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ABSTRACT

This study examines how socio-economic characteristics predict flood risk in London, England, using machine
learning algorithms. The socio-economic variables considered included race, employment, crime and poverty
measures. A stacked generalization (SG) model combines random forest (RF), support vector machine (SVM), and
XGBoost. Binary classification issues employ RF as the basis model and SVM as the meta-model. In multiclass
classification problems, RF and SVM are base models while XGBoost is meta-model. The study utilizes flood
risk labels for London areas and census data to train these models. This study found that SVM performs well
in binary classifications with an accuracy rate of 0.60 and an area under the curve of 0.62. XGBoost outperforms
other multiclass classification methods with 0.62 accuracy. Multiclass algorithms may perform similarly to binary
classification jobs due to reduced data complexity when combining classes. The statistical significance of the result
underscores their robustness, respectively. The findings reveal a significant correlation between flood risk and
socio-economic factors, emphasizing the importance of these variables in predicting flood susceptibility. These
results have important implications for disaster relief management and future research should focus on refining
these models to improve predictive accuracy and exploring socio-economic factors.
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1 Introduction

Rivers have always served as focal points for human settlements because of the rich resources they
provide. Nevertheless, being near rivers also entails the potential hazard of floods. Floods are the most
widespread and lethal natural catastrophe, resulting in more than 2 billion fatalities from 1998 to 2017
[1]. According to current projection models, there is an expected rise in the occurrence and intensity
of flood events due to climate change [1,2]. London, renowned for its ancient origins dating back
to 100 CE, has profited from its strategic position along the riverfront [3]. Nevertheless, it has also
been adversely affected by several expensive floods, most notably the catastrophic Great North Sea
flood of 1953, resulting in the loss of more than 300 people. The construction of the Thames Barrier
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and other flood mitigation measures was a direct reaction to this disaster, providing protection for
about 500,000 houses situated along the river [4,5]. Flood defenses offer the greatest level of protection
for areas near rivers, which typically have higher property values. However, research has shown that
predominantly Black communities will be disproportionately affected by flooding. Additionally, the
number of affordable housing units at risk of flooding will triple by 2050 [6,7].

Low-income populations have a greater challenge in recovering from economic flood conse-
quences, such as property destruction, owing to their limited disposable income [8]. This is further
compounded by their higher susceptibility to flood risk. In England, there is a comparable situation
where socially impoverished populations are more vulnerable to floods, although this issue has not
been well investigated [9]. Understanding and addressing the socioeconomic disparity is vital to
effectively mitigate the probability of flooding in various areas. London is an excellent location for
studying due to its varied socioeconomic environment.

Although there is a correlation between socioeconomic class and flood risk, most research studies
that investigate flood risk using machine learning algorithms mostly use climatic factors. By using
conventional flood indicators like rainfall, elevation, topography, among others, machine learning
models may achieve Area Under the Curve (AUC) values above 0.9 in certain regions [10–13]. By
integrating geomorphic and socio-economic variables, it is possible to get very precise outcomes
with an AUC of 0.88 [14]. Within flood risk studies, the Support Vector Machine (SVM) has been
extensively examined, whereas the Random Forest (RF) regularly proves to be the most efficient
model, producing the most favorable outcomes in many research publications [15–19].

Prior research on socioeconomic disparities has primarily concentrated on the economic con-
sequences of flooding. This research has taken a reactive approach by examining how populations
react to and recover from flood events. However, there has been limited exploration of the predictive
capabilities of socioeconomic indicators, which could be crucial in implementing proactive flood
mitigation strategies in vulnerable communities [20]. In addition, while there is a correlation between
socioeconomic characteristics and flooding, the majority of machine learning research primarily
concentrates on environmental predictors. The study on socio-economic aspects has not harnessed the
potential of machine learning, instead relying on weather and economic models to draw their results
[21,22].

