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ABSTRACT

In this study, the impact of the training sample selection method on the performance of fuzzy-based Possibilistic
c-means (PCM) and Noise Clustering (NC) classifiers were examined and mapped the cumin and fennel rabi crop.
Two training sample selection approaches that have been investigated in this study are “mean” and “individual
sample as mean”. Both training sample techniques were applied to the PCM and NC classifiers to classify the
two indices approach. Both approaches have been studied to decrease spectral information in temporal data
processing. The Modified Soil Adjusted Vegetation Index 2 (MSAVI-2) and Class-Based Sensor Independent
Modified Soil Adjusted Vegetation Index-2 (CBSI-MSAVI-2) have been considered to minimize soil background
effects, enhancing vegetation detection accuracy, particularly in areas with sparse vegetation cover. The MMD
(Mean Membership Difference) and RMSE (Root Mean Square Error) approaches were used to measure the study’s
accuracy. To illustrate that the classifier successfully describes classes, cluster validity (SSE) was also performed,
and the variance parameter was computed to handle heterogeneity within cumin and fennel crop fields. For the
calculation of RMSE, Sentinel-2 data was used as classified, whereas PlanetScope satellite data was utilized as the
reference data set. The best result was obtained using the NC classifier with “individual sample as mean” using
CBSI-MSAVI-2 temporal indices. For Fuzziness Factor (m) = 1.1, the RMSE, MMD, Variance, and SSE values
for the NC classifier using “individual sample as mean” on the CBSI-MSAVI-2 temporal indices for cumin were
0.00098, 0.00162, 0.02857, and 0.97143, respectively and for fennel were 0.00025, 0.00248, 0.10420, and 3.54286,
respectively.

KEYWORDS
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1 Introduction

The herb Cuminum cyminum, a member of the parsley family, produces dry seeds known as
cumin. An important Rabi crop is cumin, which is generally sown from September to November and
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harvested from February to April [1]. It has a 100–120-day growth season. The temperature ranges
between 25°C and 30°C are ideal for growth. The cumin plant is hand-harvested when it reaches
a height of 30–50 cm (12–20 in). Approximately 70% of the world’s cumin production comes from
India. In the fiscal year 2020–2021, India produced 856,000 tons of cumin seeds. They are frequently
employed in conventional medicine to treat a wide range of illnesses. It is primarily farmed in Rajasthan
and Gujarat in India, with 66% and 18% of the country’s total production, respectively [2,3]. Fennel
(Foeniculum vulgare L.) is a plant farmed mostly as a herb or for its fruits and admired for its pleasant
aroma, multiplicity of nutritional and health characteristics [4]. An important Rabi crop is fennel,
which is generally sown from September to November and harvested from February to April. In 180
days, the crop will be ready for harvest [5]. India is the world’s leading producer of fennel. Rajasthan,
Andhra Pradesh, Punjab, Uttar Pradesh, Gujarat, Madhya Pradesh, Karnataka, and Haryana are
major fennel-growing states.

Remote sensing (RS) data and methods, with the combination of GIS and landscape measures,
are essential for the characterization and analysis of Land Cover (LC) spatial and temporal changes
[6–8]. Multi-temporal RS datasets allow for the mapping and identification of landscape changes,
helping in better landscape management and planning. High and medium-resolution satellite data
that are multispectral and multitemporal have become essential resources for quantifying factors like
vegetation cover, forest degradation, and urban growth [9]. Information on the dynamics of land cover
is analyzed using temporal satellite data. This information can be extracted at a different class level
using high-resolution data. Temporal data is helpful to determine the seasonal trend in a particular
plant class in addition to spectral data with other classes [10] mentioned that technology for remote
sensing and geographic information systems (GIS) offers a platform for investigating from which the
Earth’s surface landscapes are covered.

Temporal remote sensing data was applied to map individual crops and collect agricultural growth
information [11–13] mentioned that our world’s ecosystem primarily relies on vegetation, which
controls the dynamics and productivity of the land cover. Cropping patterns, typical vegetable varieties,
and phenology of the target plant can all be determined using time-series vegetation indices suggested
by [14].

