strategy for implementing
DEM technology in hazard assessments.

Table 4: Measures for DEM applications in hazard mapping

Category Consideration Measure

Technical High resolution &
accuracy

Invest in acquiring high-resolution DEMs
and enhance them using data fusion
techniques.

Dynamic updates Utilize real-time data integration and
adaptive models to account for landscape
changes.

Computational
resources

Develop local computational
infrastructure and employ cloud
computing solutions.

Operational Data integration Implement advanced GIS platforms that
facilitate DEM integration with other
relevant spatial data.

Accessibility &
coverage

Expand the use of drones and
satellite-based LiDAR to improve data
coverage and accessibility.

Cost efficiency Seek partnerships and grants to fund
DEM acquisition and processing; promote
shared data initiatives.

Human Capacity Expertise &
training

Enhance training programs in GIS and
remote sensing technologies, focusing on
hazard mapping applications.

Collaboration &
sharing

Foster international collaborations for
data sharing and joint projects on hazard
mapping.

Policy and
Governance

Policy support Advocate for governmental support and
policies that prioritize hazard mapping
and DEM application.

Intersectoral
collaboration

Encourage collaborations across
governmental, academic, and private
sectors to leverage diverse expertise.
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The critical role of DEMs in environmental hazard mapping carries significant implications for
environmental management. Initially, the ability of DEMs to provide detailed topographical data aids
decision-makers in planning and implementing effective mitigation strategies, such as flood barriers
or landslide warning systems [76,77]. These tools are essential for reducing the potential impact of
natural disasters on vulnerable communities and infrastructures. In addition, integrating DEMs with
GIS and machine learning opens up new methods for predictive hazard modeling, allowing for more
proactive management strategies. This approach helps in immediate hazard response and long-term
planning for climate change impacts, such as sea-level rise and increased frequency of extreme weather
events.

DEMs are crucial in hydrological modeling, particularly in flood simulation and management.
They provide detailed information about land surface and riverbed elevations, essential for modeling
water flow paths and accumulation zones [5,6]. High-resolution DEMs enable accurate delineation
of floodplains and identification of flood-prone areas, facilitating effective emergency planning and
community alerts. For example, integrating DEMs with GIS and real-time meteorological data can
enhance predictive models, allowing for dynamic flood risk assessments that support timely and
targeted responses [78]. The role of DEMs in landslide risk assessment is primarily related to their
ability to provide detailed data on terrain slope, aspect, and elevation, all critical factors in determining
landslide susceptibility. Scientists can predict potential landslide hotspots by analyzing these terrain
parameters, especially in mountainous regions where natural disasters frequently occur. This predictive
capability supports land use planning and infrastructure development, aiming to mitigate the impacts
of landslides on human settlements and critical transport routes. In seismic hazard assessment, DEMs
are employed to model ground shaking and to identify fault zones where earthquakes are likely
to occur. Elevation data contribute to the understanding of tectonic settings and the mapping of
seismic risk areas [69,79]. This information is vital for urban planning and the design of earthquake-
resistant structures, which are critical in minimizing human and economic losses during seismic events.
DEMs facilitate the monitoring and prediction of coastal erosion, providing essential data that helps
understand how waves and tidal patterns affect shoreline changes [80,81]. This application is critical
in the context of rising sea levels and increased storm activity associated with climate change. Coastal
managers use DEMs to plan protective measures, such as sea walls and restored habitats, to prevent
loss of land and protect coastal communities.

