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ABSTRACT

This study assessed and mapped the spatial distribution of soil types and properties developed under the forest
cover of the Strandzha Mountains of Tirkiye. The study was conducted on a micro-scale in the riparian zone of
the Balaban River, which characterizes the soils distributed in the mountainous area. The effect of environmental
factors on the spatial distribution of soil types and properties was also determined. To gather data, soil sampling,
laboratory analysis, data processing and mapping were sequentially performed. These data were analyzed using
the Geographical Information System (GIS) based Random Forest (RF) machine learning technique. Digital Soil
Mapping (DSM) was developed with satisfactory performance. DSM suggests that the factors affecting the spatial
distribution of soil types and properties in the sample area are, from most important to least important, topography
(50.77%), climate (28.14%), organisms (8.22%), parent material (7.24%) and time (5.63%). With the contributions
of all these factors in different proportions, it was determined that soils belonging to the Entisol and then Inceptisol
orders were the most widespread in the sample area. The study results revealed that the GIS-based RF machine-
learning technique can be used as a reliable tool for the development of DSM in mountainous terrains.
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1 Introduction

Soil is an essential and primary component of life on earth [I]. It plays a significant role
in human life and well-being [2,3]. Soil is the largest terrestrial organic carbon sink [4]. It is a
multifunctional system with substantial contributions to ecosystem services such as food production,
climate regulation, nutrient cycling, biochemical transformations, and pest control [5,6].

Soil is a heterogeneous system and exhibits spatially diverse properties [7]. These characteristics
are key in ecological modeling, environmental forecasting, precision agricultural practices, and
natural resource management [8]. Pedogenic processes may lead to the formation of different soil
types [9]. Hence, the relationships between the spatial distribution of soil types, soil properties, and
environmental factors should be well-comprehended [10] since such relationships are considered key
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indicators for soil management and sustainable land use [1 1]. Faster, quantitative, and objective tools
and methods have been developed to analyze such relationships [12].

Recently, Geographic Information Systems (GIS) based methods have been used to understand
better the complex relationship between soil and environment [13] and to reveal information on
spatial variability of soil properties. Machine learning (ML) techniques are widely used [14—17]. These
techniques provide more information about unsampled points by examining non-linear interactions to
predict the effects of environmental variables on soil properties and their spatial variation [18]. Widely
used ML techniques [19,20] include Random Forest (RF) [21,22], Quantile Regression Forest (QRF)
[23], Cubist [24], Regression Tree (RT) [25], Neural Network (NN) [26], Support Vector Machines
(SVM) [27] and Bayesian approaches [28].

The Strandzha Mountains are the most important landforms of the Balkan Peninsula, which
corresponds to the southeastern part of the European continent. The mountains extend along the
Black Sea coast on southeastern Bulgaria and northwestern Tiirkiye borders and have a privileged
forest cover with unique flora [29]. Therefore, the main use of the land in these mountains is forestry
[30]. Some soils in these mountains, which form a special ecosystem compared to their surroundings,
are considered unique soils of the Balkan Peninsula [31]. It was reported in a previous study that the
soils of the Strandzha Mountains differ spatially in their influence on forest vegetation as compared to
soils in surrounding areas [32]. Various soil studies have been conducted in Bulgaria [33] and Tiirkiye
[29,30,34-37] to determine these differences. Although the relationship between the spatial distribution
of soil types and environmental factors has been emphasized especially in studies conducted in Tiirkiye,
there is still an important gap in the literature since no study has analyzed this relationship in detail
with Digital Soil Mapping (DSM) developed using a GIS-based RF.

This study was conducted to assess and map the spatial distribution of soil types and properties
under forest cover in the Strandzha Mountains of Tiirkiye. The study was conducted on a micro-
scale, focusing on the riparian zone of the Balaban River, which more typically characterizes the soils
distributed in the mountainous area. Thus, another objective was to distinguish and examine features
important for diagnosing soil processes, such as content, quantity, mobility, degree of transformation,
and localization [38]. This study is unique in revealing soil types and properties in the forest ecosystem
of the Strandzha Mountains with a biodiversity-rich landscape for the European continent, Balkan
Peninsula, and Tiirkiye. So far, although numerous studies [39—41] have been conducted with GIS-
based RF method for soil mapping in different parts of the world and various climates, the most
important contribution of this study to the scientific literature is that it is the first attempt in the
Strandzha Mountains in Tiirkiye’s Thrace. This study also reveals the ongoing pedogenic evolution of
a region and the factors affecting this process of evolution.

