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ABSTRACT

Seismic vulnerability modeling plays a crucial role in seismic risk assessment, aiding decision-makers in pin-
pointing areas and structures most prone to earthquake damage. While machine learning (ML) algorithms and
Geographic Information Systems (GIS) have emerged as promising tools for seismic vulnerability modeling,
there remains a notable gap in comprehensive geospatial studies focused on India. Previous studies in seismic
vulnerability modeling have primarily focused on specific regions or countries, often overlooking the unique
challenges and characteristics of India. In this study, we introduce a novel approach to seismic vulnerability
modeling, leveraging ML and GIS to address these gaps. Employing Artificial Neural Networks (ANN) and Random
Forest algorithms, we predict damage intensity values for earthquake events based on various factors such as
location, depth, land cover, proximity to major roads, rivers, soil type, population density, and distance from fault
lines. A case study in the Satara district of Maharashtra underscores the effectiveness of our model in identifying
vulnerable buildings and enhancing seismic risk assessment at a local level. This innovative approach not only fills
the gap in existing research by providing predictive modeling for seismic damage intensity but also offers a valuable
tool for disaster management and urban planning decision-makers.

KEYWORDS
Machine learning; earthquake; artificial neural network; random forest; seismic vulnerability

1 Introduction

An earthquake is defined as any abrupt shaking of the earth’s surface induced by the energy
released due to the passage of seismic waves. Earthquakes are believed to be one of the most
catastrophic natural disasters. The impact of earthquakes can lead to extensive and uncontrollable
devastation to the environment and society globally, resulting in substantial physical and economic
harm. The repercussions of earthquakes include loss of human life and property, remodelling of the
river course and mud fountains, for example, the 1934 Bihar earthquake when the agricultural fields
were engrossed with mud, and fire risks near gas pipelines or electric infrastructure [1].

As the plate tectonics theory states, the earth is divided into slabs of solid rock masses referred to
as “plates” or tectonic plates which are always in motion. These tectonic plates may be continental or
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oceanic and are in slow continuous motion, and their movement forms three different types of tectonic
boundaries. When two plates come together, it is called a convergent boundary, but when they move
apart, they are divergent. And when the plates move side by side, they form a transform boundary. The
financial damage caused by earthquakes is approximately $787 billion. Disaster management before
earthquakes happen is a vital strategy to reduce earthquake-induced damage. The earthquakes’ exact
time, magnitude, and place of occurrence are still unforeseeable [2].

Over the past few years, scientists have investigated a specific region’s susceptibility from various
perspectives, such as geotechnical, structural, and socioeconomic factors. Researchers have employed
a range of multi-criteria decision-making (MCDM) techniques to assess seismic vulnerability, such
as the analytic hierarchy process (AHP) and fuzzy logic. Developing decision-making methods that
can quickly fulfil demands requires expert opinions, which can lead to bias and error. To address this
issue, artificial intelligence algorithms, including evolutionary algorithms and adaptive neuro-fuzzy
inference systems (ANFIS), have been implemented in geological research, specifically for evaluating
seismic vulnerability [3].

Effective disaster risk reduction and management (DRRM) requires a comprehensive under-
standing of risk, hazards, vulnerability, and interconnectedness [4]. Understanding and managing the
risks associated with earthquakes hinges on key concepts: seismic hazard, seismic risk, and seismic
vulnerability. Seismic hazard encompasses natural phenomena like ground shaking, fault rupture, and
soil liquefaction triggered by earthquakes. The level of seismic hazard in a given area is influenced by
factors such as the proximity and activity of seismic faults, the type of faulting (e.g., thrust, strike-slip,
normal), geological features, and past seismic events [5].

Vulnerability refers to the susceptibility of exposed elements, including buildings, infrastructure,
communities, and populations, to damage or loss when confronted with seismic hazards. It encom-
passes a wide array of factors, spanning physical, structural, social, economic, and environmental
dimensions, which collectively influence the resilience of these elements. Vulnerability assessments
aim to pinpoint weaknesses in built environments and social systems, informing strategies for risk
reduction and bolstering preparedness and response capabilities [6]. Conversely, seismic risk addresses
the likelihood of humans experiencing losses or damages to their constructed environment when faced
with seismic hazards. It encompasses the potential for harm to human life, property, infrastructure, and
the environment resulting from seismic events. Seismic risk integrates the exposure to seismic hazards
with the vulnerability of the affected elements, providing a comprehensive view of the potential impacts
of earthquakes [7].