A study conducted by Chen et al. in 2019 employs a hybrid machine learning approach to assess
flood risk in urban areas [13]. The researchers utilize Random Forest (RF) and Support Vector
Machine (SVM) algorithms, integrating various environmental factors such as rainfall, land use,
and topography, alongside socioeconomic indicators like income levels and population density. Their
findings indicate that incorporating socioeconomic data significantly improves the model’s predictive
accuracy, demonstrating the importance of considering these factors in flood risk assessments.
Another study conducted by Deroliya et al. in 2022 focuses on the application of deep learning
techniques for flood prediction in river basins [14]. The authors employ a Convolutional Neural
Network (CNN) model to analyze satellite imagery and hydrological data, aiming to predict flood
events more accurately. Their results highlight the effectiveness of deep learning in capturing complex
spatial patterns related to flooding, suggesting that integrating advanced machine learning techniques
can enhance flood prediction capabilities.

The study addresses a critical gap in understanding the relationship between socioeconomic
factors and flood risk in London, which has been underexplored in existing literature. While previous
research has acknowledged the correlation between socioeconomic status and flood vulnerability,
it has primarily focused on environmental predictors, such as climatic conditions, neglecting the
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potential of socioeconomic indicators as predictors of flood risk. Most studies have taken a reactive
approach, analyzing how communities respond to flooding rather than proactively identifying at-risk
areas based on socioeconomic data. This lack of proactive research limits the ability to implement
effective flood mitigation strategies. Furthermore, while there is evidence that marginalized com-
munities are disproportionately affected by flooding, the integration of socioeconomic factors into
predictive models remains limited.

The evidence presented above indicates a potentially substantial correlation between socioeco-
nomic indicators and flood risk, leading to the main inquiry of this study: Can an area’s socioeconomic
status be used as a dependable predictor for flood risk? The study aims to address the gaps between
socio-economic indicators and flood risk by investigating whether an area’s socio-economics status can
reliably predict flood risk. We construct machine learning models that incorporate socio-economics
factor to identify the critical variables for predicting flood susceptibility. By doing so, this study expects
to provide valuable insight for disaster relief management and contribute to a more equitable approach
to flood risk mitigation.

2 Materials and Methods
2.1 Study Area

London, England, is a vast city covering an area of 607 square miles and housing over 8.8 million
inhabitants. The city is partitioned into 32 boroughs, with 17 of them adjacent to the River Thames,
which serves as the principal waterway of the metropolis. The flood likelihood by rivers and sea in
London is depicted in Fig. 1. Additionally, there are 24 boroughs that have smaller rivers flowing into
the main river, and 15 of these boroughs have canals inside their bounds. This interconnected system
of waterways is known as the Blue-Ribbon Network [23].

Figure 1: A map of London showing areas of ‘High,’ ‘Medium,’ and ‘Low’ risk for flooding. The grey
area represents the entire city of London. Since the flood risk dataset only contains flood risk by rivers
and sea, there are no flood risk measures in sites far from waterways
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There are several ways to define geographic borders in the city, with the biggest being divided into
boroughs, then wards, and lastly, the smallest being a London super output area (LSOA). The average
population inside each LSOA border is 1722 individuals, which is the specific data scale used in this
study.

2.2 Data
The flood risk data is obtained from the Department for Environment, Food & Rural Affairs

of the United Kingdom. The dataset contains a total of 17,223 polygons. The average area of these
polygons is 13,054 square meters before anomalies are removed, and 6217 square meters after removal.

The Ordnance Survey’s code-point data includes codes for several area borders in London, includ-
ing LSOA, borough, and ward codes. This dataset includes geometric point data that corresponds to
each postcode. The dataset contains a total of 33 boroughs, 654 wards, and 5835 LSOAs. The LSOA
atlas available on the London Datastore includes data from the 2011 census for a total of 4766 distinct
LSOA codes.

