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Abstract: Osteoarthritis (OA), the most common form of joint disease, is characterized clinically by joint pain, stiffness,

and deformity. OA is now considered a whole joint disease; however, the breakdown of the articular cartilage remains the

major hallmark of the disease. Current treatments targeting OA symptoms have a limited impact on impeding or

reversing the OA progression. Understanding the molecular and cellular mechanisms underlying OA development is

a critical barrier to progress in OA therapy. Recent studies by the current authors’ group and others have revealed

that the nuclear factor of activated T cell 1 (NFAT1), a member of the NFAT family of transcription factors, regulates

the expression of many anabolic and catabolic genes in articular chondrocytes of adult mice. Mice lacking NFAT1

exhibit normal skeletal development but display OA in both appendicular and spinal facet joints as adults. This

review mainly focuses on the recent advances in the regulatory role of NFAT1 transcription factor in the activities of

articular chondrocytes and its implication in the pathogenesis of OA.

Introduction

As the most common joint disease, osteoarthritis (OA) is
characterized clinically by joint pain, stiffness, and deformity
with radiographical evidence of joint space narrowing due
to a loss of articular cartilage, osteophyte formation,
subchondral bone sclerosis, and subchondral cyst formation
(Buckwalter and Martin, 2006; Lawrence et al., 2008).
Current treatments, including pharmacologic therapy, local
intra-articular injection, and surgical interventions mainly
target OA symptoms, and have only a limited impact on
altering the course of OA progression (Richmond et al.,
2010; Kloppenburg and Berenbaum, 2020).

The pathogenic mechanisms for OA are not fully
understood, especially the mechanisms governing articular
chondrocyte activity and triggering articular cartilage
breakdown (the major hallmark of the disease) remain
unclear. Therefore, a nuanced understanding of the
regulatory mechanisms underlying OA pathogenesis is
needed for developing effective treatments. Given that many
risk factors and regulatory mechanisms have been proposed
for the development of OA, in this minireview, we will focus
on recent advances in the role of nuclear factor of activated

T cell 1 (NFAT1) in the regulation of articular chondrocyte
activities and OA pathogenesis.

The nuclear factor of activated T cell transcription factor family
and its transcriptional signaling
The nuclear factor of activated T cell (NFAT) is a family of
transcription factors first identified in T cells and well-
studied for their function in the immune response. There
are currently five known members: NFAT1 (NFATc2,
NFATp), NFAT2 (NFATc1, NFATc), NFAT3 (NFATc4),
NFAT4 (NFATc3, NFATx), and the distantly related
NFAT5 (TonEBP, OREBP). These five NFAT members are
structurally characterized by a highly conserved DNA
binding domain extending beyond the NFAT family to the
larger Rel family of transcription factors, including NF-κB
(Lin et al., 2013). This highly conserved Rel homology DNA
binding domain results in the binding of each of the 5
NFAT family members to the same DNA sequence [(A/T)
GGAAA] (Jain et al., 1995) (Fig. 1).

Except for NFAT5, all four other canonical members
(NFAT1-4) are activated by calcium-calcineurin signaling
(McCaffrey et al., 1993; Northrop et al., 1994; Pan et al.,
2000; Hoey et al., 1995; Masuda et al., 1995; Esensten et al.,
2005) as NFAT1-4 have calcineurin binding domain at their
N-terminal. In resting T cells, NFAT1-4 proteins are heavily
phosphorylated and reside in the cytoplasm. Upon cell
stimulation with an intracellular influx of Ca2+ that binds to
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the calcium sensor protein calmodulin, the serine/threonine
phosphatase calcineurin is activated. Calcium ionophore
ionomycin and polycystin-1 (PC1) can enhance the process
of intracellular influx of Ca2+, thereby activating the
calcineurin/NFAT signaling (Brignall et al., 2017; Puri et al.,
2004). Activated calcineurin binds to its binding site located
in the N-terminal regulatory domain of NFAT1-4 and
rapidly dephosphorylates the serine-rich region and serine/
proline repeat consensus sequences (SP-repeats) which are
also present in the N-terminus of the NFAT1-4 proteins.
This dephosphorylation of NFAT1-4 results in
conformational changes that promote their translocation
into the nucleus, wherein they regulate gene expression in
concert with different cofactors, such as AP-1 (Macián et al.,
2001), c-fos (Huang et al., 2006), Jun (Ikeda et al., 2004),
GATA4 (Xia et al., 2000), and MEF2 (Blaeser et al., 2000).
Once the regulation of gene expression in response to the
stimulation is completed in the nucleus, NFAT1-4 are re-
phosphorylated by nuclear resident protein kinases,
including casein kinase 1 (CK1), glycogen synthase kinase 3
(GSK3), and dual-specificity tyrosine phosphorylation-
regulated kinase (DYRK) (Okamura et al., 2004; Arron
et al., 2006; Gwack et al., 2006), enabling NFAT1-4 to be
transported back to the cytoplasm across the nuclear
envelope (Fig. 2). In contrast, the NFAT5, known as a
central regulator of cellular response to ambient
hypertonicity, lacks docking sites for calcineurin and
therefore is regulated by osmotic stress (Miyakawa et al.,
1999) (Fig. 1).