Geographic Information System (GIS) is a powerful technology that can visualize, map, and
analyze the interrelationships among these elements in DRRM. However, the success of DRRM-
related mapping projects depends on adequate and dependable information. Remote sensing has
become a valuable operational tool in DRRM as it can provide a substantial amount of data. Recent
studies on scenarios have proven useful in promoting awareness and formulating policies [8].

Disaster scenarios can sensitize stakeholders, identify vulnerable areas and population groups, and
evaluate the effectiveness of various disaster management interventions. Urban areas are particularly
susceptible to earthquakes as they typically have a high population density and contain significant
infrastructure and resources. Seismic hazard assessment involves evaluating the expected damage and
losses resulting from an earthquake in a specific region for a particular hazard event, such as an
earthquake of a certain magnitude at a specific location. Risk assessment is a methodology used
to estimate the consequences of scenario earthquakes [9]. Furthermore, this evaluation estimates
the number of injuries, casualties, and possible economic damage. That is why disaster management
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before the event is necessary. Factors like building information, altitude, lithology, land use, elevation,
distance from streams, roads, and population density are considered for assessing the ability of
a place or a building to withstand seismic waves [10]. To predict seismic vulnerabilities, various
machine learning algorithms such as Support Vector Machine, K-Nearest Neighbor, Bagging, Radial
Basis Function, Logistic Regression, Artificial Neural Networks (ANN), and Random Forest were
employed [11]. However, it was observed that they had been conducted on a region-specific scale.
Previous studies in India have not yet conducted geospatial analyses to predict seismic vulnerability.
Additionally, there has been a lack of consideration for estimating the potential damage intensity
caused by earthquakes. Globally, the assessment of damage or seismic intensity has traditionally
been crucial in understanding the shaking patterns and the extent of destruction resulting from
earthquakes [12].

In delineating seismic vulnerability through GIS and machine learning methodologies, it is
imperative to discern between seismic hazard and vulnerability accurately. Seismic hazard primarily
pertains to physical phenomena induced by earthquakes, such as ground shaking, fault rupture, and
soil liquefaction. The distance from the fault line, being a characteristic of seismic hazard, should not
be conflated with vulnerability, which encompasses the inherent susceptibility of elements at risk to
damage or loss when exposed to seismic hazards. Critically, the model employed in this study may
exhibit significant flaws if it fails to differentiate between seismic hazard and vulnerability accurately
[13]. While factors like proximity to fault lines undoubtedly influence seismic hazard, they should
not be mistaken for vulnerabilities intrinsic to the elements at risk themselves. Furthermore, the
interplay between influencing factors and the target vulnerability necessitates thorough elucidation.
Mechanistic explanations are crucial in establishing the relationship between these factors and the
vulnerability of elements at risk [14]. Therefore, the author is urged to provide comprehensive
explanations elucidating the mechanisms through which these influencing factors contribute to the
vulnerability observed in the study area. Such clarity is essential for the robustness and validity of the
research findings.

This study aims to fill this gap by predicting the values of damage intensity. These values are then
used to categorize seismic vulnerability for any earthquake event, considering its location, magnitude,
and various socio-physical characteristics. Additionally, a case study about a risk assessment for the
Satara district of Maharashtra state has been conducted using the Artificial Neural Network and
Random Forest Algorithms. This study highlights the significance of utilizing GIS technology to
conduct disaster scenario studies in promoting awareness, informing policy decisions, and formulating
effective disaster management plans.

2 Study Area

India (as depicted in Fig. 1) is located above the equator in the northern hemisphere between
the latitudes 8°4′ and 37°6′ and longitude of 68°7′ and 97°25′. India’s total geographic area is around
3.28 million square kilometres, which makes it the 7th largest country with 29 states and eight union
territories. India is one of the most earthquake-prone countries in the world, with a long history of
devastating earthquakes. This is primarily due to the subduction of the Indian plate beneath the Asian
plate, which creates much tectonic activity [15].
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Figure 1: Study area map of India with earthquake event locations and fault lines

The Indian plate moves at a rate of 33 (+−6) mm per year, making it one of the fastest-moving
plates in the world. As a result, India has different levels of seismicity, with the southern part of the
country experiencing strong earthquakes and the northern part experiencing large, tremendous, and
mega earthquakes. To help mitigate the effects of earthquakes, the Bureau of Indian Standards created
a seismic zoning map that divides the country into four seismic zones based on how likely they are to
experience earthquakes. Zone V is the most active, with the highest likelihood of earthquakes, while
Zone II is the least active.

