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Abstract: Background:Diabetic nephropathy (DN) is the most common complication of type 2 diabetes mellitus and the

main cause of end-stage renal disease worldwide. Diagnostic biomarkers may allow early diagnosis and treatment of DN

to reduce the prevalence and delay the development of DN. Kidney biopsy is the gold standard for diagnosing DN;

however, its invasive character is its primary limitation. The machine learning approach provides a non-invasive and

specific criterion for diagnosing DN, although traditional machine learning algorithms need to be improved to

enhance diagnostic performance. Methods: We applied high-throughput RNA sequencing to obtain the genes related

to DN tubular tissues and normal tubular tissues of mice. Then machine learning algorithms, random forest, LASSO

logistic regression, and principal component analysis were used to identify key genes (CES1G, CYP4A14, NDUFA4,

ABCC4, ACE). Then, the genetic algorithm-optimized backpropagation neural network (GA-BPNN) was used to

improve the DN diagnostic model. Results: The AUC value of the GA-BPNN model in the training dataset was 0.83,

and the AUC value of the model in the validation dataset was 0.81, while the AUC values of the SVM model in the

training dataset and external validation dataset were 0.756 and 0.650, respectively. Thus, this GA-BPNN gave better

values than the traditional SVM model. This diagnosis model may aim for personalized diagnosis and treatment of

patients with DN. Immunohistochemical staining further confirmed that the tissue and cell expression of NADH

dehydrogenase (ubiquinone) 1 alpha subcomplex, 4-like 2 (NDUFA4L2) in tubular tissue in DN mice were decreased.

Conclusion: The GA-BPNN model has better accuracy than the traditional SVM model and may provide an effective

tool for diagnosing DN.

Introduction

In recent years, the incidence of diabetes has increased
significantly. Diabetes is an increasingly common chronic
disease characterized by the body’s inability to metabolize
glucose and chronic hyperglycemia (Lai et al., 2019). This
disease occurs globally and is caused by spontaneous
metabolic disorders (Horikoshi et al., 2020). The
International Diabetes Federation estimated that by 2045,
642 million people worldwide will have diabetes (Wang et

al., 2022). Diabetes tends to cause multiple complications,
such as nephropathy (Younas et al., 2022). Diabetic
nephropathy (DN) shortens the lifespan of patients with
diabetes. When a patient is diagnosed with DN, the function
of the kidney is significantly impaired (Tsai et al., 2020).
Therefore, risk prediction may be advantageous for
implementing early treatment and prevention (Liang et al.,
2022). Understanding the factors related to DN is of great
significance in controlling the occurrence of DN and
improving the quality of life of patients.

Recent studies have reported that urinary microalbumin,
serum creatinine levels, estimated glomerular filtration rate
(eGFR), and urinary microalbumin/creatinine ratio (UACR)
serve as diagnostic markers for DN (Zou et al., 2022).
However, these markers do not yet provide a comprehensive
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diagnostic performance. Furthermore, the diagnosis of DN is
challenging because this condition is non-proteinuric (Huang
et al., 2022). It is difficult for clinicians to apply the
biomarkers directly when making clinical decisions.
Therefore, the identification of diagnostic biomarkers and
establishment of a simpler prediction model will help
clinicians make early diagnoses and appropriate interventions
to improve prognosis. Over the past 20 years, several studies
have identified linkage peaks in different genome regions and
have demonstrated an association between genes and diabetic
complications, especially kidney disease (Tang et al., 2020).
Quantitative measures of DN-related traits showed moderate
to high estimated heritability (Blech et al., 2011). Therefore,
combining genetic information to predict DN may lead to
more effective prevention or treatment.

As a type of artificial intelligence, machine learning uses
statistical techniques to allow computers to learn specific tasks
without being explicitly programmed (Dhiman et al., 2022; Xu
et al., 2022). Previously, researchers used decision trees,
random forests, naive Bayesian classification, neural
networks, regression and support vector machines to
identify novel diagnostic markers to establish risk prediction
for DN (Leung et al., 2013; Currie et al., 2018; Kapoula et
al., 2020). Wu et al. (2009) conducted candidate gene
analysis on 345 patients with type 2 diabetes and analyzed
its correlation with 20 candidate genes and associated
complications such as obesity and DN. Huang et al. (2015)
also confirmed that combining genetic information can aid
in better clinical differentiation of patients with diabetic and
non-DN. DN is characterized by both glomerulus and
tubular damage (Wilson et al., 2019). Early-stage DN is
characterized by podocyte disease and alterations in the
filtration barrier, and the evolution of the disease is
associated with irreversible renal fibrosis. Part of this
process is triggered and is associated with damage to the
tubular epithelial cells (Garrido et al., 2019).