NFAT1-5 control the differentiation of specific cells,
thereby affecting the formation of specific tissues or organs.
For instance, NFAT1 may be involved in adipogenesis and
myogenesis (Abbott et al., 1998; Ho et al., 1998). NFAT2
has been found to play a pivotal role during
osteoclastogenesis (Takayanagi et al., 2002) and is required
for cardiac valve formation (de la Pompa et al., 1998;
Ranger et al., 1998). NFAT3-deficient mice were viable and
fertile and showed no major macroscopic or microscopic
abnormalities after 36 months of observation (Graef et al.,
2001). NFAT4 mutant mice exhibited skeletal muscle
hypoplasia, reflecting impaired embryonic muscle
development (Kegley et al., 2001). Moreover, mice doubly
mutant for the NFAT3 and NFAT4 genes had defects in
vascular patterning and angiogenesis, indicating that NFAT4
is more important than NFAT3 for cardiac growth and
function (Graef et al., 2001). Besides its involvement in the

osmotic stress response (López-Rodríguez et al., 2004),
complete loss of NFAT5 function showed late gestational or
perinatal lethality, whereas partial loss of NFAT5 function
resulted in lymphoid hypocellularity and impaired antigen-
specific antibody responses in viable heterozygous animals
(Go et al., 2004). This review focused on the role of NFAT1
in the regulation of articular chondrocyte (the joint cartilage
cell) activities and NFAT1 deficiency in the pathogenetic
mechanisms of OA.

Regulation of articular chondrocyte differentiation and
articular cartilage formation
Cartilage cells are derived from mesenchymal progenitor cells
during skeletal development. The cartilage cells in the primary
and secondary ossification centers are replaced by newly
formed bone through the endochondral sequence of
ossification. This type of cartilage is called temporal or

FIGURE 2. Schematic view of Ca2+-NFAT1-4 signaling pathway and
phosphorylation cycle. Upon stimulation with an intracellular influx
of Ca2+, calcium sensor protein calmodulin activates calcineurin
which then binds to the N-terminal regulatory domain of nuclear
factor of activated T cell 1 (NFAT)1-4 and rapidly
dephosphorylates NFAT1-4 proteins, resulting in nuclear
translocation. Once the regulation of gene expression completes,
NFAT1-4 are re-phosphorylated by casein kinase 1 (CK1),
glycogen synthase kinase 3 (GSK3), and dual-specificity tyrosine
phosphorylation-regulated kinase (DYRK), enabling NFAT1-4 to
be transported back to the cytoplasm.

FIGURE 1. Protein structural character of mouse nuclear factor of activated T cell (NFAT) family members. All NFAT members share the Rel
homology domain. Except for NFAT5, NFAT1-4 have a calcineurin-binding domain. The protein size range of amino acids (aa) among
different transcript variants is presented.
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replacement cartilage (Goldring et al., 2006). In contrast,
cartilage cells close to the surface of growing long bones
divide and differentiate to form hyaline articular cartilage, a
permanent or persistent cartilage because it will not be
replaced by bone (Eames et al., 2004; Pacifici et al., 2005).
Many factors are involved in the regulation of articular
chondrocyte differentiation and articular cartilage
formation, although the precise mechanisms of these
processes still need to be fully understood.