This map is based on historical seismic activities and ground motion. In the last 100 years, the
number and strength of earthquakes in India have increased significantly. Some experts believe this
is due to the changing climate, while others suggest it may be due to increased urbanization and
population growth. India has over 66 active faults, which are fractures or zones of fractures between
two blocks of rock. The movement of these blocks of rock releases energy, which travels in the form
of waves and causes earthquakes. The Himalayan belt is one of the most active areas in seismic
activity, divided by 15 major active faults. The Northern part of India has 16 tectonically active faults,
while Southern India has about 30 neotectonic faults. The Andaman and Nicobar Islands are at an
exceptionally high risk of earthquakes, falling under the very high hazard zone of the seismic activity
map. In addition, many hidden faults throughout India contribute to the country’s seismicity [16].
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3 Workflow Diagram

The research workflow (as depicted in Fig. 2) began with the collection of 11 datasets, meticulously
refined for optimal utilization as inputs. Subsequently, all data underwent thorough cleaning and
amalgamation, followed by random partitioning into training and testing sets at a 70:30 ratio. An
additional dataset was crafted specifically for model validation purposes. Drawing insights from
a comprehensive literature review, suitable Machine Learning models were identified in the third
stage. Model parameters were then fine-tuned, and the models executed. Validation ensued using the
dedicated validation dataset. Post-modeling, output values were employed to generate detailed maps
on a 2 km × 2 km grid. These maps formed the basis for a case study, focusing on the applicability of
the study to the Satara district. Moving forward, the research culminated in the creation of essential
datasets—Seismic Vulnerability (derived from model outputs), Seismic Hazard (PGA Value), and
Exposure Level (incorporating public places and infrastructure information)—at the Satara District
Level. Finally, a comprehensive Risk Assessment of the Satara district was conducted.

Figure 2: Workflow diagram

4 Data Used

USGS Earthquake Hazards Program monitors, reports, and research earthquakes and hazards.
The USGS Earthquake Hazards Program of the U.S. Geological Survey (USGS) is part of the National
Earthquake Hazards Reduction Program (NEHRP) led by the National Institute of Standards and
Technology (NIST). Under this program, a database with the earthquake events has been curated that
contains the location information, depth value, and magnitude value of each earthquake event that has
occurred globally. The dataset has been utilized to extract natural earthquake events, not those caused
by nuclear activities. The other variable values for the event points were extracted per the sources in
the Table 1.
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Table 1: Data inputs

Data Sources Units Rationale

Latitude &
longitude

USGS earthquake data Degree
decimal

Location of past activities to
understand the trend.

Depth USGS historical data Kilometres
(km)

The lower the depth, the more
destructive the power.

Magnitude USGS historical data Moment
magnitude
scale

The higher the magnitude, the more the
area of damage.

Elevation SRTM Meters (m) The landslide post-seismic activity
increases with an increase in elevation.

Population
density

CENSUS Persons per
km2

The greater the population density, the
more the chances of casualties.

Land cover Sentinel-2 – Different categories of land have
different susceptibility.

Lithology ESRI data catalog – The more complex the geological
formation of minerals, the lower the
earthquake wave and the weaker the
destructive power.

Distance from
stream

Open street map Meters (m) The area closer to streams is more
likely to be damaged.

Distance from
faults

ESRI data catalog Meters (m) Areas nearer to faults have experienced
more earthquakes in the past year.

Distance from
roads

Open street map Meters (m) To ensure proper evacuation, the closer
the road, the easier it is.

4.1 Satellite-Based and Other Products
This table presents key variables for seismic vulnerability modelling, including latitude, depth,

magnitude, elevation, population density, land cover, lithology, distance from streams, faults, and
roads. Each variable is sourced from specific datasets and measured in relevant units, aiding in
understanding seismic trends and potential impact. The rationale behind each variable highlight
factors such as geological formations, population density, and proximity to natural features affecting
vulnerability assessments.

The training and testing dataset had records from the years 1900-01-01 to 2020-12-31.

4.2 In-Situ Calculations
The study used the magnitude values of the past earthquakes between 1900–2022, which were

collected from the USGS Earthquake Data Catalog. It associated those different magnitude values
(regional, moment, body, etc.) to surface magnitude value using the following formulae:

Ms = mb − 2.74/0.46 (1)

Ms = Mw − 2.07/0.67 (2)
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where Ms is the surface magnitude, Mw is the Moment Magnitude, and mb is the body magnitude. A
magnitude based on the amplitude of Rayleigh surface waves measured at a period near 20 s. Ms is
primarily valuable for large (>6) shallow events, providing secondary confirmation on their size [17].