Mainly three types of classification techniques occurred: supervised, unsupervised, and hybrid
classification. In several classifications, the terms ‘hard’ and ‘soft’ are applied. Satellite images are
composed of mixed pixels, making classification techniques difficult to apply and producing incorrect
results [15]. To address the mixed pixel problem, fuzzy-based classifications were developed, allowing
pixels to belong to multiple classes with varying degrees of membership. In addition to this, other
techniques such as spectral unmixing and Subpixel Inference Algorithms (SPIA) [16] have been
employed. Spectral unmixing decomposes a pixel’s spectral signature into constituent endmember
spectra and their abundances, while SPIA uses statistical and machine learning methods to infer the
subpixel compositions [17]. These methods, along with fuzzy-based classifications [18], provide robust
solutions for handling the complexities of mixed pixels in remote sensing. To deal with the mixed
pixel, in this work fuzzy-based classifications were used. In the case of a mixed pixel situation, when
it permits membership value to any pixel consisting of the available class, the fuzzy logic technique
produces a better outcome. The most extensively used basic fuzzy algorithms in soft classification are
FCM [19], PCM [20], and NC [21]. The FCM clustering technique allocates a sample’s membership
degree to two or more clusters. PCM uses “degree of belongings” instead of “degree of sharing” to
eliminate and smooth out the noise caused by outliers which gives a better result compared to the
FCM classifier. To minimize the effect of outliers, the noise clustering technique introduced a distinct



RIG, 2024, vol.33 365

class that comprises all of the noisy points. Individual sample as mean is a strategy in fuzzy-based
classification that improves classification accuracy while utilizing heterogeneity within the class [22,23].

This research used an innovative approach called “Individual Sample as Mean”, where each
training sample is used as the mean parameter for the fuzzy PCM, NC classifier, instead of the
conventional statistical mean derived from the training data [24]. The statistical parameters from the
training data often fail to represent the variations within a field accurately. Factors such as uneven
application of water, fertilizers, and pesticides can cause local variations within a crop field. This
heterogeneity negatively impacts classification accuracy and hinders precise crop mapping [23]. So,
this study focused on providing the best training sample selection technique to get the best-classified
result.

In this study, the cumin and fennel crops were mapped and classified using two methods: the
NC and PCM classifiers. There are two distinct ways to choose training samples: “individual training
sample as mean” and training sample as “mean”. Individual training samples applied as the mean are a
novel methodology, but training samples applied as the “mean” are a traditional method. In this study,
the two training sample techniques, “mean”and “individual sample as mean”, applied to NC and PCM
classifiers on two temporal indices databases have been compared to see which is more efficient. To
reduce the spectral dimensionality of temporal images, the Class-Based Sensor Independent-Modified
Soil Adjusted Vegetation Index 2 (CBSI-MSAVI-2) [24] and Modified Soil Adjusted Vegetation Index
2 (MSAVI-2) [25] temporal database indices were used. The temporal vegetation indices were used to
consider the various phases of the plant’s crop cycle. By providing details on temporal stage differences
from other crops, these indices enhance biophysical quality and provide the target crop with a unique
signature. The indices also reduced the albedo/shadow effect in images. The overall objective was to
compare the “mean” approach with the “individual sample as mean” training parameter strategy in
PCM and NC classifiers, handle heterogeneity within the class, and finally map the cumin and fennel
crop. To compare the outcomes, Root Mean Square Error (RMSE), Mean Membership Difference
(MMD), Variance, and (Sum of Square Error) SSE were computed. Here, MMD uses two separate
approaches to computing. The initial technique uses identical cumin and fennel training and testing
samples. The first approach uses the same crop sample as the training and testing samples to determine
proximity. The second approach uses the different crop samples as the training and testing samples to
determine departure.

2 Detailed Mathematical Explanations of Fuzzy Classifiers

This section discusses the mathematical definitions for the fuzzy machine learning models used
in this research work. The fuzzy machine learning Possibilistic c-Mean (PCM) and Noise Clustering
(NC) models were used in this analysis. Due to their ability to map just one class of interest, Possibilistic
c-Mean (PCM) and Noise Clustering (NC) fuzzy classifiers were chosen.

2.1 Possibilistic c-Means (PCM)
The Possibilistic c-Mean (PCM) algorithm minimizes the constraint of the FCM clustering

technique [26]. The hyper-line constraint of the FCM algorithm is simplified by this PCM approach.
In contrast to low membership values, which are unrepresentative, the PCM method assigns high
membership values to representative factor points. The objective function of the PCM classifier is
stated in Eq. (1).
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Here, ηi = parameter that depends on the distribution of pixels in the cluster in Eq. (2), m =
Fuzziness factor (it contains any real value greater than 1), uji = Degree of membership represents of
ith pixel for cluster j, xj = jth d-dimensional measured data, ci = mean value (cluster center) of the ith
class, ci = mean value (cluster center) of the ith class, N = total no of a pixel in the image, c = Number
of classes, and

∥∥xj − ci

∥∥ = distance between xj and ci.

2.2 Noise Clustering
To deal with the noise, Reference [21] recommended a noise clustering classifier. According to the

NC approach, all noise and outliers are included in a new, distinct class. The NC algorithm’s primary
function is represented by Eq. (4).
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The membership value Eq. (5) and fuzzy mean Eq. (6) can be derived from the Eq. (4):
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∥∥xj − ck

∥∥ = distance between xj and ck, and δ = noise distance.