Sox9 is a pivotal transcriptional regulator essential for
articular cartilage formation. Inactivation of the Sox9 gene
in mouse limb buds before mesenchymal condensations
results in a complete absence of cartilage formation. Mouse
embryos in which Sox9 is deleted after mesenchymal
condensations exhibit chondrodysplasia and defective joint
formation (Bi et al., 1999; Akiyama et al., 2002). Our study
in mice found that the Sox9 gene and protein are highly
expressed in the early-stage developing articular cartilage at
embryonic day 16.5 (E16.5). Sox9 expression was slightly
lower but still at a higher level at 1 month of age, at which
time the articular cartilage structure is well defined but is
still in the growth stage (late-stage developing articular
cartilage). The expression of Sox9 is significantly reduced
from 2 months of age when the articular cartilage
development is completed and then kept at a lower level
throughout the life (Zhang et al., 2016b). This
spatiotemporal expression pattern of Sox9 further reveals
the essential role of Sox9 in articular chondrocyte
differentiation and articular cartilage formation during joint
development.

The ERG (Ets-related gene) transcriptional activator in
the Ets gene family of transcription factors may also regulate
articular chondrocyte formation. ERG is expressed during
joint formation and also persists once the articular layer has
developed. A C-1-1 variant of ERG has been found
misexpressed in developing chick limbs, which imposes a
stable and immature articular-like phenotype in the entire
limb chondrocyte population, blocking chondrocyte
maturation and hypertrophy as well as the process of
endochondral ossification (Iwamoto et al., 2000). There is a
close spatiotemporal expression of both ERG and growth
and differentiation factor-5 (GDF5) in mouse embryo joints.
These results indicate that ERG is one of the molecular
mechanisms driving the differentiation of immature
chondrocytes into permanent articular chondrocytes,
exerting its influence through interactions with GDF5
(Iwamoto et al., 2007).

Many other factors, such as matrix metalloproteinases
(MMPs) (Bertram et al., 2009), vascular endothelial growth
factor (Yin and Pacifici, 2001), fibroblast growth factor
(Haque et al., 2007), transforming growth factor β (Joyce
et al., 1990), bone morphogenetic protein (Kobayashi et al.,
2005) and the Wnt signaling pathway (Macsai et al., 2008),
also contribute directly or indirectly to the process of
articular cartilage formation.

Early studies reported that NFAT1 may control cellular
differentiation programs in organ systems unrelated to the
immune system, particularly in adipogenesis and
myogenesis (Abbott et al., 1998; Ho et al., 1998). More
recently, we found that Nfat1-/- mice displayed normal

skeletal development, including articular cartilage and joint
formation (Rodova et al., 2011), suggesting that NFAT1 is
not critical for the formation of articular cartilage and other
joint structures.

Role of nuclear factor of activated T cell 1 in the maintenance of
articular chondrocyte activity and articular cartilage
homeostasis
Although NFAT1 is not required for articular chondrocyte
differentiation and joint formation, it is required for
the functional maintenance of differentiated articular
chondrocytes in adult mice. Our recent studies have
demonstrated that NFAT1 expression in murine articular
chondrocytes was undetectable at embryonic day 16.5
(E16.5) and postnatal day 1, but was high at the young adult
stage and then declined as the animals aged (Rodova et al.,
2011; Zhang et al., 2016a). These findings explain why
NFAT1 deletion does not affect articular chondrocyte
formation during development. In contrast, high expression
of NFAT1 in articular chondrocytes of young adult mice
indicates that NFAT1 is needed for the function of articular
chondrocytes in adults’ Thus, NFAT1 deficiency in adult
mice severely impaired articular chondrocyte function,
causing subsequent OA onset with abnormal expression of
numerous anabolic and catabolic genes, such as Acan,
Col2a1, Col11a1, Col10a1, Mmp1a, Mmp13, Admts5, Timp3,
IL-1b, and IL-17a, etc., in articular cartilage (Rodova et al.,
2011; Wang et al., 2009; Zhang et al., 2016a). Moreover,
forced expression of Nfat1 in articular chondrocytes of 15-
month-old mice can reverse aberrant expression of specific
anabolic and catabolic genes. However, this rescuable effect
was reduced in the chondrocytes of 18-month-old mice,
indicating that the therapeutic efficacy of NFAT1 on the
dysfunction of aged articular chondrocytes is more effective
in younger mice (Wang et al., 2009; Rodova et al., 2011;
Zhang et al., 2016a). These results suggest that NFAT1 is a
key transcriptional regulator that controls the expression of
many specific anabolic and catabolic genes in articular
chondrocytes, paramount to articular cartilage homeostasis
in the adult stage.