Despite their advantages, the application of DEMs in environmental hazard mapping is limited by
several factors. The resolution and coverage of DEM data cannot adequately capture detailed terrain
features crucial for accurate analyses. In addition, the static nature of DEMs means they can quickly
become outdated as landscapes change. Low-resolution DEMs struggle to capture essential landform
details that impact water flow, slope stability, or seismic wave propagation. High-resolution DEMs
are often inaccessible in many parts of the world, particularly in developing countries, due to the pro-
hibitive data acquisition and processing costs. Environmental conditions are inherently dynamic; thus,
landscapes evolve due to natural processes and human activities, necessitating frequent DEM updates
that are impossible due to logistical and financial constraints. Although DEMs are valuable tools,
their effectiveness is enhanced when integrated with other geographic and environmental data [82].
This process can be complex and resource-intensive, requiring sophisticated GIS and computational
modeling skills. In addition, managing and processing high-resolution DEM demands considerable
computational power and technical expertise, which can be challenging, especially in resource-limited
environments. However, as natural disasters become more frequent and intense, incorporating climate
variables into DEM analyses is essential for accurate hazard assessments. Climate change affects
temperature, precipitation, sea level rise, and extreme weather events, altering landscapes and natural
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hazards such as floods, landslides, and coastal erosion [83,84]. Integrating climate change projections
with DEM data can assess future scenarios and regional impacts. Table 5 provides a comprehensive
view of the advantages, challenges, opportunities for improvement, and potential risks associated with
DEM applications in hazard mapping.

Table 5: Considerations for using DEM in hazard mapping

Advantages Challenges

High accuracy: Precise elevation data is crucial
for modeling environmental hazards.

High cost: Production, especially with
technologies like LiDAR, is expensive.

Versatility: Applicable to a wide range of
hazards, including floods, landslides, and
earthquakes.

Data handling: Large datasets demand
substantial computational resources.

Technological integration: Seamless integration
with GIS, remote sensing, and machine learning.

Technical skill requirements: Effective use
requires high expertise in GIS and related
technologies.

Opportunities for improvement Potential risks

Technological advancements: Improvements in
remote sensing and aerial surveys enhance data
quality.

Rapid environmental changes: Dynamic
landscapes require frequent DEM updates.

Collaborative data sharing: Global cooperation
can improve access to high-quality DEMs.

Data accessibility and privacy: Concerns
over the sharing and privacy of geospatial
data.

Climate change adaptation: Growing demand
for accurate hazard mapping tools due to
climate change impacts.

Competing technologies: Development of
alternative hazard assessment methods
may challenge DEMs’ dominance.

However, addressing these challenges involves several practical implications crucial for maxi-
mizing the accuracy and effectiveness of DEMs in environmental hazard mapping and ensuring
they remain relevant over time. Enhanced data acquisition and sharing through advanced remote
sensing and aerial survey technologies such as drones and satellite-based LiDAR are essential. These
technologies provide more frequent updates and higher resolutions, and fostering global cooperation
in data sharing can help overcome data availability limitations, especially in under-resourced regions.
Developing adaptive models incorporating real-time data and feedback mechanisms can maintain the
relevance of DEMs as landscapes change. Integrating DEMs with other environmental and social
data through comprehensive GIS platforms can offer a more holistic view of hazard risks. Significant
investment in technology and training is necessary to enhance the potential of DEMs. This includes
building computational infrastructure and training local experts in advanced GIS and modeling
techniques. In addition, continued research and development into new methodologies, including
machine learning and artificial intelligence, can improve the accuracy and utility of DEMs, enhancing
their predictive power in hazard management. Fig. 6 shows the interaction between the various factors
influencing DEM application in environmental hazard mapping.
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Figure 6: Critical analysis of DEM applications in environmental hazard mapping

Accordingly, DEMs have limitations that affect hazard mapping despite their significant utility.
The quality and availability of high-resolution DEMs are often restricted by costs and logistical
challenges, compromising accuracy in data-scarce regions. In addition, DEMs are static, necessitating
frequent updates to capture recent changes due to natural events or human activities. Integrating
DEMs with other geospatial data is complex and resource-intensive, requiring advanced compu-
tational resources and specialized technical expertise. To overcome these limitations, future work
should focus on improving data acquisition through technologies such as drones and satellite-based
LiDAR and developing adaptive models that integrate real-time data. Enhancing machine learning
applications can also increase predictive accuracy.