Due to the diverse array of techniques available for gathering geographical data, the process of
constructing a unified operational data frame becomes complex. This research thoroughly examines
several data modification approaches to mitigate the risk of data loss. Despite the availability of the
‘sjoin’ function in the geopandas library, which allows for the merging of geometric data based on
the inclusion of a point inside a polygon, difficulties arise when dealing with intersecting polygons
and considerable variations in polygon size. Every polygon is surrounded by another polygon, which
may have a different label. The blue polygon is classified as having a ‘High’ risk label, whereas the
green polygon is classified as having a ‘Very Low’ label. If the ‘sjoin’ function were to be used, there
would be a significant degree of uncertainty since points that fall on boundary lines might potentially
be assigned to the label of the neighboring polygon. This dataset has more than 7,000,000 crossing
points, which further exacerbates this problem.

Furthermore, the significant difference in polygon widths and the unequal concentration of
postcodes result in an unbalanced distribution, where some labels are either overrepresented or
underrepresented. Postcodes are allocated according to the density of addresses in a certain location,
resulting in a greater number of post-codes near the city core. To address these problems, the custom
function ‘nearest’ is used to combine geographical data by considering their closeness.

This research eliminates the classification of ‘Very Low’ for three main reasons. The ‘Very Low’
classification is defined by an abnormally large average area that surpasses 82,000 square meters. These
examples are outliers, diverging from the patterns identified in other labels, each with means below
8000 square meters. Furthermore, the regions classified as ‘Very Low’ risk are mostly located around
the River Thames, which is significantly influenced by flood protection measures such as the Thames
Barrier. Zone 1 flood regions are defined as locations having a probability of flooding less than 1 in
1000 per year. Zone 1 sites do not need additional clearances or site specific flood risk studies for
home construction locations, unlike Zones 2 and 3 [24]. Considering these criteria, eliminating this
label improves model accuracy by ensuring that the centroid points produced are more representative
of the polygons contained in the dataset, since big polygons are excluded. In addition, eliminating this
label enhances the model’s accuracy in reflecting state decisions that designate some regions of flood
risk as suitable for development.

The selection of socioeconomic status indicators is made with careful deliberation. Research
conducted in the United States has shown that communities of color and low income areas are
disproportionately affected by flood risk [6]. Therefore, in this work, socioeconomic parameters
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studied include racial distribution percentages and other income status indicators such as mean home
price, free school lunch rates, job rates, and income assistance rates. Racial distribution percentages
capture the proportion of different racial groups within each area, highlighting that communities of
color often face higher flood risks due to historical and socio-economic disparities. Mean home price
serves as a proxy for wealth and economic stability, with higher-priced areas typically having better
infrastructure and resources to mitigate flood risks. Free school lunch rates, a common indicator of
child poverty, help identify low-income areas (see Fig. 2a) where families might lack the financial
resources to recover from flood damage. Job rates indicate the economic health of an area, with higher
employment levels suggesting better economic conditions that can influence the ability to implement
and maintain flood defenses. Income assistance rates reflect the proportion of the population receiving
government financial aid, identifying economically disadvantaged areas that may struggle with flood
recovery. As shown in Fig. 2b, the mean house price in the top righthand corner that higher house
prices are concentrated in central London where there is no flood risk in Fig. 1, while Crimes and
BAME (Fig. 2c,d) shows that there is a stronger concentration of POC living outside of this centralized
area. The merging of these indicators is accomplished by using LSOA boundary codes in conjunction
with postcode and flood risk data, resulting in the creation of a complete dataset (Fig. 3). LSOAs
located far away from waterways are not included in the flood risk statistics since they only cover
flood danger from rivers and the sea. Hence, the final dataset has 1150 distinct LSOA codes.