2.3 “Individual Sample as Mean” Training Approach
2.3.1 Steps for “Individual Sample as Mean”

The steps followed for the “individual sample as mean” training approach are as follows:

Step 1: n Training samples for each class were selected for both techniques. Here n represent the
no. of training sample.

Step 2: The values of the selected training samples were utilized to change the mean values (ci) in
the calculation of the membership value for the PCM and NC classifier algorithms. Eqs. (1) and (4),
respectively, substitute n for each training sample in PCM and NC.

Step 3: Determined the membership value for each pixel for each training sample for a specific
class.
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Step 4: Each pixel for each sample within the class is given the membership value with the highest
degree.

2.3.2 Utility of Both Training Sample Techniques

Individual training sample as “mean”

1. Dimensionality Reduction: Simplifies the data by reducing the number of features [27].

2. Pattern Discovery: This may help in discovering underlying patterns in the data that could be
useful for the model [24].

Training sample as “mean”

1. Consistency: Ensures that the imputation is based on the distribution of the training data, which
is crucial to prevent data leakage from the test set [28].

2. Simplicity: Easy to implement and understand, quickly dealing with missing data without
introducing complex models.

3. Baseline Performance: Provides a baseline performance that more sophisticated imputation
techniques can be compared against [29].

2.4 Modified Soil Adjusted Vegetation Index 2 (MSAVI-2)
The MSAVI-2 is a modified soil-adjusted vegetation index for sites with exposed soil surface that

offers advantages over the NDVI. The disadvantage of the SAVI (Soil Adjusted Vegetation Index) is
the L soil brightness compensation factor, which ranges from 0–1, with very high vegetation to very
low vegetation. A value of 0.5 is applied for vegetation cover in the midway. L = 0 expresses the SAVI
equivalents of NDVI [30]. To make computations simpler, MSAVI was changed to MSAVI-2. The
method for calculating CBSI-MSAVI-2 is described in Eq. (8).

MSAVI − 2 = 2 (NIR) + 1 − √
(2 (NIR) + 1)2 − 8(NIR − RED)2

2
(8)

where, NIR-Reflectance in the near IR band & RED–Reflectance in the RED band.

2.5 Class-Based Sensor Independent Modified Soil Adjusted Vegetation Index 2 (MSAVI-2)
Class-Based Sensor Independent Modified Soil Adjusted Vegetation Index 2 (CBSI-MSAVI-

2) Indices are used to reduce dimensionality. This index does not require knowledge of sensor
characteristics to determine the required crop’s maximum improvement. Additionally, this keeps
spectral dimensionality one while maintaining temporal dimensionality [31]. The formula used to
calculate CBSI-MSAVI-2 is mentioned in Eq. (9).

CBSI − MSAVI − 2 = 2 (ρmax) + 1 − √
(2 (ρmax) + 1)2 − 8(ρmax − ρmin)2

2
(9)

Here, ρmax = maximum reflectance value and ρmin = minimum reflectance value.

MSAVI-2 (Modified Soil Adjusted Vegetation Index 2) and CBSI-MSAVI-2 (Class-Based Sensor
Independent Modified Soil Adjusted Vegetation Index 2) are preferred due to their ability to minimize
soil background effects, enhancing vegetation detection accuracy, particularly in areas with sparse veg-
etation cover. MSAVI-2 uses a dynamic soil adjustment factor, making it more sensitive to vegetation
changes and effective in mixed vegetation-soil environments [25,32]. CBSI-MSAVI-2 builds on this by
being sensor-independent and incorporating class-based adjustments, ensuring consistent and precise
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vegetation analysis across different sensor platforms and vegetation types [31]. These indices provide
robust, reliable, and versatile solutions for accurate vegetation monitoring and assessment, essential
for diverse applications in agriculture, forestry, and environmental management [33,34].

3 Study Area and Dataset

The study area considered for this essay is in the Nagaur district of India’s Rajasthan state.
Latitudes 26.63 degrees and 73.94 degrees and 26.5 degrees and 74.09 degrees, respectively, define the
boundaries of the study area. As a Rabi crop, cumin and fennel crop are sown between October and
November. Sentinel-2 and PlanetScope satellite data were used in this study area. Satellite data from
Sentinel-2 was categorized, and a reference dataset was created using satellite data from PlanetScope.
Table 1 lists the sensor specifications for the Sentinel-2 and PlanetScope satellites. Fig. 1 shows the
study area, with the actual study area shown by the image’s border. Fieldwork was done for cumin on
10 January, 2022, and fennel on 11 January, 2022, to collect geo-tagged samples that will be used for
training and testing.