5 Soft Computing Techniques for Multi-Hazard Mapping

Soft computing encompasses a variety of methodologies, including fuzzy logic, neural networks,
genetic algorithms, and machine learning, which are particularly effective in enhancing the precision
of hazard management [85,86]. These techniques integrate diverse data types such as experimental,
remote sensing, topographic maps, and socio-economic datasets [24,87]. Such integration is essential
for comprehensive hazard analysis, facilitating the management of the inherent uncertainty and
variability of hazards due to changing climatic conditions and geographical transformations [88,89].
Fig. 7 highlights the benefits of integrating soft computing techniques into hazard analysis. These
methods improve the accuracy and efficiency of solutions across various hazard mapping applications.
Fig. 8 illustrates two problem-solving strategies in computer science and artificial intelligence: hard
and soft computing techniques. Each approach has benefits and usages, frequently combined to
achieve the best results. Hard computing relies on mathematical logic and accurate and deterministic
techniques, which need well-defined issues and yield exact and reliable solutions. However, soft
computing offers a more adaptable method that assumes the nuances of imprecision and uncertainty.
This adaptability makes it well-suited for addressing complex issues in real-world scenarios.

Explainability in artificial intelligence (AI) models is crucial for their acceptance and effectiveness
in multi-hazard mapping. Techniques such as shapley additive explanations (SHAP) and LIME
(local interpretable model-agnostic explanations) provide insights into the variables influencing model
predictions, enhancing trust and decision-making in hazard mitigation [85,90,91].
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Figure 7: Various soft computing methods

Figure 8: Hard and soft computing methods

Previous studies have developed various methodologies for integrating machine learning in the
process of multi-hazard mapping, such as the one given in Fig. 9 by Nachappa et al. [92]. One of the
main benefits comes from the adaptability of neural networks and machine learning models that allows
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for continual learning from new data, improving hazard prediction models [93,94]. As a result, using
soft computing in multi-hazard mapping improves the accuracy and reliability of hazard assessments
and significantly contributes to developing informed and effective disaster risk reduction strategies.
Previously, Kariminejad et al. [95–97] emphasized the role of geo-environmental modeling and deep
learning methods in improving hazard mapping and management. Ullah et al. [98–100] further
underscored the potential of machine learning techniques in multi-hazard susceptibility mapping,
presenting substantial advancements in the field. Rahmati et al. [24] and Nachappa et al. [92] high-
lighted using machine learning in multi-hazard exposure mapping, providing a practical framework
for assessing risks associated with various natural hazards. Despite these advantages, soft computing
faces challenges such as computational complexity, the necessity for extensive training datasets, and
difficulties in interpreting complex model outputs. However, future advancements in computational
power and algorithm efficiency, along with improved data collection methods, are expected to enhance
the applicability of soft computing in hazard management.

Figure 9: General procedure for multi-hazard mapping using DEM models integrated with machine
learning techniques

6 Conclusion

This paper attempts to review and critically analyze existing literature on applying DEMs in
multi-hazard assessments. It highlights the need for broader application of DEMs in multi-hazard
assessments by integrating high-resolution DEMs with advanced methods such as machine learning
techniques to enhance the precision and utility of hazard maps, which are essential for effective disaster
risk reduction and strategic environmental planning. Based on the statements above, the following
conclusions are drawn:

• Integrating DEMs across multiple hazard types, including floods, landslides, and coastal
erosion, enables more comprehensive environmental risk assessments.

• Using high-resolution DEMs significantly improves the precision of hazard assessments,
proving essential in accurately identifying and managing environmental risks.
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• Machine learning techniques enhance hazard maps’ predictive accuracy by identifying complex
patterns and interactions between various hazard types and environmental factors.

• Utilizing DEMs with GIS technology helps with environmental planning and hazard manage-
ment, which allows for detailed and dynamic hazard mapping.

• The enhanced DEMs could facilitate better preparedness and response strategies in disaster
management.

The review outlines several limitations in the current applications of DEMs, such as the chal-
lenges related to data resolution, update frequency, and the accessibility of high-resolution models,
particularly in resource-limited areas. In order to address these limitations, it is recommended that
DEMs be enhanced in resolution and accessibility to ensure they provide accurate and current data for
hazard assessments. In addition, it recommends developing innovative methods to integrate real-time
environmental data into DEMs to capture dynamic changes more effectively and improve the models’
predictive accuracy. Further exploration into expanding machine learning algorithms in conjunction
with DEMs is also advised to bolster multi-hazard assessment capabilities. This critical review lays
the foundation for future advancements in the field and underscores the importance of bridging these
gaps to enhance DEM applications in environmental hazard mapping.
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