Therefore, in-depth studies based on key tubular genes
will help elucidate the molecular mechanisms of DN
pathogenesis and provide new insights for developing new
therapeutic targets. This study aimed to identify key genes
and combine this with various algorithms to explore an
effective diagnosis model of DN. We used high-throughput
RNA sequencing (RNA-seq) to obtain the transcriptome
data of the tubular tissue of mice. First, the differentially
expressed genes (DEGs) between DN and non-diabetic
tubular samples were identified. The dimensionality
reduction screening of DEGs was performed by least
absolute shrinkage and selection operator (LASSO) logistics
and random forest to diagnose key genes. The classification
effect of key genes was verified by principal component
analysis (PCA). For key genes, gene enrichment analysis was
implemented. Finally, the DN diagnosis model was
constructed and validated by the GA-BPNN model, which
demonstrated improved diagnostic performance.

Materials and Methods

Data collection and processing
Male db/m mice and db/db mice (20-week-old) were
randomly selected and sacrificed by cervical dislocation.

The mouse kidneys were taken out, minced, and filtered
using 100, 80, and 40 µm filters to obtain renal tubules.
Renal tubules were extracted from the kidneys of nine mice
per group, and then the tubules of three mice were pooled
as an independent sample. Transcriptome sequencing of
RNA was performed by Myhalic Biotechnological Co., Ltd.
(Wuhan, China). Per group, three independent biological
replicates were sequenced. As external validation data,
GSE106841 was downloaded from the high-throughput
gene expression database (GEO) (https://www.ncbi.nlm.
nih.gov/geo/) to verify the prediction effect of the model.
The GSE106841 validation set has 30 samples, 15 db/db
mice, 15 db/m mice.

Analysis of differentially expressed genes
The differential analysis was performed on the combined data
set through the Limma package in the R language, and |logFC|
> 1, p < 0.05 was selected as the threshold.

Least absolute shrinkage and selection operator logistic analysis
The principle of LASSO is to penalize the coefficients based on
ordinary least squares estimation (OLS) (Xu et al., 2022).
LASSO logistic analysis was developed based on the
traditional logistic model, which selects variables by tuning
the parameter λ and then reduces the estimates of
uncorrelated variables to zero. A ten-fold cross-validation
method was used to determine the optimal value of λ (Xu et
al., 2022). We first performed 10-fold cross-validation to
select candidate variables (“glmnet” package). The LASSO
algorithm was used to analyze the key prognosis-related
genes. The complexity of LASSO is governed by λ, which
penalizes the model with more variables with greater power.
We defined λ1se as the criterion for obtaining the optimal
model with the smallest variable. Second, we plotted the
partial likelihood deviation curve concerning the logarithm
(λ). Vertical dashed lines were drawn at the optimum.
Finally, the coefficient distribution of the logarithmic (λ)
series was plotted.

Random forest analysis
Random forest is an ensemble learning method based on
decision trees. The first step uses the bootstrap resampling
technique. The second step employs random feature
selection when growing the tree. So instead of using all
variables to split the nodes, a randomly selected subset of
variables is used. Both randomization steps aim to
decorrelate the tree, encouraging low variance ensembles
due to bagging. Combined with a strategy that uses deep
trees reduces generalization error, giving ensembles
superior performance (Yang et al., 2020). In this study, we
generated a new set of training samples from the data-
augmented sequencing data. We randomly sampled m
feature sets from each training bootstrap sample and then
generated B decision trees based on the bootstrap sample
set. When splitting a decision tree, the optimal feature set
is selected from m features. The B decision tree constitutes
a random forest, and new data classification is determined
by the number of votes in the decision tree (Ishwaran and
Lu, 2019).
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Principal component analysis
PCA is a multivariate technique that analyzes the observations
in a data table described by several interrelated quantitative
dependent variables. The goal of PCA is to extract
important information from a table, represent it as a new
set of orthogonal variables called principal components, and
display the similarity patterns of observations and variables
as points in a map (Xu et al., 2014). In this study, we used
PCA for identification of the classification to verify that the
genes screened by LASSO-Logistic and random forest have
an excellent classification effect.