After gathering the surface magnitude value, the peak ground acceleration value for each
earthquake incident was calculated using Donovan’s Formula:

PGA = 1080e0.5 Ms(R + 25)−1.32 (3)

where Ms is the surface magnitude, R = Distance from the hypocentre to the event’s site (in
Kilometers), and peak ground acceleration (PGA) equals the maximum ground acceleration during
earthquake shaking at a location.

PGA is a measure of how much ground shakes at a particular location during an earthquake
event. It is calculated by looking at the highest acceleration record on an accelerogram device [18]. To
understand the severity of an earthquake event, damage intensity values are considered, which helps
in correlating the damages caused by an event with the magnitude.

Imm = 2.20 log(PGA) + 1.00 [for Ms values 3.5 to 5] (4)

Imm = 3.66 log(PGA) − 1.66 [for Ms values 5+] (5)

Each damage intensity value can be correlated to the Modified Mercalli Intensity values. Earth-
quakes cause different effects on the earth’s surface, known as the earthquake’s intensity. A scale has
been developed to measure this intensity by considering the different observations of people who have
experienced that event. This scale is called the Modified Mercalli Intensity scale and helps everyone
understand the potential damage caused by the event [12].

The Modified Mercalli Intensity (MMI) scale is a subjective measurement scale used to assess
the intensity of shaking experienced during an earthquake at a specific location. Unlike magnitude,
which measures the energy released by an earthquake at its source, intensity describes the effects of
the earthquake as perceived by people and the damage caused to structures and the environment [19].

The MMI scale is divided into 12 increasing levels, ranging from I (Not felt) to XII (Destruction).
Each level corresponds to specific descriptions of shaking effects and associated damage. The
descriptions are qualitative and based on observations of the earthquake’s impact on people, buildings,
and the environment. The scale has been described in Table 2.

Table 2: Modified mercalli intensity (MMI) scale

Instrumental intensity Acceleration (g) Velocity (cm/s) Perceived shaking Potential damage

I <000017 <0.1 Not felt None
II–III 0.0017–0.014 0.1–1.1 Weak None
IV 0.014–0.039 1.1–3.4 Light None
V 0.039–0.092 3.4–8.1 Moderate Very light
VI 0.092–0.18 8.1–16 Strong Light
VII 0.18–0.34 16–31 Very strong Moderate
VIII 0.34–0.65 31–60 Severe Moderate to heavy
IX 0.65–1.24 60–116 Violent Heavy
X+ >1.24 >116 Extreme Very heavy
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5 Exploratory Data Analysis (EDA)

EDA is the first step in any modelling study. With the help of EDA, the relationship between
various factors is established, and data patterns are also analyzed. It gives us a basic understanding of
how and which factor affects the predictor variable the most [20].

To initiate this study, we examined historical earthquake incident data from the past 100 years.
This data consists of information regarding the location, magnitude, depth, time, and date of each
incident. This examination aimed to understand the necessity of conducting this study. The results
have been displayed in Figs. 3 and 4.

Figure 3: Number of earthquakes from 1904–2022

Figure 4: Graph for earthquakes above magnitude 7 (1904–2022)

The earthquake incidents were categorized by years, and their trends were studied, including the
occurrences of earthquakes above magnitude 7. As depicted in the graphs above, there has been a
substantial increase in the number of earthquakes between the years 1902 and 2022. Additionally,
during the period from 2004 to 2013, the number of earthquakes with a magnitude above 7 reached
its peak.

We are exploring the influence of various parameters before the architecture leads to a better
understanding. While directly influencing the desired target parameter, the inputs do not account for
the interaction between them.

In this study, the damage intensity values for each of the earthquake events above magnitude
3.5 were calculated between the years 1900 and 2022; using the USGS earthquake explorer data, the
location (latitude, longitude), magnitude, and depth (distance from hypocentre, in km) was extracted.
Other datasets like land cover, population density, elevation, distance from roads, significant rivers,
distance from fault lines, and lithology type information were compiled from the abovementioned
sources. All these data points were segregated into a 70:30 ratio for training (19040 records) & testing
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data (8160 records) and another validation dataset (another 786 records) with a temporal gap of 6
months before the building of models.

A correlation matrix (Fig. 5) was generated to understand the influence of the variables on each
other by displaying the correlation coefficients for different variables. The correlation matrix depicted
in Fig. 5 describes the potential level of influence between different parameters on a normalized scale.
The image depicts the degree of influence between all the possible pairs of values used in this study.