Figure 2: Heatmap of the distribution of different socioeconomic indicators throughout London.
Percentage of (a) free school meals, (b) mean house prices, (c) notifiable offences, and (d) Black, Asian,
and Minority Ethnic (BAME) per LSOA
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Figure 3: Map showing the geographical boundaries of all postcodes in London in the color gray.
Additionally, include the biggest and smallest polygons from the flood risk information. The River
Thames is categorized as having a ‘High’ danger of flooding, whereas the green polygon is categorized
as having a ‘Very Low’ risk of flooding. The zoom box that encompasses the tiniest polygon is enlarged
to a scale of 120,000 times its original size

2.3 Algorithms
Two major challenges in this work are model overfitting and the complexities of label imbalance.

To surmount these obstacles, a variety of methods are used. The high level of detail in this data
significantly leads to overfitting. Each data point in the dataset is assigned a unique LSOA code.
Therefore, if the data is randomly divided into training and validation sets, it is possible for neighboring
points to be separated into different groups. This may lead to the model memorizing properties of
closely related points. To handle this, distinct ward codes are chosen at random and used to partition
the data into training and validation sets, guaranteeing that no data with the same ward code is
distributed throughout the datasets.

Grid Search is an effective method for tuning hyperparameters, since it methodically explores
various combinations of hyperparameters to identify the values that provide the most precise out-
comes. Every model has a distinct collection of hyperparameters that may be adjusted to enhance
accuracy and mitigate overfitting. Paying careful attention to detail is necessary while conducting grid
search owing to its heightened sensitivity to certain characteristics. As an example, with the XGBoost
algorithm, increasing the learning rate from 0.3 to 0.4 resulted in a six percent improvement in training
accuracy.

Sequential Forward Selection (SFS) is a strategy that effectively decreases spatial overfitting
[25]. The SFS algorithm systematically incorporates individual characteristics into an initially empty
collection of features to evaluate their influence on the performance of the model. This technique
eliminates extraneous input and interference, enabling the model to be only trained on data that
enhances outcomes.
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SMOTE, or Synthetic Minority Oversampling Technique, is used to address the problem of
unbalanced data by generating synthetic samples of the underrepresented class. SMOTE can produce
fresh samples using several methods. RF effectively catches intricate data, which is why Borderline
SMOTE is used. Borderline SMOTE is a technique that resamples data points located at the border of
several labels. This allows models to capture more detailed data, since these points are more likely to
be misclassified [26] SVM SMOTE is used in SVM to produce synthetic data near the borders, hence
enhancing the representation of the optimum decision boundary in the final model.

The SVM is a supervised learning technique mostly used for classification tasks. It has impressive
performance on small datasets because to its ability to categorize data points and identify a hyperplane,
or decision boundary, that efficiently separates the data into different classes while maximizing the
distance between these classes [27,28]. SVM inherently mitigates overfitting by seeking the most
resilient hyperplane, hence avoiding the model from gathering extraneous data.

RF is a popular ensemble learning method that constructs numerous Decision Trees using
different subsets of the data and characteristics. The predictions of these trees are then combined to
provide the final predictions. The forecasts are determined using a voting process, where the ultimate
prediction is the class that obtains the greatest number of votes [29]. This approach enhances the
precision of decision tree models by mitigating the issue of overfitting, which decision trees are prone
to [30]. This report [31] is recognized for its capacity to decrease high-dimensional, multisource data.

XGBoost, also known as Extreme Gradient Boosting, is an ensemble learning approach, like RF.
Sequentially building numerous weak decision trees is very advantageous when dealing with huge and
complicated datasets. Each succeeding tree in the sequence corrects mistakes made by the previous
model, allowing for the capture of intricate details in the data [32].

SFS is ineffective in XGBoost because of the algorithms built-in ‘greedy’ optimization, which
chooses the best feature for each tree and the built-in L2 regularization, which penalizes models that
are too complex [33]. Therefore, when SFS was applied to the model, results were not improved, and
the decision to exclude SFS in the final model was made.

Stacked Generalization is a kind of ensemble learning approach that merges many models together
to enhance performance. Stacking is a technique that involves using the outputs of base models, which
have been trained on the training data, and feeding them into the meta-model [34]. This research
chooses base and meta-models depending on the performance of each unique model.

When it comes to binary classification, the RF model is the most suitable option since it excels
at capturing intricate associations. The precision and capacity of SVM to address overfitting make it
a commendable meta-model. RF and SVM are used as basis models in multiclass settings, whereas
XGBoost is used as the meta-model because of its effectiveness in dealing with unbalanced data.