Table 1: Specification of Sentinel-2 and PlanetScope satellite image

Specification Sentinel-2 PlanetScope

Spatial resolution (m) 9 m 3 m
Spectral resolution 10 bands 4 bands
Revisit period 10 days 1 day

Figure 1: The actual study area is shown with a bounding box on the image

4 Adopted Methodology

The temporal indices database was initially built using pre-processed temporal multispectral
images from Sentinel-2 satellite images. A database of temporal indices has been built using the CBSI-
MSAVI-2 and MSAVI-2 indices approach. The main objective of the temporal indices database was
to incorporate the phonological characteristics of the cumin and fennel plant and lower the spectral
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dimension by maintaining the temporal dimension and encoding items as vectors to be used in NC
and PCM classifiers. The training sample operated as the “mean” and “individual sample as mean” in
the supervised Noise Clustering (NC) and Possibilistic c-Means (PCM) algorithms. Fig. 2 illustrates
the approach.

“mean”

“individual sample as mean”

Figure 2: Methodology adopted

The temporal dataset was employed to map cumin and fennel crop fields using two training
approaches. Images from the following dates generate the temporal dataset: 3 November 2021, 23
November 2021, 28 November 2021, 8 December 2021, 18 December 2021, 12 January 2022, 27
January 2022, 1 February 2022, 6 February 2022, 8 February 2022, 16 February 2022, and 21 February,
26 February, 13 March, 18 March, and 23 March 2022:

i) The MSAVI-2 and CBSI-MSAVI-2 indices for the cumin and fennel crop were calculated for
temporal images using the MSAVI-2 and CBSI-MSAVI-2 formulas provided in Eqs. (8) and
(9), respectively.

ii) Determine the CBSI-MSAVI-2 and MSAVI-2 values to find temporal images that are optimal
and represent distinct stages of the cumin and fennel crop.

iii) The dates of 13 March, 2018, and 23 are not suitable to consider for producing an optimal
temporal indices database, according to the CBSI-MSAVI-2 and MSAVI-2 values computed
in Step (2) (shown in Table 2, Figs. 3, and 4). However, the remaining temporal images are
used to accomplish so.

iv) Training samples were selected from the CBSI-MSAVI-2 and MSAVI-2 databases after
accounting for ground truth information gathered from sample sites around the study area.
In this work 80 training samples for each crop are selected and applied these training samples
to the entire given dataset.

v) The CBSI-MSAVI-2 and MSAVI-2 temporal datasets were categorized using the training
sample as the “mean” and the “individual sample as the mean” in the NC and PCM classifier.

vi) To get the best result and algorithm, compare all of the outcomes after computing the
Accuracy Assessment (RMSE) between Sentinel-2 and PlanetScope temporal images.
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The MSAVI-2 and CBSI-MSAVI-2 values for the cumin and fennel class from the temporal images
for various dates are displayed in Table 2.

Table 2: CBSI-MSAVI-2 and MSAVI-2 value for cumin and fennel for Sentinel-2 images

Dates Cumin Fennel

CBSI-MSAVI-2 value MSAVI-2 value CBSI-MSAVI-2 value MSAVI-2 value

03-Nov-21 0.74196 0.66784 0.77176 0.76772
23-Nov-21 0.80039 0.74314 0.84157 0.74745
28-Nov-21 0.78549 0.72196 0.83844 0.73961
08-Dec-21 0.80314 0.72274 0.80412 0.72902
18-Dec-21 0.84118 0.82196 0.84510 0.78510
12-Jan-22 0.78902 0.75333 0.84353 0.80784
27-Jan-22 0.79686 0.70078 0.81608 0.76353
01-Feb-21 0.82274 0.71882 0.81647 0.78824
06-Feb-22 0.78157 0.69647 0.82863 0.75882
08-Feb-22 0.72745 0.70118 0.81725 0.76314
16-Feb-22 0.80039 0.68235 0.80549 0.74510
21-Feb-22 0.71431 0.66118 0.83177 0.75333
26-Feb-22 0.74235 0.67529 0.82784 0.76157
13-Mar-22 0.60529 0.57333 0.67490 0.64314
18-Mar-22 0.64745 0.56196 0.67804 0.60706
23-Mar-22 0.63020 0.57490 0.62039 0.61373

Figure 3: Graphical representation of CBSI-MSAVI-2 and MSAVI-2 values of Sentinel-2 image for
cumin spices
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Figure 4: Graphical representation of CBSI-MSAVI-2 and MSAVI-2 values of Sentinel-2 image for
fennel spices

5 Results and Discussion
5.1 Optimizing Fuzziness Factor (m)

This section demonstrates the impact of the fuzziness factor (m), whose value varies from 1.1
to 3 with an interval of 0.2, on the CBSI-MSAVI-2 and MSAVI-2 temporal indices databases that
were classified using PCM and NC classifiers employing training samples as “mean” and “individual
samples as mean”. For each value of m, a Mean Membership Difference (MMD) analysis was used to
determine the ideal value of m. The MMD displayed proximity results by comparing the membership
value of the same training fields to the same test fields of the dataset, while the MMD displayed
departure results by comparing the membership value of the different training fields to the different
test fields. This paper calculated MMD proximity and departure results for cumin and fennel plants.