Signature gene set enrichment analysis
We applied the Clusterprofiler package in R4.1.2 software to
find the biological function of signature genes. The results
were visualized using the “ggplot2” package in the R4.1.2
software. GO functional enrichment is a widely used
bioinformatics tool to study gene and protein annotation. It
includes three aspects: biological process (BP), cellular
component (CC), and molecular function (MF) (p < 0.05).

Support vector machines (SVM)
SVM is a supervised learning model frequently used in
regression analysis, pattern recognition, and classification
(Liu et al., 2022). The 10-fold cross-validated classification
was performed using different kernels (Mehta and Sebro,
2020). The resulting five signature genes were analyzed, and
the sequencing dataset was split into training (80%) and test
(20%) datasets. Next, 10-fold cross-validation and support
vector machines with different kernel functions were used to
identify the best kernel function. The SVM with the best
kernel was then applied to evaluate the accuracy based on
the validation dataset (Song-men, 2022).

Genetic algorithm optimized backpropagation neural network
(GA)-BPNN neural network algorithm
A group of solutions (individuals) are developed over
numerous generations in a GA. Those solutions that
perform very well are chosen to join the next generation
under the survival of the fittest theory. Under the impact of
genetic crossover, the solution recombines and mutates to
create a new genotype (Lu et al., 2022). GAs have been
widely used to optimize the weights and thresholds of
neural networks. This study used the GA to optimize the
weights and thresholds to establish the GA-BPNN model.
The backpropagation (BP) algorithm is essentially a
multilayer perceptron. The BP neural network is trained
using the error backpropagation algorithm (Xu and Zhao,
2022). During training, data is continuously transmitted
through forwarding propagation. The weight thresholds can
be updated in real-time through error backpropagation (Wu
and Shen, 2021). The BP neural network (BPNN) is divided
into three components: the input layer, which receives
information and processes the hidden layer information,
and the output layer, which obtains the results (Zhao, 2021).
In this study, there were five input layers. The number of
output layers was set to 2, and then the number of hidden
layers was set to 11. After optimizing the weights and

thresholds of the GA, three components were imported, and
connected to form a complete BPNN, and a 5-gene DN
prediction model was established based on the GA-BPNN
algorithm.

Reagents and antibodies
Anti- NADH dehydrogenase (ubiquinone) 1 alpha
subcomplex, 4-like 2 (anti-NDUFA4L2) antibody (16480-1-
AP, 1:100) was used for immunofluorescence staining and
immunohistochemistry (IHC). The DAPI (4′,6-diamidino-2-
phenylindole) and Alexa Flour 488,594 conjugated anti-
mouse, anti-rabbit IgG were obtained from Antgene
(Wuhan, China).

Immunofluorescence staining and immunohistochemical
staining
Renal slices were dewaxed at room temperature. After
washing, the slices were blocked with 5% albumin bovine V
(Servicebio, Wuhan, China) for 1 h and then incubated with
NDUFA4L2 primary antibody at 4°C overnight.
Subsequently, the indicated fluorescent-labeled secondary
antibody was added at room temperature for 1 h. Cell nuclei
were visualized by co-staining with DAPI. Representative
photographs (five visual fields for each tissue were analyzed,
with five measurements per field) were captured using a
laser scanning confocal microscope (Olympus, Tokyo,
Japan). For IHC staining, sections were incubated with
NDUFA4L2 primary antibody. Five visual fields (×400
magnification) from individual groups were randomly
selected.

Western blotting
After treatment, HK-2 cells were homogenized in RIPA lysis
buffer with phenylmethylsulfonyl fluoride and protease
inhibitor cocktail (Roche) for 30 min at 4°C. Total proteins
were separated by electrophoresis on an 8%–10% sodium
dodecyl sulfate-polyacrylamide gel and transferred onto
polyvinylidene fluoride membranes. Then, the membranes
were blocked with 5% milk for 1 h. After blocking with
milk, the membranes were incubated overnight with
primary antibodies (anti-NDUFA4L2) at 4°C. The next day,
the membranes were incubated with a secondary antibody
(Antgene, China). After washing the membranes three
times, bands were revealed by an ECL chemiluminescent kit
(Biosharp, Hefei, China). Finally, the bands were analyzed
using a ChemiDocTM MP Imaging system (Olympus,
Hercules, USA).