The chosen methodologies—SVM, RF, XGBoost, and Stacked Generalization—were selected for
their strengths in handling complex, high-dimensional data and their ability to improve predictive
accuracy through ensemble learning. These models can significantly impact real-world flood predic-
tion by providing more accurate and robust assessments of flood risk, especially when integrating
socio-economic factors. This can help disaster relief officials and urban planners allocate resources
more effectively, ensuring that high-risk areas, particularly those with vulnerable populations, receive
the necessary support and interventions. Additionally, these models can inform policies aimed
at reducing social disparities in disaster preparedness and response, promoting a more equitable
approach to flood risk management.
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Models are assessed using many performance measures, including precision, recall, F1 scores,
accuracy in training, validation, and cross validation, and AUC score in binary classification tasks.
The evaluation of precision, recall, and F1 is conducted on the validation dataset. The scores for all
eight trained models may be seen in Table 1.

Table 1: Validation metrics for each model with the best score for each bolder. Train accuracy rankings
are determined by how similar the train accuracy is to validation and cross validation scores with
p < 0.05 for each model

Multiclass classification (High, Medium, and Low risk)

SVM RF XGBoost Stack Gen.

Precision 0.60 0.61 0.62 0.61
Recall 0.58 0.58 0.59 0.59
F1 0.52 0.53 0.54 0.51
Train accuracy 0.59 0.79 0.61 0.63
Validation accuracy 0.58 0.58 0.59 0.59
Cross validation 0.55 0.58 0.57 0.55

Binary classification (High, Medium, and Low risk)

Precision 0.60 0.58 0.57 0.58
Recall 0.60 0.57 0.56 0.57
F1 0.60 0.57 0.56 0.57
Train accuracy 0.67 0.89 0.93 0.85
Validation accuracy 0.60 0.57 0.56 0.57
Cross validation 0.60 0.61 0.57 0.65
AUC 0.62 0.61 0.57 0.59

Precision is a metric that highlights the occurrence of erroneous positives, while recall concentrates
on false negatives. F1 is a metric that seeks to achieve a balance between both [35,36]. Recall is
prioritized because it measures the proportion of actual high-risk flood areas correctly identified,
which is crucial to minimize false negatives. False negatives, where high-risk areas are mislabeled
as low risk, can have severe consequences, such as leaving properties uninsured or unprotected.
While precision is important for reducing false positives, recall’s role in accurately identifying high-
risk areas is more critical in this context. The F1 score balances precision and recall, but recall
remains the primary focus due to the severe impact of false negatives. Although accuracy provides
an overall correctness measure, it can be misleading in class-imbalanced datasets typical in flood
risk prediction. AUC summarizes the model’s discrimination ability but does not specifically balance
precision and recall. By prioritizing recall, the models robustly predict vulnerable areas, enhancing
flood risk management strategies.

Precision = (True Positives)/(True Positives + False Positives) (1)

Recall = (True Positives)/(True Positives + False Negatives) (2)

F1 = 2 ∗ (Precision * Recall)/(Precision + Recall) (3)
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Additionally, the data were analyzed using Student’s t-test for two-group comparisons, or a one-
way ANOVA for multiple-group comparisons. The statistical significance was set at p < 0.05.

3 Results
3.1 Multiclass Classification

XGBoost surpasses all other models in five out of six validation criteria, attaining precision, recall,
and validation accuracy scores of 0.6 or above. This model successfully mitigates the problem of
overfitting on the training data and demonstrates good generalization to new, unknown data. This
is supported by the validation accuracy score of 0.6 and the cross validation score of 0.57. Although
SVM has impressive accuracy and recall scores of 0.60 and 0.58, respectively, and effectively avoids
overfitting on the training data, it does not do as well in generalizing to new, unknown data compared
to other models.

Although the training data is prone to overfitting, RF still benefits from the use of grid search and
Sequential Forward Selection (SFS) implementation. These techniques help to decrease the training
accuracy from 1 to 0.78. In addition, these strategies enhance memory from 0.44 to 0.58, demonstrating
their effectiveness.