2 Materials and Methods
2.1 Study Area

The study area corresponds to the riparian zone of the Balaban River in the Strandzha Mountains
of Tirkiye (Fig. 1). This area, which lies between the river channel and the upland, was chosen
because it is a very heterogeneous place in time and space [42] regarding microclimate, topography,
and parent material, especially soil, compared to its surroundings. The study area has many ecosystem
functions and services and complex biological, chemical, and physical interactions. Therefore, the
study area, which functions as a critical transition zone, was delimited as a 500 m wide zone (Fig. 1),
taking into account the size and location of the drainage system, hydrological and geomorphological
characteristics [43], as reported in the literature [7,44].
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Figure 1: Location map of the study area

The study area is located on the Strandzha Massif and commonly consists of Paleozoic-aged
metamorphic rocks such as gneiss, metagranitoid, schist, marble, and quartzite [45]. Quaternary
alluvium is spread over the river valley floors. The study area has a topography shaped by the Balaban
River and its tributaries, originating from the high parts of the Strandzha Mountains. The study
area’s elevation varies between 300-555 m [46]. According to the Koéppen-Geiger climate classification,
“Fully humid temperate, warm summer (temperate oceanic) (Cfb)” climate is dominant in the study
area [47]. Based on these climate characteristics, it was determined that the soil moisture regime of the
study area and its immediate surroundings is xeric and the temperature regime is thermic [29]. Beech,
hornbeam, and oak trees cover a large area within the forest cover of the study area [48], there are also
grassland, cropland, bare/sparse vegetation, and built-up land cover [49,50].
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2.2 Material

In this study, analysis results of soil samples taken according to the environmental conditions
(topographic features, climate, land cover, etc.) affecting soil properties of the study area were used
as the primary material. Topographic features were determined by GIS techniques based on Digital
Elevation Model (DEM) data [46]. Data on climate characteristics were obtained from the WorldClim
database [51,52]. The parent material and land cover data were obtained from geology [45] and land
cover [49,50] maps, respectively (Table 1).

Table 1: Data and data sources used in this study

No. Rawdata Generated data Source
1 Soil samples General properties of soil samples Fieldwork
(N =14) Physical and chemical properties and soil ~ Lab analysis

nutrient elements of different layers of soil
samples

2 DEM (5m) Landforms, altitude (m), slope (%), [46]
aspect, topographic wetness index (TWI')

3 Climate Temperature (°C), precipitation (mm), [51,52]
solar radiation (kJ m~* day™")

4 Gelogical map (Scale: 1:100.000)  Parent material [45]

5 Land cover map Land cover [49,50]

Note: TWI is a widely used index to express the location and size of topographically saturated areas [53].

2.3 Method

DSM was developed using a GIS-based RF. The study was scaled to a high resolution (Resolution:
5 m) due to the extent and possibilities offered by the boundaries of the study area and the data on
other environmental factors. The study was carried out in three phases: field works (soil sampling),
laboratory analysis of soil samples, and classification and mapping of soil types (Fig. 2).

Soil samples were taken according to the number of samples determined by creating 2.5 km x 2.5
km grids. Because the topography in the study area is very hilly and covered with dense vegetation,
such a method was followed [54]. To cover spatial variations, 7 different locations were selected with
a systematic approach. A total of 32 different samples were taken from these locations. Identification
and sampling were carried out based on genetic horizons. Thus, it was aimed to understand the spatial
distribution of soil types and properties of different profile layers [55]. While soil samples were taken
during field studies, local data on environmental conditions were also recorded. During the DSM
development phase, soil samples were organized into the topsoil (0—30 cm) and the subsoil (30—> cm)
layers to be compatible with both Soil Atlas of Europe [56] data and previously reported information
in the literature [57].