Table 3 displays the MMD proximity outcomes for the various values of m for the NC and PCM
classifiers using the training sample as “mean” and “individual sample as mean” on the CBSI-MSAVI-
2 and MSAVI-2 temporal indices database for the cumin plant. Cumin plant membership was used as
the test field and the training field for the computation of MMD proximity.

Table 3: MMD proximity outputs displaying Cumin training fields and test fields for PCM and NC
classifiers using training sample as “mean” and “individual sample as mean” and different m (1.1–3)
on MSAVI-2 and CBSI-MSAVI-2 temporal indices database

PCM NC
MSAVI-2 CBSI-MSAVI-2 MSAVI-2 CBSI-MSAVI-2

mean ISM mean ISM mean ISM mean ISM

m = 1.1 0.03774 0.02696 0.00441 0.00172 0.00490 0.00123 0.00225 0.00098
m = 1.3 0.04191 0.03015 0.00662 0.00196 0.01422 0.00466 0.00441 0.00108
m = 1.5 0.04338 0.03284 0.02083 0.00368 0.03088 0.01127 0.01814 0.00123
m = 1.7 0.05172 0.03848 0.03505 0.00441 0.04632 0.01789 0.03333 0.00172
m = 1.9 0.06103 0.04779 0.04902 0.00735 0.05441 0.02623 0.04387 0.00490
m = 2.1 0.06544 0.05613 0.05392 0.01078 0.05490 0.03505 0.05025 0.00637
m = 2.3 0.06642 0.06422 0.05417 0.01127 0.05662 0.04363 0.05270 0.01029
m = 2.5 0.06765 0.07181 0.05466 0.01422 0.05784 0.05074 0.05319 0.01324
m = 2.7 0.06863 0.07696 0.05784 0.01814 0.06103 0.05833 0.05368 0.01642

(Continued)
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Table 3 (continued)

PCM NC
MSAVI-2 CBSI-MSAVI-2 MSAVI-2 CBSI-MSAVI-2

mean ISM mean ISM mean ISM mean ISM

m = 2.9 0.07010 0.08186 0.05858 0.02328 0.06176 0.06422 0.05490 0.02206
m = 3.0 0.07034 0.08382 0.05882 0.02549 0.06201 0.06692 0.05515 0.02304

Table 4 displays the MMD proximity outcomes for the various values of m for the NC and PCM
classifiers using the training sample as “mean” and “individual sample as mean” on the CBSI-MSAVI-
2 and MSAVI-2 temporal indices database for the fennel plant. Fennel plant membership was used as
the test field and the training field for the computation of MMD proximity.

Table 4: MMD proximity outputs displaying Fennel training fields and test fields for PCM and NC
classifiers using training sample as “mean” and “individual sample as mean” and different m (1.1–3)
on MSAVI-2 and CBSI-MSAVI-2 temporal indices database

PCM NC

MSAVI-2 CBSI-MSAVI-2 MSAVI-2 CBSI-MSAVI-2

mean ISM mean ISM mean ISM mean ISM

m = 1.1 0.00417 0.00123 0.00294 0.00049 0.00392 0.00035 0.00049 0.00025
m = 1.3 0.00539 0.00196 0.00392 0.00049 0.00465 0.00049 0.00098 0.00049
m = 1.5 0.00882 0.00467 0.00564 0.00123 0.00466 0.00123 0.00123 0.00074
m = 1.7 0.01471 0.00931 0.00668 0.00588 0.00613 0.00147 0.00368 0.00196
m = 1.9 0.01985 0.01544 0.01422 0.01446 0.01103 0.00368 0.00784 0.00760
m = 2.1 0.02574 0.02206 0.02402 0.02525 0.01691 0.00784 0.01201 0.00931
m = 2.3 0.03015 0.02868 0.03333 0.03443 0.03064 0.01300 0.01985 0.01201
m = 2.5 0.03284 0.03554 0.03995 0.04314 0.03431 0.01985 0.02230 0.01274
m = 2.7 0.03578 0.04167 0.04706 0.05172 0.04020 0.03284 0.02672 0.01397
m = 2.9 0.03602 0.04510 0.04902 0.05809 0.04681 0.03995 0.03113 0.01397
m = 3.0 0.05956 0.04681 0.04902 0.06102 0.04706 0.04240 0.03382 0.01422

Table 5 displays the MMD Departure outcomes for the various values of m for the NC and PCM
classifiers using the training sample as “mean” and “individual sample as mean” on the CBSI-MSAVI-
2 and MSAVI-2 temporal indices database for the cumin plant. Here cumin plant membership is
applied as a training field, and fennel plant membership is used as a testing field.