3.2 Binary Classification
In the context of binary classification, SVM provides superior performance compared to other

methods in six out of seven measures. Although all models had similar precision and recall scores, SVM
stands out for its superior performance in reducing train overfitting, achieving a final train accuracy
of 0.67. In addition, the SVM has a maximum AUC value of 0.62. The cross validation score of the
SG model indicates its impressive performance on new and unseen data, demonstrating its resilience.

In general, binary models exhibit similar levels of accuracy and recall as multiclass models, but
they achieve higher F1 scores, because of the balanced distribution of classes in the binary dataset.

3.3 Feature Importance
The SFS findings (Table 2) emphasize the importance of racial distribution as a crucial charac-

teristic, with BAME, white, mixed, and other ethnicities (excluding Black, White, Asian, or Mixed)
being used in all algorithms. The mean property price is consistently chosen as a crucial factor in all
models. Only two out of the eight final models exclude total notifiable criminal offences and homes
with no adults in work. The second most often used element is free school lunches, which is a widely
used indication of low income households. Fig. 4 illustrates the distribution of these characteristics
across London.

Table 2: Optimal metrics for each model. Note that ‘All Features’ means every feature in the key below
is used in the model. N/A indicates that the model tuning technique was not implemented

Final models
Model Grid search parameters SFS features SMOTE

SVM (multi) C: 1, kernel: ‘rbf’, gamma:
‘scale’

11–15 FSM, Price, BAME,
White, Mixed, Asian, Black,
Other

SVM

(Continued)
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Table 2 (continued)

Final models
Model Grid search parameters SFS features SMOTE

RF (multi) max_depth: 8, max_features:
‘sqrt’, min_samples_leaf: 6,
min_samples_split: 2,
n_estmators: 60

CP, COW, 5–10 FSM, Crime,
NAE, Price, BAME, White,
Mixed, Black, Other

Borderline

XGBoost (multi) gamma: 6, learning_rate: 0.4,
max_depth: 5,
min_child_weight: 7,
n_estimators: 5

N/A N/A

Stack Gen. (multi) rf_n_estimators: 75,
rf_min_samples_split: 4,
rf_min_samples_leaf: 8,
rf_max_depth: 6, svm_C: 2,
xgb_learning_rate: 0.4,
xgb_max_depth: 7,
xgb_min_child_weight: 9,
xgb_n_estimators: 10

CP, COW, 5–10 FSM, Crime,
NAE, Price, BAME, White,
Mixed, Black, Other

Borderline

SVM (binary) C: 1, kernel: ‘rbf’, degree: 3,
gamma: ‘scale’ (default
parameters)

N/A N/A

RF (binary) max_depth: 18,
max_features: ‘sqrt’,
min_samples_leaf: 6,
min_samples_split: 2,
n_estmators: 87

NAE, Price, BAME, White,
Mixed, Asian, Other

N/A

XGBoost (binary) gamma: 6, learning_rate: 2,
max_depth: 4,
min_child_weight: 1,
scale_pos_weight: None

N/A N/A

Stack Gen. (binary) C: 2, degree: 1, gamma:
‘scale’, kernel: ‘rbf’,
max_depth: 6, max_features:
‘sqrt’, min_samples_leaf: 4,
min_samples_split: 2,
n_estimators: 50

5–10 FSM, 11-15 FSM,
Crime, NAE, Price, BAME,
White, Asian, Other

N/A
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Figure 4: A map of high and low flood risk predictions with true risk labels for each LSOA area in
London was created using predictions from the binary SVM model

4 Discussion
4.1 Key Findings

The ML models’ capacity to accurately forecast flood risk labels, achieving precision scores of up
to 0.62, demonstrates that the socioeconomic condition of a region may serve as a dependable feature
for flood risk accuracy, even without the inclusion of environmental factors. Studies that forecast
floods based on environmental characteristics exhibit significant variability in their outcomes. Certain
models get SVM recall scores of 0.5, while others can achieve higher recall ratings of 0.67 via the
use of hybrid prediction methods [37]. The findings of this study demonstrate that the association
between socioeconomic level and flood risk is extremely significant, as shown by the SVM recall of
0.6. However, it is important to note that the quality of data in research sites influences these results.