Soil samples were air-dried in the laboratory and then prepared for analysis by applying a
series of procedures. Soil color was determined in dry and moist soil samples using the Munsell
color chart [12]. Soil reaction (pH) was determined with a glass-electrode pH meter [58]. Electrical
conductivity (EC) was measured with a glass-electrode EC-meter [59]. Soil texture was determined
by the hydrometer method and described using the international texture triangle [60]. Lime was
determined using the volumetric calcimeter method [61]. A Wheatstone Bridge concentrator measured
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salt in soil suspensions [62]. Soil organic matter (SOM') was calculated according to the Modified
Walkley Black Method [64]. Cation exchange capacity (CEC") was determined by the ammonium
acetate method [66]. Macro and micronutrients were determined by diethylene triamine pentaacetic
acid, inductively coupled plasma (DTPA ICP), and ammonium acetate, inductively coupled plasma

(AAc, ICP) extraction methods [67].

[
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Figure 2: Methodology flowchart

Soils in the study area were classified using Soil Taxonomy [68]. This classification was based on
the spatial distribution of different soil types in the study area, soil forming factors, visual observation,
and determination. The mapping of soil types and properties was carried out using GIS-based
techniques. These techniques are substitutes for soil surveying and are widely used to empirically reveal
the spatial distribution of key soil types and properties [69]. Thus, raster maps of the sub-variables and
variables used in the DSM development were created.

The spatial distribution of soil properties in the study area was realized using the interpolation
method. Inverse Distance Weighting (IDW) was determined as the most appropriate model for the
distribution since its root mean square error (RMSE) is lower than other interpolation methods [70].
This estimation method assumes that the relationship between two points is directly proportional to
the distance between them and the effect of the mapped variable decreases as it moves away from the
sampled location [71]. Soil types in the study area were mapped using DSM or Digital Soil Assessment

1Soil organic matter (SOM) is the organic material found in soil [63].
2Cation exchange capacity (CEC) measures the soil’s ability to hold positively charged ions [65].
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(DSA) techniques [72]. This model, which examines the relationship between data obtained from soil
observations and auxiliary data representing the factors of soil formation, is a simplified form of the
complex relationships between soil distribution patterns and variables that contribute to soil formation
and development [73].

The DSM for the study area was developed in two stages. The importance of variables and
soil properties (physical, chemical, and nutrients) that contribute to soil formation and development
was determined in the first stage. RF algorithm was utilized, one of the most successful methods
widely used in recent DSM research [74]. This algorithm is an advanced ML method to analyze high-
dimensional complex data [75]. The importance ratings obtained from this algorithm were used to
measure the effect of independent variables on dependent variables [76]. Thus, the importance of
different factors affecting the dependent variable was easily determined [77,78]. The method used
Forest-based Classification and Regression tools in ArcGIS Pro Spatial Analyst extension. During
the application, importance and percentages were determined according to the decision tree created
using randomly generated parts of the original (training) data (soil sample).

In another stage of DSM development, a suitability model was created to represent the distribution
of soil types best. The model was applied using the ArcGIS Pro Suitability Modeler tool. For this
purpose, the sub-variables whose importance levels were determined first, and then the variables were
combined with the suitability model, and the DSM was obtained. DSM was grouped at the sub-group
level according to soil classification results.

DSM was validated by comparing traditional soil maps [79,80] with values observed at locations
with known soil properties [29,30,81]. Validation was performed based on 100 validation points
randomly taken from the study area and using the coefficient of determination (R’) and RMSE, which
are considered the most commonly used validation measures [32]. R’ is the coefficient of determination
of the model’s accuracy and a high value indicates a good prediction relationship. Since RMSE is a
measure of error, a lower value indicates high performance [83]. ArcGIS Pro (Version 3.0.1) was used
to apply the methods and techniques used in the study and to prepare various thematic maps.

3 Results
3.1 Variables Contributing to Soil Formation and Development

Soil formation and development is a highly complex process controlled by primary (parent mate-
rial, climate, topography, microorganisms, time), and subordinate variables [84,85]. Understanding
this process is important for producing soil maps, often used to visualize or predict soil types and
properties [86]. Therefore, soil formation and development in the study area were explained depending
on the spatially mapped sub-variables of topography (landforms, aspect, slope, altitude, curvature,
TWI), climate (temperature, precipitation, solar radiation), parent material (lithology), organisms
(Iand cover) and time (soil development) factors (Table 2).