Immunofluorescence staining
After the indicated treatment, human renal tubular epithelial
cells (HK-2) were fixed with 4% paraformaldehyde and
blocked with 5% bovine serum albumin. Specific primary
antibodies (anti-NDUFA4L2) were then applied overnight at
4°C. Next, the samples were incubated with fluorescent
secondary antibodies for 1 h. After washing, the nuclei of
the samples were counterstained with DAPI. Fluorescence
results were analyzed using a confocal laser microscope
(Olympus, Japan).
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Results

Differential genes and data augmentation
After normalizing the data, bioinformatics analysis was
performed for DEGs diabetic and non-diabetic renal tubular
samples (p < 0.01 and |logFC| > 1). A total of 297 DEGs
were obtained using the limma package, and a volcano plot
was drawn for the results of differential analysis. The red
part indicates the up-regulated gene, the green part presents
the down-regulated gene, and the black part is the non-
differential gene (Fig. 1A). By linear interpolation of the
samples in the group: Saug = xS1 + (1−X)S2, x = 0.1, 0.2, ...,
0.9, the sum of interpolation samples and real samples was 60.

Key Genes Identified by Least Absolute Shrinkage and
Selection Operator Logistic Regression

We used the LASSO logistics to screen for potential
biomarkers. Figs. 1B and 1C are the lambda and minimum

values of the LASSO logistic regression algorithm, which
identified 12 DEGs.

Random forest model screened out diagnostic biomarkers
We divided the augmented data in a 7:3 ratio and used it as a
training set and a test set, respectively. For feature selection, a
random forest was used, exploiting the relationship between
the error rate and the number of classification trees. The
number of trees was chosen to be 500, and the depth of the
decision tree defaulted to an unrestricted depth. Based on
the 12 genes screened out, we established a random forest
model and visualized the classification effect of random
forest. Fig. 2A shows the receiver operating characteristic
(ROC) curve of the 12-gene random forest model, which
demonstrated an area under the ROC curve (AUC) value of
0.895 (Fig. 2B). Five genes (CES1G, CYP4A14, NDUFA4,
ABCC4, ACE) were obtained as diagnostic markers for DN.
Fig. 2C, shows that the unsupervised clustering of the
random forest model using the selected genes can effectively

FIGURE 2. (A) Receiver operating characteristic (ROC) curve of random forest classification power. (B) Random forest gene importance
ranking. (C) Unsupervised clustering of 12-gene random forest. (D) Validation diagram of the five-gene PCA classification effect. Bi-line and
loading plots for PC1 and PC2, project lines for all pretreated samples, and sample loading is represented as a vector radiating from the
origin. Sample scores are represented by symbols (according to each protocol), chemically similar samples are clustered together, and
samples are color-coded according to matrix origin.

FIGURE 1. Volcano plot and data augmentation. (A) Differential genes between db/db and dbm mice. Genes with log2(FC) > 1 and p < 0.05
were selected, and a total of 297 differential genes were obtained. Red and blue present up-regulation and down-regulation, respectively, and
black indicates indifference (B) log(λ) vs. mean squared error, λ with the smallest MSE (C) log(λ) vs. lasso coefficient.
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distinguish the normal group from the DN group. The 12-
gene random forest model has a good classification effect.
Also, in the random forest model, all input variables have a
certain weight. We screened the top five key genes in the
model. Finally, PCA was used to verify the classification
effect of the five genes. Fig. 2D shows that the five key genes
have a good classification effect.

Gene ontology (GO) enrichment analysis
GO analysis was performed on the five screened genes. The
first eight items with p < 0.05 were selected for visualization
(Fig. 3). The BP analysis of key genes was enriched mainly

in fatty acid metabolism and organic ion transport. The
composition of cells was mainly manifested in the basal
plasma membrane, basal part of cell, and plasma membrane.
The reactions related to MF were mainly manifested in
carboxylic acid transmembrane transport activity,
carboxylate anion transmembrane transport activity, organic
acid transmembrane transport activity, etc.