The use of SFS to the models in this research yields a consistent list of variables that enhance
model outcomes. The most often chosen parameters were racial distribution, housing costs, crime
rates, households with no employed adults, and the percentage of students receiving free school meals.
Curiously, the income variables used by SFS in all models are measurements of poverty experienced by
families or throughout children. Childhood poverty and children receiving out-of-work benefits are
the primary factors that significantly impact the model’s performance in RF and SG. SFS does not
include statistics such as the rate of individuals dependent on income assistance and unemployment
rates, which are measures of adult poverty.

The Random Forest (RF) and Support Vector Machine (SVM) models demonstrated strong
performance, particularly in binary classification tasks, with SVM achieving an accuracy rate of 0.60.
RF, known for its robustness in handling complex datasets, performed well in both binary and mul-
ticlass classifications, effectively capturing intricate relationships between socioeconomic indicators
and flood risk. In contrast, the XGBoost model outperformed others in multiclass classification with
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an accuracy of 0.62, highlighting its ability to manage varying data complexities and interactions
among features. The superior performance of XGBoost can be attributed to its gradient boosting
framework, which optimizes model accuracy through iterative learning and can handle missing data
more effectively. However, the performance of these models can vary based on the conditions under
which they are applied, such as data distribution and the presence of noise. For instance, while
SVM is effective in high-dimensional spaces, it may struggle with larger datasets due to increased
computational demands. By analyzing these strengths and weaknesses, we can gain valuable insights
into the conditions that favor each model, guiding future research and practical applications in flood
risk assessment. This detailed comparison will enhance our understanding of model performance and
inform the selection of appropriate algorithms for similar studies in different contexts.

Additional investigation is necessary to establish the cause of these findings, but plausible factors
may include the need for families to have greater space to raise children. Families are more inclined to
choose bigger living areas for the purpose of comfort and the overall welfare of their children. Research
has shown that children who are raised in overcrowded households have substantial adverse effects.
Nevertheless, bigger homes command higher prices, therefore prompting the search for locations with
lower property values [38]. In addition, the financial burden of raising children is substantial, ranging
from £157,000 to £208,000 for the whole period from infancy to age 21. This expense has the potential
to push families farther into poverty [39]. Another potential factor influencing the outcomes of this
research might be the higher prevalence of child poverty compared to adult poverty. London has a child
poverty rate of 34% among children aged 5–9. By contrast, a mere 17% of individuals between the ages
of 30 and 34 [40]. This study reveals the socioeconomic characteristics that have a direct influence on
flood risk prediction. However, more research is necessary to fully comprehend the reasons behind the
significance of each element.

4.2 Challenges
The primary obstacle of this work was the creation of a thorough and precise dataset. Due to the

rarity of census reports and the presence of discrepancies in geographic data collection, it is necessary
to do data modification to construct a functional dataframe. By performing certain operations, such as
combining geographic dataframes based on the closest neighboring points, it is not feasible to preserve
the whole of the original data. However, methods such using a customized ‘nearest’ function are used
to reduce the loss of information.

Geospatial information is susceptible to overfitting due to the dense clustering of data points. It is
necessary to apply measures to prevent models from memorizing closely similar points. One way to do
this is by dividing the training and validation data based on distinct ward numbers. The unbalanced
nature of flood risk data makes it susceptible to overfitting. The ‘Low’ label was assigned to more than
53% of the final dataset, but the ‘High’ label was assigned to just 11%. SMOTE and hyper parameter
adjustment effectively addresses the issue of uneven distribution, while some models may still exhibit
small overfitting on the training data.

4.3 Limitations of the Research
The use of 2011 census data, because of the lack of 2021 data, is a significant constraint.