Table 2: General properties of soil samples in the study area

Environmental variables Soil samples
Variables Subvariables 1 2 3 4 5 6 7
Coordinates 41°85'46.76"N 41°83/97.67"N 41°87'66.78"N 41°87'23.26"N 41°85'68.42"N 41°85'98.53"N 41°85'55.43"N

27°65'48.89"E  27°65'99.25"E 27°61'80.66"E 27°60'98.86"E 2756 50.27"E 27°57'17.14"E 27°63'96.82"E

(Continued)
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Table 2 (continued)

Environmental variables Soil samples

Topography Altitude 487.54 446.23 401.77 369.72 320.00 346.56 369.49
Slope 11.25 16.09 14.82 12.78 0.10 4.44 8.23
Aspect NE SE SW Flat S S w
Landforms Shoulder Shoulder Shoulder Shoulder Flat Footslope Footslope
Curvature Flat Convex Flat Flat Flat Flat Flat
TWI Wet Wet Wet Wet Wet Moist Wet

Climate Temperature 11.28 11.43 11.75 11.77 11.90 11.75 11.69
Precipitation 627 629 615 613 613 617 617
Solar Radiation  14841.67 14829.25 14842.50 14842.25 14880.67 14859.25 14851.08

Parent material Lithology Metagranitoid Marble Metagranitoid Marble Marble Schist Schist

Organisms Land cover Forest Forest Forest Forest Forest Forest Forest

Time Soil development Young Mature Immature Young Mature Immature Immature

Topography was identified as the most effective (50.77%) environmental variable in the spatial
distribution of soil types and properties (Table 3), because there is a clear connection between topog-
raphy and soil [87]. This connection is especially strong in mountainous areas where highly different
environmental conditions are observed over short distances [88]. Sub-variables of the topography were
distributed as slope (12.77%), aspect (12.45%), curvature (9.27%), landforms (6.69%), altitude (6.45%)
and TWI (3.14%), respectively (Table 3).

Table 3: Importance and percentage of variables and sub-variables contributing to soil formation

Variables Importance Percentage Subvariables Importance Percentage
Topography 0.49 50.77 Landforms 0.07 6.69
Aspect 0.12 12.45
Slope 0.12 12.77
Altitude 0.06 6.45
Curvature 0.09 9.27
TWI 0.03 3.14
Climate 0.27 28.14 Temperature 0.10 9.85
Precipitation 0.10 10.45
Solar radiation 0.08 7.83
Parent material 0.07 7.24 Lithology 0.07 7.24
Organisms 0.08 8.22 Land cover 0.08 8.22
Time 0.05 5.63 Soil development 0.05 5.63

The climate was identified as another factor that has a relatively high influence on the spatial
distribution of soil types and properties (28.14%). This is related to the local patterns of climate
characteristics of mountainous areas and varies spatially as a function of topography and other factors
[89]. Therefore, sub-variables of climate factors were distributed as precipitation (10.45%), temperature
(9.85%), and solar radiation (7.83%) (Table 3).

The effect of organisms on land cover [90] and parent material on lithology [91] and the impact
of time on soil development in different soils [92] were explained by sub-variables. These sub-variables
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played an influential role by 8.22% (land cover), 7.24% (lithology), and 5.63% (soil development),
respectively (Table 3).

Morpho-dynamic processes related to high relief energy and the differences in microclimate
conditions that develop accordingly contributed more to the spatial distribution of soil types and
properties. Therefore, the effect of topography and climate on soil types and properties was greater
than the effect of biophysical parameters.

3.2 Soil Properties

The top and subsoil layers had different physical and chemical properties and nutrients (Tables 4—
6). Both were spatially different horizontally in terms of environmental factors and vertically within
the layers of the soil profile.