Figure 5: Correlation matrix

The above correlation matrix shows that “distance from the fault line” negatively influences Z.
This understanding is associated with higher elevations, like the Himalayan range, which tends to have
fewer faults. Similarly, depth is inversely correlated to damage intensity at an extreme level. It can be
confirmed that the more profound the epicentre, the shockwaves become before it touches the surface.

6 Model Development
6.1 Artificial Neural Network (ANN)

Artificial neural networks (ANNs) are biologically inspired computational networks [21].

Artificial neural networks are computer programs that simulate how the human brain and nervous
system process information. These networks comprise individual processing units called neurons
connected through weighted connections known as synaptic weights. The neurons process information
received from other neurons to generate an output signal, which is achieved using an activation
function. Neural networks come in two main types: feed-forward and feed-back.
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They must be trained using an algorithm to make neural networks effective in their respective
tasks. One popular algorithm is the Rectified Linear Unit (ReLu) activation function. ReLu is a
piecewise linear function that outputs the input directly if it is positive and zero if it is negative.
This activation function is beneficial when dealing with nonlinear functions and is easily trained with
multilayer Perceptron and convolutional neural networks.

The gradient descent algorithm is another important aspect of neural network training. It is
an optimization algorithm used to solve machine-learning problems. This algorithm approaches
the optimal solution of the objective function by obtaining the minimum loss function and related
parameters. There are two types of gradient descent algorithms: batch gradient descent and stochastic
gradient descent. Batch gradient descent calculates gradients for the whole dataset, which can be time-
consuming for large datasets. On the other hand, stochastic gradient descent performs one update at a
time, which makes it much faster. However, it has a higher variance that causes the objective function
to fluctuate heavily.

The present study applies a Stochastic Gradient Descent transfer function with ReLu activation
for the estimation of the seismic vulnerability of India. The architecture has been depicted in Fig. 6.

Figure 6: ANN architecture

Eleven inputs (mentioned in Table 1) have been used in the model. Over multiple iterations,
16 combinations of input hyperparameters were fine-tuned to provide the optimized parameterized
model. The number of hidden layers was kept as two as it performed better than the multi-layer
perceptron model. The study adapts the standard conditions by Heaton, which follows the 2n-1 rule
for the first hidden layer when selecting the number of nodes within each hidden layer, where n is the
number of inputs and the 3n-1 rule for the second layer, making the first layer have 21 nodes and
second layer have 62 nodes.

A two-layered artificial neural network was utilized for this study. The created datasets were
segregated into a 70:30 ratio for training (19040 records) & testing data (8160 records). The model was
trained and fine-tuned to optimize the results. The performance of the same can be seen in Figs. 7–9.



RIG, 2024, vol.33 121

Figure 7: Hyperparameter curve for hidden layers Figure 8: Hyperparameter curve for batch size

Figure 9: Hyperparameter curve for learning rate

The number of hidden layers in a neural network is decided, keeping the complexity of datasets
in mind. For this study, it was noticed that increasing the hidden layers beyond 2 saturates the model’s
accuracy, thus resulting in overfitting of the model.

The model training started with taking a batch size of 64 and checking the accuracy against
the same. Simultaneously, the batch size was decreased to 16; and it was observed that the accuracy
achieved was the best in this case. Keeping a batch size of 16 meant that the entire training data would
pass through the model in batches of 16 observations at a point while training the model.

The hyperparameter controls the rate of learning or speed at which the model learns. It regulates
the number of allocated errors with which the model’s weights are updated. The learning rate value
is in the range of 0.0–1.0. This study’s accuracy value started saturating upon increasing the learning
rate value beyond 0.1.

6.2 Random Forest (RF)
A random forest is a type of classifier that comprises a set of tree-structured classifiers {h(x, �k),

k = 1,...}. Each tree in the random forest casts a unit vote for the most commonly occurring class for
the given input x. Moreover, the {�k} represents independently and identically distributed random
vectors [22].
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Random Forest is a computer program that helps classify or make predictions based on data. It
is commonly used in many applications such as predicting whether a customer will buy a product or
identifying whether an email is spam or not. It works by using many small decision trees together to
make a final decision, rather than relying on just one tree. The algorithm creates different training
subsets from the sample training data with replacement, meaning that it can use the same data points
more than once, making it more accurate. These subsets are selected randomly from the dataset
and are called bootstrap samples. Therefore, each decision tree or model is produced using samples
from the original data, with replacement, in a process called Bootstrapping. Each model is trained
independently, generating individual results. The outcome is then formed by calculating the average
output of all the decision trees. This step is called Aggregating. The design has been exemplified in
Fig. 10.