Table 6 displays the MMD Departure outcomes for the various values of m for the NC and PCM
classifiers using the training sample as “mean” and “individual sample as mean” on the CBSI-MSAVI-
2 and MSAVI-2 temporal indices database for the Fennel plant. Here fennel plant membership is
applied as a training field, and cumin plant membership is used as a testing field.
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Table 5: MMD Departure outputs displaying where Cumin was used as training fields and Fennel
applied as test fields for PCM and NC classifiers using training sample as “mean” and “individual
sample as mean” for different m (1.1–3) on MSAVI-2 and CBSI-MSAVI-2 temporal indices database

PCM NC

MSAVI-2 CBSI-MSAVI-2 MSAVI-2 CBSI-MSAVI-2

mean ISM mean ISM mean ISM mean ISM

m = 1.1 0.10387 0.11838 0.11078 0.18627 0.112402 0.15931 0.125 0.20687
m = 1.3 0.06341 0.11717 0.09730 0.18137 0.11096 0.15417 0.12426 0.20441
m = 1.5 0.06125 0.11716 0.08309 0.16961 0.10368 0.14363 0.12206 0.19608
m = 1.7 0.05973 0.11225 0.06397 0.15444 0.10122 0.13040 0.11961 0.18652
m = 1.9 0.05622 0.11152 0.04338 0.13554 0.08922 0.11300 0.11520 0.17108
m = 2.1 0.05502 0.09289 0.02353 0.11300 0.08186 0.11127 0.11471 0.15147
m = 2.3 0.04993 0.06936 0.01892 0.08456 0.05990 0.10882 0.09755 0.12574
m = 2.5 0.04534 0.04020 0.01240 0.05294 0.05598 0.08162 0.07426 0.09142
m = 2.7 0.04103 0.01544 0.00784 0.02279 0.05070 0.04485 0.03799 0.05196
m = 2.9 0.00037 0.00221 0.00196 0.00441 0.00052 0.00907 0.00588 0.01373
m = 3.0 0.00026 0.00196 0.00196 0.00245 0.00032 0.00221 0.00196 0.00392

Table 6: MMD Departure outputs displaying where Fennel was used as training fields, and cumin
applied as test fields for PCM and NC classifiers using training sample as “mean” and “individual
sample as mean” for different m (1.1–3) on MSAVI-2 and CBSI-MSAVI-2 temporal indices database

PCM NC

MSAVI-2 CBSI-MSAVI-2 MSAVI-2 CBSI-MSAVI-2

mean ISM mean ISM mean ISM mean ISM

m = 1.1 0.18971 0.23873 0.22843 0.25735 0.19755 0.25319 0.25147 0.29118
m = 1.3 0.18799 0.23358 0.22794 0.24706 0.19387 0.24828 0.25049 0.28260
m = 1.5 0.18529 0.21790 0.22672 0.22448 0.19093 0.23628 0.24681 0.26177
m = 1.7 0.15880 0.20025 0.17083 0.225 0.18309 0.21863 0.23800 0.24657
m = 1.9 0.15213 0.14755 0.13946 0.22206 0.18284 0.17181 0.21005 0.241427
m = 2.1 0.15098 0.12230 0.10417 0.21495 0.17353 0.13824 0.17672 0.23873
m = 2.3 0.14093 0.11422 0.07010 0.19363 0.15490 0.13657 0.14044 0.23578
m = 2.5 0.07672 0.07868 0.04314 0.15980 0.14054 0.13284 0.10147 0.23113
m = 2.7 0.04044 0.04657 0.03015 0.14044 0.09828 0.12956 0.06692 0.23015
m = 2.9 0.01762 0.03162 0.01961 0.11005 0.05735 0.12816 0.06103 0.22402
m = 3.0 0.01250 0.03162 0.01962 0.10147 0.02157 0.12816 0.04902 0.20736
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5.2 Accuracy Assessment Using RMSE
The accuracy of PCM and NC classifiers using training samples as “mean”and “individual sample

as mean” is tested in this section by calculating the RMSE result. The result has been quantitatively
analyzed using the RMSE method. The difference in membership values between the reference and
classified data sets squared produces the RMSE [10]. Sentinel-2 was classified data set and reference
data set from PlanetScope. A lower RMSE value denotes a successful classification [11]. The output
of the PCM and NC classifiers using the training sample as “mean” and “individual sample as mean”
along with different m (1.1–3) on the MSAVI-2 and CBSI-MSAVI-2 temporal indices is shown in
Table 7.