Table 4: Physical properties of different soil layers

Soil samples Layer Physical properties
Depth Texture Structure Stoniness Color
1 Topsoil Very shallow L Blocky  Nonstony Brown (10YR 6/3 dry,
10YR 4/3 moist)
Subsoil Deep SCL Massive Nonstony Yellowish brown
(I0YR 6/4 dry, 10YR
4/4 moist)
2 Topsoil Very shallow CL Blocky  Slightly stony Reddish brown (5YR
4/8 dry, SYR 3/6 moist)
Subsoil Moderately deep L Prismatic Slightly stony Reddish brown (2.5YR
4/6 dry, 2.5YR 3/6
moist)
3 Topsoil Very shallow CL Blocky  Nonstony Brown (10YR 6/4 dry,
10YR 4/4 moist)
Subsoil Shallow CL Massive  Nonstony Yellowish brown
(I0YR 7/4 dry, 10YR
4/6 Moist)
4 Topsoil Shallow C Blocky = Nonstony Reddish brown (5YR
4/6 dry, SYR 3/4 moist)
Subsoil Shallow C Massive  Nonstony Reddish brown (5YR
5/6 dry, SYR 3/6 moist)
5 Topsoil Very shallow CL Blocky  Slightly stony Brown (7.5YR 6/6 dry,
7.5YR 4/6 moist)
Subsoil Shallow C Blocky  Slightly stony Reddish brown (2.5YR
4/6 dry, 2.5YR 3/6
moist)

(Continued)
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Table 4 (continued)

Soil samples Layer Physical properties
Depth Texture Structure Stoniness Color
6 Topsoil Very shallow L Massive Nonstony Yellowish brown
(10YR 7/4 dry, 10YR
5/6 moist)
Subsoil Very shallow C Massive  Nonstony Yellowish brown
(10YR 7/6 dry, 10YR
5/8 moist)
7 Topsoil Shallow L Massive  Nonstony Yellowish brown
(10YR 4/3 dry, 10YR
2/3 moist)
Subsoil Shallow SCL Massive  Slightly stony Yellowish brown
(10YR 7/4 dry, 10YR
4/3 moist)

Table 5: Chemical properties of different soil layers

Soil samples Layer Chemical properties
Salinity (%) pH SOM (%) CEC (ppm) CaCoO; (%)
1 Topsoil 0.15 6.43 6.02 176.50 0.59
Subsoil 0.04 6.27 0.63 88.25 0.39
2 Topsoil 0.19 6.32 6.93 185.50 0.59
Subsoil 0.03 6.44 0.63 104.33 0.39
3 Topsoil 0.10 6.35 2.73 114.00 0.00
Subsoil 0.04 6.21 0.98 120.00 0.20
4 Topsoil 0.12 6.54 2.45 207.00 0.20
Subsoil 0.08 6.57 0.70 205.00 0.39
5 Topsoil 0.07 6.18 3.78 156.00 0.20
Subsoil 0.05 6.45 0.98 192.00 0.39
6 Topsoil 0.09 5.54 5.11 148.50 0.20
Subsoil 0.05 5.33 1.40 226.00 0.39
7 Topsoil 0.08 5.66 6.14 141.00 0.26

Subsoil 0.04 5.94 1.61 67.00 0.39
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Table 6: Nutrients of different soil layers
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Soil samples Layer Macro elements Micro elements
P(ppm) K (ppm) Ca(ppm) Mg (ppm) Fe(ppm) Mn (ppm) Cu(ppm) Zn (ppm)
1 Topsoil 9.22 40.65 108.98 20.72 31.25 16.88 0.57 1.20
Subsoil 7.71 13.85 58.86 11.42 36.47 7.89 0.75 0.34
2 Topsoil 11.89 61.30 100.01 16.75 22.86 18.82 1.73 1.16
Subsoil 15.65 16.87 69.00 13.23 5.53 2.78 1.70 0.52
3 Topsoil 14.35 49.60 51.20 9.78 1.14 34.28 1.80 0.70
Subsoil 16.08 16.15 43.46 8.33 18.96 38.11 1.07 0.74
4 Topsoil 11.30 57.25 120.15 21.14 12.00 45.32 2.58 1.03
Subsoil 14.04 18.30 151.89 27.79 17.14 58.85 2.52 2.65
5 Topsoil 13.23 37.05 96.12 18.17 51.36 32.11 1.02 0.93
Subsoil 13.16 17.25 139.73 27.05 11.05 29.85 1.78 0.59
6 Topsoil 14.69 31.75 93.75 18.93 63.48 11.26 0.95 0.78
Subsoil 16.03 18.20 169.43 30.99 14.44 1.55 0.75 0.51
7 Topsoil 17.35 24.63 94.40 16.98 81.95 7.15 0.80 1.13
Subsoil 15.35 13.00 43.82 7.32 14.50 9.38 0.72 0.63