Figure 10: RF architecture

In this study, specific model parameters called hyperparameters are fine-tuned to improve the
model’s performance. Random forest functions on the combination of multiple trees of varied degrees
and levels. Each one is responsible for driving the model in an optimized form. The parameter
“n_estimators” defines the number of trees within the algorithm based on the model tuning. Typically,
increasing the number of trees in the random forest model leads to more generalized results. However,
this also increases the time complexity of the model. The model’s performance increases with the
number of trees but levels off after a certain point. The “max_depth” parameter is crucial, as it
determines the longest path between the root and leaf nodes in each decision tree. Setting a large
max_depth may result in overfitting. The “max_features” parameter determines the maximum number
of input variables provided to each tree. The default value, which is the square root of the number of
features in the dataset, is usually a good choice to consider.

A random forest was used to build several iterations of an RF model. Like ANN, the datasets
created were randomly segregated into a 70:30 training and testing data ratio. The process of
optimizing the model involves adjusting certain parameters to improve its accuracy. These parameters
include “n_estimators,” which refers to the number of decision trees generated, “max_depth,” which is
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the longest distance between the root node and the leaf node, and “max_features,” which is the number
of variables randomly selected as candidates at each node. The parameters were adjusted over several
iterations of the model to assess how overall accuracy was affected by each. The overall performance
of the architecture is depicted in Figs. 11–13.

Figure 11: Validation curve for max_depth

Figure 12: Validation curve for n_estimators
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Figure 13: Validation curve for max_feature

It is essential to remember that max_depth is not the same thing as the depth of a decision tree.
max_depth is a way to pre-prune a decision tree. This study observed that the model is achieving a
threshold after max_depth 4.

A higher number of decision trees gives better results but slows the processing. The model attained
maximum accuracy at 40 n_estimators (number of decision trees).

The max_features, if not specified, considers all the parameters. There are 11 input parameters,
and the model attains maximum accuracy by using any random 5 of them. After this, it is sustained.
Like ANN, the input and temporal periods are the same for the input dataset. This provides a better
comparative capacity between the models. Within RF, the following fine-tuned parameterized values
were identified for the final model. The following fine-tuned parameters are described in Table 3.

Table 3: Hyperparameters for RF

Hyperparameter Value

n_estimators 40
max_depth 4
max_features 5

6.3 Sensitivity Analysis
Sensitivity analysis is the label used for a collection of methods for evaluating how sensitive model

output is to changes in parameter values [23]. Sensitivity analysis identifies which input variables are
essential in contributing to the prediction of the output variable. It quantifies how the changes in the
input parameters’ values alter the outcome variable’s value [24].



RIG, 2024, vol.33 125

The one-dimensional sensitivity focuses on varying one parameter while keeping the remaining
constant. This can provide an understanding of the level of influence between the parameter and the
output scale. For both the models, the mean values of input parameters were taken; for instance, in
the case of depth, the mean value is 54.8 km, and the deviation of this value with 50% on either side of
the mean value, i.e., plus and minus 25 kms and the result shows that it shifted damage intensity from
−1.42 to 1.48. The parameters like streams, roads & population showed minimal sensitivity toward the
damage intensity. This is known as one-way sensitivity analysis since only one parameter is changed
simultaneously. The analysis was repeated on different parameters at various times, and the values
have been depicted in Fig. 14.

Figure 14: Sensitivity analysis for (a) ANN, (b) RF

7 Results

The dataset was divided into training and testing subsets in a ratio of 70:30. Scatter plots were
generated to evaluate the performance and accuracy of both the Random Forest model and the
Artificial Neural Network model in terms of the Coefficient of Correlation (R), Mean Absolute Error
(MAE), and Percentage Root Mean Square Error (PRMSE).

The training stage performance of both the models has been depicted in Fig. 15 and performance
in Table 4; Test phase performance in depicted in Fig. 16 and Table 5, and validation is depicted in
Fig. 17 and Table 6.

The scatter plots for training data subsets of both models are providing a good accuracy and
perform exceptionally well in predicting damage intensity values for earthquake events based on
numerous factors, highlighting the effectiveness of the proposed approach in seismic vulnerability
modelling.