Table 7: RMSE within cumin and fennel plant, respectively, for PCM and NC classifiers on the
MSAVI-2 and CBSI-MSAVI-2 temporal indices datasets

RMSE PCM NC

MSAVI-2 CBSI-MSAVI-2 MSAVI-2 CBSI-MSAVI-2

mean ISM mean ISM mean ISM mean ISM

Cumin 0.00375 0.00344 0.00318 0.00175 0.00363 0.00325 0.00311 0.00162
Fennel 0.00409 0.00351 0.00331 0.00304 0.00381 0.00344 0.00311 0.00248

5.3 Cluster Validity and Variance
This section presents cluster validity and variance within the cumin and fennel plants. The sum of

square errors (SSE) was utilized in this study project to analyze cluster validity in order to determine
which clustering approach and temporal indices database produce the best results. Variance also
reveals which approach successfully managed the heterogeneity within the fields. The minimum SSE
and variance values get the best results. The variance within the cumin and fennel plant class for
PCM and NC classifiers using training sample as “mean” and “individual sample as mean” on CBSI-
MSAVI-2 and MSAVI-2 temporal indices datasets is displayed in Table 8.

Table 8: Variance within cumin and fennel plant, respectively, for PCM and NC classifiers on the
MSAVI-2 and CBSI-MSAVI-2 temporal indices datasets

Variance within the class PCM NC

MSAVI-2 CBSI-MSAVI-2 MSAVI-2 CBSI-MSAVI-2

mean ISM mean ISM mean ISM mean ISM

Cumin 0.25546 0.24706 0.22185 0.12605 0.25210 0.24034 0.05546 0.02857
Fennel 0.56242 0.24706 0.25210 0.16471 0.55462 0.24034 0.18151 0.10420

The SSE within the cumin and fennel plant class for PCM and NC classifiers using training sample
as “mean” and “individual sample as mean” on CBSI-MSAVI-2 and MSAVI-2 temporal indices
datasets have been mentioned in Table 9.
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Table 9: SSE within cumin and fennel plant, respectively, for PCM and NC classifiers on the MSAVI-2
and CBSI-MSAVI-2 temporal indices datasets

SSE PCM NC

MSAVI-2 CBSI-MSAVI-2 MSAVI-2 CBSI-MSAVI-2

mean ISM mean ISM mean ISM mean ISM

Cumin 8.68572 8.39999 7.54286 4.28571 8.57143 8.17143 1.88571 0.97143
Fennel 19.1223 8.39999 8.57143 5.60000 18.8571 8.17143 6.17143 3.54286

5.4 Classified Outputs
The outputs of the cumin and fennel plant mapping class have been shown in this section. These

classified outputs used NC and PCM classifiers applying training samples as “mean” and “individual
sample as mean” to categorize the CBSI-MSAVI-2 and MSAVI-2 temporal indices database. The
results of applying the training sample as “mean” and “individual sample as mean” to the CBSI-
MSAVI-2 and MSAVI-2 temporal indices databases using NC and PCM classifiers have been shown
in Figs. 5–8. The results in Figs. 5–8 demonstrate that when the training sample was configured as
“individual sample as mean,”the CBSI-MSAVI-2 temporal indices database produced better-classified
fields. The red circle indicates that Cumin and Fennel fields, found during ground truth work, have
been appropriately classified.

“mean”
“individual sample as
mean”

“mean”
“individual sample as
mean”

Figure 5: Comparison of training sample approach as “mean” and “individual sample as mean”
outputs for NC classifiers. The red circle denotes appropriately classified Cumin fields that were
discovered during ground truth work
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“mean”
“individual sample as
mean”

“mean”
“individual sample as
mean”

Figure 6: Comparison of training sample approach as “mean” and “individual sample as mean”
outputs for PCM classifiers. The red circle denotes appropriately classified cumin fields that were
discovered during ground truth work

6 Discussions

The impact of the fuzziness factor (m) on the classification accuracy of temporal indices databases,
specifically CBSI-MSAVI-2 and MSAVI-2, using PCM and NC classifiers with training samples
configured as either “mean” or “individual samples as mean.” The Mean Membership Difference
(MMD) analysis determined optimal m values by comparing membership values between training
and test fields, focusing on cumin and fennel plants. Results indicated that lower m values generally
yielded better proximity results, while higher m values improved departure outcomes. The accu-
racy assessment using RMSE revealed that the “individual sample as mean” approach consistently
produced lower RMSE values, signifying superior classification performance. Furthermore, cluster
validity and variance analyses, quantified by SSE and variance within classes, demonstrated that the
“individual sample as mean” approach effectively managed field heterogeneity, resulting in lower SSE
and variance values. Classified outputs, visualized in Figs. 5–8, confirmed that the CBSI-MSAVI-2
database provided better classification, particularly when employing the “individual sample as mean”
approach, accurately identifying cumin and fennel fields during ground truth verification.
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“mean”
“individual sample
as                 mean”