Soil properties are interrelated at a spatial scale [93]. To analyze and interpret this relationship, the
importance and percentage of the variables belonging to the properties in different soil profile layers

were determined (Table 7).

Table 7: Importance and percentage of physical and chemical properties and soil nutrients of different

soil layers

Soil physical properties

Variables Topsoil Variables Subsoil
Importance Percentage Importance Percentage
Texture 0.53 63.00 Texture 0.53 62.89
Color 0.17 19.98 Depth 0.11 13.38
Stoniness 0.09 11.07 Color 0.11 12.64
Depth 0.05 5.95 Stoniness 0.09 11.10
Soil chemical properties
Variables Topsoil Variables Subsoil
Importance Percentage Importance Percentage
SOM (%) 0.24 25.79 Salinity (%) 0.20 22.08
CaCO; (%) 0.18 19.12 CEC (ppm) 0.19 20.31
CEC (ppm) 0.18 18.57 CaCoO; (%) 0.18 19.76
Salinity (%) 0.17 18.40 SOM (%) 0.18 19.67
pH 0.17 18.12 pH 0.17 18.19

(Continued)
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Table 7 (continued)

Soil nutrient elements

Variables Topsoil Variables Subsoil
Importance Percentage Importance Percentage

Cu (ppm) 0.14 14.42 Mg (ppm) 0.17 17.30

Zn (ppm) 0.13 14.05 Zn (ppm) 0.15 15.37

P (ppm) 0.12 13.06 Mn (ppm) 0.12 12.87

K (ppm) 0.12 12.80 Ca (ppm) 0.11 11.81

Mg (ppm) 0.12 12.31 Cu (ppm) 0.11 11.16

Mn (ppm) 0.11 11.80 K (ppm) 0.10 10.79

Ca (ppm) 0.10 10.79 P (ppm) 0.10 10.73

Fe (ppm) 0.10 10.76 Fe (ppm) 0.10 9.98

Texture was identified as the most influential variable on the physical properties of both top
(63.00%) and subsoils (62.89%). Environmental factors (topography, hydrological process, and climatic
conditions) and especially texture affect the spatial variation of soil physical properties [94]. Therefore,
considering the importance and percentage of both parameters and the other variables, it was seen that
soil physical properties exhibited a heterogeneous distribution.

SOM was identified as the most effective variable on the chemical properties of top soils (25.79%)
and salinity on the chemical properties of subsoils (22.08%). SOM of topsoils should be related to
the presence of forest land cover with high organic matter accumulation and the salinity of subsoils
should be related to the topography and soil characteristics of the site. It was reported that SOM
dynamics largely depend on land cover, climate conditions, and soil types [95], while salinity depends
on landforms, land cover, soil types, and soil texture [96].

Cu (14.42%) in the topsoil and Mg (17.30%) in the subsoil were found to be the most effective
variables on soil nutrients. The presence and importance of different nutrients depend mainly on the
parent material [97]. Therefore, the distribution of parent material consisting of lithologies containing
Cu and Mg minerals has made these minerals more important in the top and subsoils. Present soils
also reflected the characteristics of bedrock. Cangir et al. [29] suggested that soils of the Strandzha
Mountains show a shallow soil character with an undeveloped profile structure and physico-chemical
properties and nutrients of different soil layers depend on the mineralogical structure of the sediments
forming the parent material or the sequence formed by the lithological discontinuity, if any.