Establishment of a five-gene genetic algorithm optimized
backpropagation neural network model
Figs. 4A and 5A present the regression curve and AUC curve
of the prediction effect of the GA-BPNN model of the RNA-

FIGURE 3. Gene ontology enrichment analysis of key gene differentially expressed genes. The length of the bars represents the number of
enriched genes, and the color represents significance, gradually increasing from blue to red; MF, molecular function; CC, cellular assembly;
BP, biological process.
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seq data and external data GSE106841. The AUC values of the
prediction effect of the GA-BPNN model in the RNA-seq
dataset and external validation data were 0.83 (Fig. 4B) and
0.81 (Fig. 5B), respectively. The results show that our model
has a good classification effect in both datasets.

Fig. 6 presents the AUC curve of the SVM classification
model established based on the signature genes. The AUC
values of the classification effect of the SVM model in the
RNA-seq and external validation dataset are 0.756 (Fig. 6A)
and 0.650 (Fig. 6B), respectively. The GA-optimized
backpropagation neural network (GA-BPNN) exhibited a
better classification effect and higher recognition accuracy in
diagnosing DN. Compared to the SVM model, the proposed

model also exhibited better stability and convergence speed.
This is because the algorithm of the GA-BPNN neural
network does not fall into a locally optimal solution during
the search iteration and optimizes the initialization weights
and actual thresholds of GA-BPNN during the iterative
process. Besides, the optimal vector of the neural network
algorithm obtained is inverse transformation, enabling a
higher data processing efficiency.

In vivo and in vitro validation of NDUFA4L2
Immunohistochemistry staining revealed that the expression
levels of NDUFA4L2 (Figs. 7A and 7B) were significantly
decreased under high glucose (HG) stimulation in mice. We

FIGURE 4. The five-gene genetic algorithm optimized backpropagation neural network (GA-BPNN) model of the RNA-seq dataset after data
enhancement. (A) Regression curve of the GA-BPNN linear model. (B) Area under the ROC curve (AUC) curve of the GA-BPNN model.

FIGURE 5. Performance of genetic algorithm optimized backpropagation neural network (GA-BPNN) five-gene model in the external
validation dataset GSE106841. (A) Regression curve of GA-BPNNmodel (B) Area under the ROC curve (AUC) curve of the GA-BPNNmodel.
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further confirmed at the cellular level that diabetes can lead to
decreased expression of NDUFA4L2 (Figs. 7C and 7D). HG-
stimulated HK-2 cells demonstrated decreased fluorescence
intensity compared to the control and mannitol groups
(Figs. 8A and 8C), the expression of NDUFA4L2 protein
was reduced (Fig. 8B).

Discussion

Diabetes is the main contributing factor to DN and a
significant global public health issue. Renal impairment
affects 20%–30% of individuals with type 2 diabetes mellitus.
(Tsai et al., 2020). DN may be the disease pathology in
patients with diabetes and chronic kidney disease (CKD).
The gold standard for DN diagnosis is a kidney biopsy.

However, it is invasive, and many people cannot have it
done because of the contraindications. We need a new non-
invasive evaluation model for DN as an early diagnosis
method (Zhang et al., 2022). There is a growing need for
Internet of Things (IoT)-based mobile medical applications
to help predict a disease (Padhy et al., 2022).

In this study, we used machine learning to find key genes
as diagnostic markers for DN. The basic unit of function of the
kidney is the renal unit, which in adults contains between
400,000 and 1.2 million kidney units. Renal units can be
divided into renal tubules, which include the glomerulus
and the renal capsule, and renal tubules, which include the
proximal tubules (which can be divided into the zona and
the rectum), the medullary collaterals and the distal tubules
(which can be divided into the zona and the rectum). The

FIGURE 6. The area under the ROC (AUC) curve of the classification effect of the support vector machines (SVM) model. (A) RNA-seq data.
(B) External validation dataset GSE106841.