“mean”
“individual sample
as                 mean”

Figure 7: Comparison of training sample approach as ‘mean’ and ‘individual sample as mean’ outputs
for NC classifiers. The red circle denotes appropriately classified Fennel fields that were discovered
during ground truth work

This study shows the research on the impact of the fuzziness factor (m) in fuzzy classification
systems. Similar to studies by [35,36], our results show that lower m values yield better proximity
results, while higher m values enhance departure outcomes. This observation is consistent with the
fundamental principles of fuzzy set theory, where the fuzziness parameter modulates the degree of
membership overlap among classes.

However, our study uniquely highlights the “individual sample as mean” approach’s superiority
in classification accuracy, as evidenced by lower RMSE values. This finding contrasts with the more
traditional “mean” approach discussed in [22,23], where the mean of the training samples was found
to suffice in certain scenarios. Our results suggest that considering the individuality of each sample
captures the field heterogeneity more effectively, a critical factor when dealing with agricultural
datasets where plant phenology can vary significantly.

Furthermore, the CBSI-MSAVI2MSAVI-2 database outperformed the MSAVI2MSAVI-2 in
classification tasks. This advantage is attributable to the combined benefits of CBSI and MSAVI-2
indices, which provide a more nuanced representation of vegetation characteristics. The integration of
these indices likely contributes to the enhanced classification accuracy, as also noted by [31] in their
comparative studies of spectral indices for vegetation monitoring.
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“mean”
“individual sample as
mean”

“mean”
“individual sample as
mean”

Figure 8: Comparison of training sample approach as “mean” and “individual sample as mean”
outputs for PCM classifiers. The red circle denotes appropriately classified Fennel fields that were
discovered during ground truth work

Despite these promising results, our research is subject to several limitations. Firstly, the study was
confined to a specific geographical region and focused on cumin and fennel plants. The generalizability
of our findings to other crops and regions remains to be validated. Additionally, the temporal scope
of our dataset was limited, which may not capture the full spectrum of phenological variations. Future
studies should consider longer time series data to better understand the seasonal dynamics of crop
growth.

Secondly, the selection of the fuzziness factor (m) was based on Mean Membership Difference
(MMD) analysis. While this method is robust, it may not be universally optimal for all datasets.
Alternative methods for determining the optimal m value, such as cross-validation or entropy-based
approaches, could provide additional insights and potentially improve classification accuracy.

Future research should aim to expand the spatial and temporal scope of the study. Incorporating
a diverse range of crops and extending the analysis across different climatic zones would enhance
the robustness and applicability of the findings. Moreover, integrating additional spectral indices
and advanced remote sensing techniques, such as hyperspectral imaging and LiDAR, could further
improve classification accuracy and field heterogeneity management.
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7 Conclusions

This study determines which fuzzy-based approach better mapped cumin and fennel fields, using
PCM and NC classifiers with the “mean” and “individual training sample as mean” training selection
procedures. These outcomes were considered utilizing the CBSI-MSAVI-2 and MSAVI-2 temporal
indices database. Using Sentinel-2 satellite images taken between 3 November, 2021, and 23 March,
2022, the temporal indices database was created. To determine whether algorithms perform better,
the following metrics were calculated: RMSE, MMD, Variance, and SSE (cluster analysis). The
best outcome was obtained when the NC classifier used the CBSI-MSAVI-2 temporal indices with
“individual sample as mean.” NC classifier using “individual sample as mean” for m = 1.1, the RMSE,
MMD, Variance, and SSE values for the NC classifier using “individual sample as mean” on the
CBSI-MSAVI-2 temporal indices for cumin were 0.00098, 0.00162, 0.02857, and 0.97143, respectively
and for fennel were 0.00025, 0.00248, 0.10420, and 3.54286, respectively. The PCM classifier with
the “individual sample as mean” approach provides an excellent result compared to the “mean”
training sample using the CBSI-MSAVI-2 temporal indices database. For the m = 1.1, the RMSE,
MMD, Variance, and SSE values for the PCM classifier on the CBSI-MSAVI-2 temporal indices using
“individual sample as mean” were 0.02745, 0.01961, 0.17885, and 6.97515, respectively. The outcome
showed that the NC classifier using the CBSI-MSAVI-2 temporal indices with “individual sample as
mean” provides the best-classified result while appropriately mapping and managing heterogeneity
within the class.
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