The remaining soil properties’ different importance and percentages are shown in Table 6. As the
layers of soil profiles deepen, the significance and percentage of some variables increased while others
decreased. Comparisons within and between the layers revealed that changes in soil properties were
mostly realized under the influence of topography, climate, and time in topsoils and under the influence
of topography, parent material, and time conditions in subsoils. Assuming the study area is relatively
homogeneous in terms of organism factors related to the land cover characteristics, it was seen that
soil types and properties occurred under the control of topography with the joint effect of climate,
parent material, and time factors. Therefore, some environmental conditions had a more prioritized
impact on the spatial distribution of soil properties of the study area.



352 RIG, 2024, vol.33

3.3 Spatial Distribution and Mapping of Soil Types

Spatial distribution and mapping of soil types are significant for a more rational study and
management of soil resources [98]. Therefore, the distribution of soil orders developed under different
environmental conditions and with varying soil properties was determined. Accordingly, in the study
area where only Brown Forest soils are found in the genetic system, soils belonging to Entisol,
Inceptisol, and Alfisol orders were distributed (Fig. 3).
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Figure 3: Soil map of the study area

Entisols were the most widespread at the ordo level (39.81%). This is followed by Inceptisol
(37.47%) and Alfisol (22.72%) soil orders from largest to smallest. Typic Xereorthent belonging
to the Entisol order had the largest area at the sub-group level (Table 8). The others are listed as
Typic Humixerept (20.28%), Typic Haploxerept (17.19%), Typic Haploxeralf (13.48%) and Inceptic
Haploxeralf (9.24%) sub-groups, respectively (Table 8).

Table 8: Distribution of soil orders and sub-groups

Soil taxonomy Soil samples Area Area
(subgroup)  (subgroup)
Order Suborder Great group Subgroup  ha % ha %
Entisol Orthents Xereorthent Typic xereorthent 3, 6,7 580.07 39.81 580.07 39.81
Inceptisol Xerepts Humixerept Typic humixerept 1 295.52 20.28 546.08 37.47
Haploxerept Typic haploxerept 4 250.56 17.19
Alfisols  Xeralfs Haploxeralf Inceptic haploxeralf 2 134.60 9.24 331.10 22.72
Typic haploxeralf 5 196.50 13.48

Validation of DSM revealed R? as 0.66 and RMSE as 1.75. Accordingly, since the R* value is in
the range of 0.60<==R?*<0.75 and the RMSE value is .0<RMSE<=2.0, DSM was considered to
have a satisfactory performance. Therefore, the methods and techniques used in this study were proven
to predict the DSM accurately.
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4 Discussion

Sustainable and functional soil management and planning require detailed information on the
spatial distribution of soil types and properties [10,11]. This need is most accurately met through soil
surveying, which involves field sampling, laboratory analysis, data processing, and mapping [99]. Thus,
soil types and properties in a given area can be classified and a soil map can be produced to understand
their spatial distribution [100]. The recent increase in demand has encouraged the production of more
detailed and accurate soil maps to understand the spatial variability of soil properties [101]. DSM has
emerged as an established practice [102]. This has produced detailed soil maps showing the spatial
heterogeneity of soil properties consistent with the landscape [103].

DSM created with various methods such as machine learning, geostatistics and deep learning
approaches based on GIS techniques has become more popular with the developments in spatial
information technologies [18]. DSM provides a great advantage in mapping and monitoring soil
properties in a repeatable way due to its power to show detail and a higher accuracy rate, thus it is
widely used for various purposes such as decision-making and policy implementation [104]. It has
also made it easier for soil scientists to make inferences to test hypotheses to understand the spatial
distribution of soil types, properties, and pedogenic processes [86]. In this study, DSM was produced
using the GIS-based RF method. RF was preferred because it has a higher ability to learn or accurately
predict the interactions between different variables [105]. Manteghi et al. [106] found that the RF model
is the best-performing model compared to other models used in the DSM generation. However, the
limited number of samples available due to the study budget prevented the DSM validation result from
being good to very good. Biswas et al. [101] emphasized that the sample size determined according to
the available budget is of great importance as it affects the results of laboratory measurements and data
analysis. They reported that care should be taken to choose the right sample size to meet the purpose
of the study. Zhang et al. [12] argued that samples taken without representing the entire soil profile
due to their cost may jeopardize the accuracy of the study and lead to large sampling uncertainty.
On the other hand, the rugged topography of the study area also played a decisive role in limited
sampling. Camera et al. [107] reported that the DSM would show lower reliability due to a lack of data
based on mountainous areas’ topographical, geological, geomorphological, and climatic conditions.
Gelsleichter et al. [108] reported that the DSM product will be produced with fewer samples because
sampling, which can affect the spatial estimation of soil types and properties, is even more difficult in
mountainous areas with limited access and transportation.