FIGURE 7. (continued)

DIAGNOSTIC PREDICTION MODEL FOR DIABETIC NEPHROPATHY 1259



function of the tubules is to reabsorb, secrete, and concentrate
or dilute the urine, which is an essential process in the
formation of urine. The primary urine, formed after
glomerular filtration, enters the tubules for reabsorption and
drains into the collecting ducts to form the final urine.

The pathological process of DN mainly includes changes
in glomerular and renal tubules. Therefore, in this study, we
obtained gene expression data in tubules by RNA-seq and
obtained 297 DEGs by Limma differential analysis for
subsequent analysis. We used machine learning algorithms

(random forest, LASSO logistic regression, PCA) to identify
key genes and used GA-BPNN to establish a DN diagnostic
model. The final model was validated against external data.

The vast potential of machine learning lies in the ability
to automate real-time data updates to continually teach
models to improve predictive accuracy. However, real-world
applications require adequate trade-offs between model
accuracy, interpretability, and ease of use (Wang et al.,
2021a). In this study, the ROC curve was generated based
on the GA-BPNN prediction model, and an AUC value of

FIGURE 7. Experimental validation of NDUFA4L2. (A and B) Representative immunohistochemistry staining and relative quantitation of
tubular NDUFA4L2 in db/m and db/db mice. (C and D) Representative immunofluorescent staining and relative quantitation of NDUFA4L2
in tubular cells in db/m and db/db mice. n = 6. *p < 0.05. Scale bars: 20 µm. NDUFA4L2: NADH dehydrogenase (ubiquinone) 1 alpha
subcomplex, 4-like 2.

FIGURE 8. High glucose (HG) stimulation can downregulate the expression of NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 4-
like 2 (NDUFA4L2) in HK-2 cells. (A) Immunofluorescence staining of NDUFA4L2 in each group. (B) Representative western blotting images
of each group of NDUFA4L2. (C) Quantitative analysis of fluorescence intensity of NDUFA4L2. � p < 0.05, in comparison with the control.
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0.83 was obtained. The AUC value of 0.81 in the validation set
indicates a good discrimination ability of the GA-BPNN
prediction model. In previous studies, immune-related genes
were used to identify diagnostic biomarkers. The predicted
AUC value of the model was around 0.83 (Wang et al.,
2021b), indicating high feasibility of finding key genes as a
new non-invasive evaluation model as an early diagnosis
method for DN.

In addition, an early DN nomogram prediction model
was established, and the model AUC value was 0.744 (Hu et
al., 2020; Zhou et al., 2022). In the future, key genes
combined with clinical features as biomarkers for early
biodiagnosis of DN are expected to be non-invasive and
specific methods for diagnosing DN.

The GA-BPNN model contains five genetic predictors,
CES1G, CYP4A14, NDUFA4, ABCC4, and ACE. Human
carboxylesterase 1 (CES1), primarily expressed in the liver,
has triglyceride (TG) hydrolase activity3. CES1/CES1G also
contributes to metabolic regulation (Xu et al., 2017). Recent
research has shown that lipid metabolism abnormalities are
frequently present in patients with diabetes. Peroxisome
proliferator-activated receptors (PPARs) play an essential
role in insulin signal transduction and regulation of glucose
and lipid metabolism (Lu et al., 2014).

Previous clinical studies have shown that siRNA-
CYP4A14 can inhibit the proliferation and fibrosis of
mesangial cells, which can be considered a therapeutic target
for DN. Ahmed et al. (2022) found that the renin-
angiotensin-aldosterone system has a key regulatory role
locally, particularly in the liver and body circulation, and is
also involved in the pathogenesis of type II diabetes by
downregulating the phosphatidylinositol-3-kinase/protein
kinase B/mammalian target of rapamycin (PI3K/AKT/
mTOR) signaling pathway. The hypoglycemic effect of
benzenesulfonamide derivatives is to enhance the sensitivity
of the liver to regulate blood glucose levels through the
PI3K/AKT/mTOR pathway (Ahmed et al., 2022). Taken
together, these studies indicate that the five genes we
identified may provide new therapeutic targets for the
treatment of DN.

Conclusion

In conclusion, our study shows that the GA-BPNN model
based on Lasso-logistic regression, random forest, and PCA
algorithm is feasible for the diagnosis of DN. The GA-
BPNN model has better accuracy than the traditional SVM
model and may provide an effective tool for diagnosing DN.
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