From the scatter plots, the values obtained from the model are close to the actual values, along
with some outlier values. Comparable results were seen upon testing the model with the remaining
8160 points of the datasets.
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Figure 15: Training data scatter plot for (a) RF, (b) ANN

Table 4: Model performance (training dataset)

Data points: 19040 (70% of the dataset) RF ANN

R2 (Coefficient of correlation) 0.98 0.98
MAE (Mean absolute error) 0.08 0.07
PRMSE (Percentage root mean square error) 6.4% 6.08%

Figure 16: Test data scatter plot for (a) RF, (b) ANN

Table 5: Model performance (testing dataset)

Data points: 8160 (30% of the dataset) RF ANN

R (Coefficient of determination) 0.99 0.99
MAE (Mean absolute error) 0.08 0.08
PRMSE (Percentage root mean square error) 4.02% 7.49%
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Figure 17: Validation data scatter plot for (a) RF, (b) ANN

Table 6: Model performance (validation dataset)

Validation dataset: June 2021–September 2022 data points: 789 RF ANN

R (Coefficient of determination) 0.99 0.96
MAE (Mean absolute error) 0.08 0.22
PRMSE (Percentage root mean square error) 4.02% 7.51%

Lastly, to rule out any temporal dependencies of the model on the dataset, a new dataset with
six months of the temporal gap was run through the model. The training and testing datasets had
events until December 2020, and the new dataset (Validation Dataset) with 789 data points consisted
of events from June 2021 until September 2022. For the validation dataset as well, it can be observed
from the scatter plot and the metrics results that the model has performed exceptionally well.

7.1 Temporal Trend Analysis
The models performed closely; although the ANN model captured the peaks and dips of the

damage intensity values, Random Forest performance was better in accuracy as it provided the average
of the damage intensity values generated through each decision tree. Furthermore, a temporal analysis
of the test dataset was plotted in Fig. 18 to depict the trend comparison between the actual and model
values.

Specifically, the ANN model excelled in closely capturing the peaks and dips of the data values,
providing a more nuanced geospatial representation, as depicted in the accompanying graphs and
maps. Conversely, the Random Forest model, while generating output values closer to the actual data,
displayed limitations in capturing extreme values. This distinction arises from the inherent nature of the
Random Forest model, which operates as a bagging ensemble model, averaging the output values from
multiple decision trees. As a result, the ANN model offers a richer depiction of the data’s variability,
particularly in its ability to closely mirror the fluctuations in the dataset.
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Figure 18: Validation curves

7.2 Upscaling to Spatial Scale
The resulting models were used to interpolate and upscale to a spatial scale of a 2 km grid.

This approach will provide a good understanding of the spatial pattern and distribution over India.
The classes were defined using the Modified Mercalli Intensity Scale as the reference to quantify the
vulnerability, as mentioned in Table 7.

Table 7: MMI scale levels

Vulnerability level MMI scale Description

Very low II Minor-rarely felt
Low III Minor-noticed by a few people
Moderate IV Light-felt by many people, minor damage
High V Considerable damage
Very high VI–VII Damage variables depend upon building construction and substrate

The maps below illustrate the varying vulnerability levels across India. Notably, while earthquake
events are more frequent along the Northern belt, the vulnerability levels are higher along the Southern
coast. This suggests that in the event of earthquakes of similar magnitude occurring along both the
northern belt and the southern coast, the impact would be more devastating along the southern coast.

In the figure below, both model outputs are displayed spatially. Regions classified as high and
extremely high vulnerability areas often experience lower earthquake frequencies compared to areas
marked as shallow and low-risk zones. This implies that an earthquake of significant magnitude would
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pose a greater threat to regions in southern and central India. This heightened vulnerability can be
attributed to the concentration of population and infrastructure in these areas, which lack resilience
against seismic activities, thus amplifying potential damage.

The subsequent maps (Fig. 19) reveal the diverse vulnerability levels across India. Noteworthy
is the fact that while areas with the highest frequency of earthquakes often fall within the low
and extremely low vulnerability zones, regions with lower frequencies, such as Maharashtra, are
categorized as high-vulnerability areas. This distinction is primarily due to factors such as population
density and the lack of seismic considerations in infrastructure planning.

Figure 19: Seismic vulnerability map for India (Model outputs)

7.3 Case Study Example
A risk map for the entire India can be generated using the Seismic vulnerability map. For example,

a risk map for Satara district, Maharashtra, was generated as the application area of this study. The
location is shown in Fig. 20.