Mountainous areas are extraordinary ecosystems defined as biomes due to various environmental
conditions in vertical and horizontal gradients [109]. Mountain soils distributed in these ecosystems
are very important for the functioning and preserving of ecological features [88]. Since the study area
has a mountain character, it has an extremely complex topography. This character of topography
has played a dominant role in horizontal and vertical variation of soil properties. Therefore, the
topography factor affected the spatial distribution of soil samples in the study area more dominantly.
Climate factors follow this at a significant rate. Variations of local topographical features in short
distances caused the climate characteristics to change. Such a case has triggered spatial differentiation
of soil types and properties. Cangir et al. [29] suggested that spatial variations in topography,
climate, and parent material characteristics effectively formed soil types in the Strandzha Mountains.
Therefore, the study results showed that the generation of DSM using the GIS-based RF method
to prepare maps of soil classes in high-relief areas helps reduce time and cost and increase accuracy.
However, it was also found that the RF model, which can be used to prepare maps of soil classes in
low-relief areas, is more advantageous [107].
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In the last century, due to various global problems such as climate change, land use and land cover
change (LUCC), deforestation, biodiversity loss, soil degradation, and erosion, studies on the spatial
distribution of soil types and properties of natural landscapes have gained momentum [110]. Although
only Brown Forest soils were distributed in the genetic system in the present study area, some other
soil groups belonging to Entisol, Inceptisol, and Alfisol orders existed. Such a case was because only
soil formation factors in the genetic system are considered in classifying soil types. In contrast, soil
properties and morphology are considered in soil taxonomy [111].

In the study area, the most common soil type was found to be Entisol. Ding et al. [112] reported
that Entisols, one of the most widespread soil orders in Tiirkiye and the Thracian Peninsula, occur
on sloping lands of mountainous or newly deposited areas. Cangir et al. [29] reported that entisols
are encountered in the forested regions of the Strandzha Mountains, especially near river beds.
On the other hand, the second dominant soil order of the study area was identified as Inceptisols.
Haktanir et al. [1 13] suggested that Inceptisols are the most commonly observed soil order in Tiirkiye
after Entisols.

5 Conclusion

Mountainous areas, which form a special ecosystem compared to their surroundings, have a
complex and fragile ecosystem. Soils in these special ecosystems are highly dynamic systems that
can respond more sensitively to environmental changes. Therefore, assessing and mapping the spatial
distribution of the types and characteristics of mountain soils is crucial for a better understanding of
the orobiomes of our planet. This study used a GIS-based RF machine-learning model to estimate
spatial variability of soil types and properties under forest cover of the Strandzha Mountains of
Tirkiye. For this purpose, environmental factors and soil properties affecting soil formation and
development were analyzed. DSM was developed for the study area by associating the findings
with the soil survey results. DSM suggests that the factors affecting the spatial distribution of soil
types and properties in the sample area are, from most important to least important, topography
(50.77%), climate (28.14%), organisms (8.22%), parent material (7.24%) and time (5.63%). With
the contributions of all these factors at different rates, it was determined that Entisols were the
most widespread in the study area at the ordo level (39.81%). The other soil orders, Inceptisol
(37.47%) and Alfisol (22.72%) have a smaller spatial distribution. Present findings may be useful in
making inferences about the spatial distribution of soil types and properties of similar landscapes and
explaining the factors affecting this distribution. It was also concluded that the number of samples
should be increased to obtain more reliable results from DSM. However, it was confirmed that a GIS-
based RF machine learning model could reliably be used to produce DSM.
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