Furthermore, this research does not take into consideration the recent modification of LSOA borders
that were made to accommodate changes in population distribution. The limited emphasis on
inundation caused by rivers and the sea in the flood dataset limits the extent of this study since it fails
to include regions that are far from watercourses (Fig. 1). Out of the 4766 distinct LSOA codes in the
socioeconomic dataset, only 1150 codes overlap with the flood data. The replication of this research
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should be undertaken during the winter of 2023, coinciding with the publication of the definitive census
results. Moreover, including data on floods caused by groundwater, surface water, and other origins
may enhance the resilience and effectiveness of models.

London, with its diverse socioeconomic landscape, presents distinct challenges and characteristics
that may not be applicable to other regions. For instance, previous studies have highlighted how urban
density, historical infrastructure, and varying levels of flood defense measures can significantly impact
flood risk assessments. By comparing our findings with similar studies conducted in other urban
settings, we can better understand how different environmental and socioeconomic contexts influence
flood risk outcomes. This comparative analysis will not only enhance the robustness of our conclusions
but also provide valuable insights into how flood risk management strategies can be tailored to address
the specific needs of different communities. Therefore, future discussions should incorporate a broader
perspective, considering how the unique attributes of London, as well as findings from other studies,
can inform more effective and equitable flood risk mitigation strategies.

4.4 Future Research
Examining the timing of the implementation of construction restrictions and flood laws may

provide valuable information about the effectiveness of measures aimed at reducing flood risk.
Moreover, by combining historical flood data with past census data, it is possible to determine
whether policies have strengthened the correlation between socioeconomic position and the likelihood
of experiencing floods.

Although this research specifically examines London, England, it is important to note that income
inequality affecting communities’ susceptibility to floods is not limited to this region. Extending to
further cities in England and nationwide can reveal more complex and distinctive patterns. Analyzing
outcomes from various cities may assist in assessing the efficacy of flood regulations that have been
applied nationwide. On 31 August 2023, London Datastore revised the dataset titled ‘Children in low
income families’. Utilizing this information for training machine learning models might strengthen the
conclusions obtained in this paper about the significance of childhood poverty in forecasting flood risk
labels.

Using just socioeconomic data to evaluate flood risk is insufficient in creating a flawless model,
since some places are not prone to floods owing to natural factors such as elevation and geography.
Nevertheless, the findings of this research indicate that socioeconomic characteristics have the poten-
tial to enhance the performance of flood risk models that are trained using environmental data.

5 Conclusions

This study aims to initiate a discussion in government settings on strategies to reduce the negative
effects of floods on vulnerable communities and to bring attention to the existing socioeconomic
inequalities. Given the projected rise in both the destructive power and occurrence of flood occurrences
due to climate change, it is important to have a comprehensive understanding of the societal
consequences of floods. This information may be used to develop more effective defensive measures
against such disasters. In 2021, a total of £5.2 billion was allocated to a flood defense program aimed at
safeguarding the wellbeing of more than 300,000 individuals [41,42]. This unequivocally demonstrates
the government’s commitment to safeguarding civilians from the perils of floods. The data collected
from this research can guarantee that the significant expenditures being made are most advantageous,
by directing resources to the most vulnerable populations.
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The models trained in this research have shown the capability to forecast flood labels with an
accuracy of up to 0.62, even without using any environmental characteristics. This finding supports the
integration of socioeconomic factors into flood risk assessments, encouraging government agencies to
adopt policies that address social disparities in disaster preparedness. Specifically, the findings suggest
several policy actions: directing flood defense funding and resources to high-risk areas identified by
socioeconomic indicators, developing inclusive disaster preparedness programs for low-income and
minority communities, revising flood insurance policies to provide better coverage for disadvantaged
populations, and integrating flood risk predictions into urban planning to enhance infrastructure
in vulnerable areas. By implementing these recommendations, policymakers can create a fairer and
more just approach to flood risk management, addressing both immediate and long-term needs of
vulnerable populations. This research underscores the importance of proactive and inclusive policies
to enhance resilience against the growing threat of climate-induced flooding.
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