The Satara district of Maharashtra experienced an earthquake of 5.0 magnitude on 16 September
2008. It has an area of 10,480 km2 and a population of 3,003,741, of which 14.17% were urban (as of
2011). Although the magnitude was not much, the damage was alarming. 606 buildings were severely
damaged in 110 villages, and another 573 buildings in 92 villages in Patan taluka also inflicted minor
damage within 100 km of the epicentre. This engenders a need to be prepared if such an event happens
again. For this purpose, a hazard map was generated from the Global Seismic Hazard map. The
exposure map was created after overlaying maps of different areas like schools, banks, and other public
spaces. Finally, a risk map was created. For Satara district to understand the potential losses in terms
of lives, health, economy, and livelihood. The risk map was categorized into five risk levels, and the
at-risk population was estimated. The risk map depicts that around 40% of the district falls under
moderate to high-risk levels, with 44% of the population at risk. The following images (Figs. 21 and
22) show the potential levels of hazard, vulnerability and exposure for the region.
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Figure 20: Satara district map

Figure 21: (a) A hazard map, (b) a vulnerability map, and (c) an exposure map for the Satara district
of Maharashtra
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Figure 22: Satara district risk level map

8 Discussion

In this study, both the Artificial Neural Network (ANN) and Random Forest (RF) models
exhibited commendable performance. The accuracy of these models was notably similar; however,
the Random Forest model demonstrated a slight advantage over the ANN model. Notably, the ANN
model’s ability to closely capture the peaks and dips of the data values provided a richer geospatial
representation, as evidenced by the graphs and maps. In contrast, the Random Forest model, while
generating output values closer to the actual data, exhibited limitations in capturing extreme values.
This is inherent like a Random Forest, as it operates as a bagging ensemble model, averaging the output
values from multiple decision trees.

Comparing this study’s findings to previous research, which explored hybrid models based
on Artificial Neural Networks for GIS-based seismic vulnerability mapping, similarities in model
performance are apparent. It noted the effectiveness of hybrid models in providing detailed seismic
vulnerability maps, a sentiment echoed in this study regarding the ANN model’s geospatial represen-
tation. Similarly, another research delved into machine learning techniques for urban-scale seismic
vulnerability assessment, highlighting parallels with our use of ANN and RF models. Their work,
focusing on building characteristics and soil types, mirrors our study’s approach to understanding
seismic vulnerability through these models.

Moreover, the study on GIS-based rapid earthquake exposure and vulnerability mapping aligns
with similar suggestions for future research directions. They emphasized the importance of finer-
resolution datasets, a notion echoed in this study [3,4,25].
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As this study has been done on a coarser resolution of 2 km × 2 km, moving forward, finer resolu-
tion datasets can provide more granular insights into the seismic vulnerability of specific areas. Moving
forward, incorporating more parameters such as building materials and age-wise population, as
suggested by other studies could enhance the holistic understanding of seismic vulnerability. Looking
ahead, the exploration of alternative models such as Long Short Term Memory (LSTM) and Teaching
Learning Based Optimization (TLBO), presents intriguing avenues for further investigation [21,26].

9 Conclusion

Earthquakes, with their potential for devastating impacts on lives, infrastructure, and economies,
stand among the most unpredictable and hazardous natural events. This study has introduced a novel
approach to seismic vulnerability modelling for India, leveraging the power of Machine Learning (ML)
algorithms and Geographic Information Systems (GIS). The aim was to address the notable gaps in
previous research by predicting damage intensity values for earthquake events based on a multitude
of factors. These factors include location, depth, land cover, proximity to major roads, rivers, soil type,
population density, and distance from fault lines.

Both the Artificial Neural Network (ANN) and Random Forest (RF) models demonstrated excep-
tional accuracy, exceeding 95% for both training and testing datasets. The ANN model highlighted
a closer representation of the peaks and dips in data values, while the RF model excelled slightly in
overall accuracy, providing an average of damage intensity values generated through decision trees.
The models were not just confined to theoretical accuracy. They found practical application in the
case study of the Satara district in Maharashtra, illuminating vulnerable buildings and enhancing
seismic risk assessment at a local level. This case study exemplified how the models can estimate
potential losses in terms of lives, health, economy, and livelihoods, offering invaluable insights for
disaster management and urban planning decision-makers.

Moreover, this study extended beyond mere modelling; it aimed to provide actionable tools for
risk reduction. By generating a zonation map categorizing regions into Very High, High, Moderate,
Low, and Very Low vulnerability classes, a visual representation of exposure grids was created. This
vulnerability index map aids in identifying regions requiring immediate risk reduction interventions
and offers a comprehensive understanding of risk metrics associated with different areas. It can guide
decision-makers in resource allocation and the implementation of targeted strategies to minimize the
potential loss of human lives and financial damage from future earthquakes.

In summary, this study represents a significant stride in the field of seismic risk assessment,
offering a robust framework that combines ML algorithms and GIS technology. By empowering
decision-makers with precise insights into seismic vulnerability, this approach stands poised to enhance
disaster preparedness, mitigation, and management strategies, fostering a more resilient future for
communities in India vulnerable to seismic hazards.
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