In contrast, the expression of Sox9 in mouse articular
cartilage is highest at embryonic and newborn stages and
then significantly decreases after the completion of joint
development (Zhang et al., 2016a). These findings confirm
the importance of Sox9 in cartilage formation and suggest a
diminished physiological demand for Sox9 in adult articular
cartilage. This notion is supported by the evidence that
postnatal inactivation of Sox9 in mouse cartilage resulted in
a reduction of proteoglycan content in the articular cartilage
without histopathological signs of OA by the age of 18
months (Henry et al., 2012).

Our recent studies have uncovered that the age-
dependent expression patterns of Sox9 and Nfat1 are
regulated by epigenetic mechanisms. These epigenetic
changes mainly encompass dynamic changes in DNA
methylation, histone 3 lysine 4 dimethylation (H3K4me2, a
transcriptional activator), and histone 3 lysine 9
dimethylation (H3K9me2, a transcriptional repressor). In
mouse articular cartilage, a low Nfat1 expression in the early
developing stage was associated with increased H3K9me2, a
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high Nfat1 expression in the young adult stage was associated
with increased H3K4me2, and a spontaneous reduction of
Nfat1 expression in the aged phase was associated with
decreased H3K4me2 and increased DNA methylation
(Rodova et al., 2011; Zhang et al., 2016a, 2016b; Zhang
et al., 2019b). A growing body of evidence has revealed the
epigenetic mechanisms underlying the aberrant anabolic and
catabolic gene expression in OA pathogenesis. As a
transcription factor, NFAT1 regulates the expression of a
cohort of anabolic and catabolic genes in articular cartilage;
thus, NFAT1 might be one of the critical, pivotal molecules
responsible for the deleterious epigenetic effect in aged
articular cartilage. The epigenetically regulated age-
dependent spontaneous reduction of NFAT1 expression in
articular chondrocytes of aged mice impairs chondrocyte
function and results in age-related joint degeneration
(Zhang et al., 2019a).

Deficiency of nuclear factor of activated T cell 1 and
osteoarthritis
The early reports on the generation and phenotype of Nfat1
knockout (Nfat1-/-) mice can be traced back to 1996. Mice
with a global NFAT1 null mutation exhibited enhanced
immune responses (Xanthoudakis et al., 1996), dysregulated
interleukin-4 expression (Hodge et al., 1996), and allergic
skin inflammation (Kwon et al., 2016). However,
osteoarthritic changes in the peripheral/appendicular joints
of Nfat1-/- mice were not reported until 2009 (Wang et al.,
2009) and in the spinal facet joints until 2022 (Wang et al.,
2022). Nfat1-/- mice developed normal skeleton but
displayed decreased expression of type-II collagen (collagen-
2) and aggrecan with increased expression of matrix-
degrading proteinases and proinflammatory cytokines in
articular cartilage of weight-bearing joints of young adults.
These initial changes follow articular chondrocyte
proliferation/clustering, progressive articular surface
destruction, chondro-osteophyte formation, and thickened
subchondral bone exposure, which resembles osteoarthritic
changes seen in humans (Wang et al., 2009). NFAT1
deficiency causes aberrant expression of more than 50
anabolic and catabolic genes in articular chondrocytes,
resulting in cartilage degradation and OA-like changes
(Wang et al., 2009; Zhang et al., 2019a; Wang et al., 2022).
These studies suggest that NFAT1 is a key transcriptional
factor that regulates balanced anabolic and catabolic
activities of the articular chondrocytes and overall articular
cartilage homeostasis and integrity. In contrast, NFAT1
deficiency or dysfunction may cause imbalance in anabolic
and catabolic activities of articular chondrocytes and
subsequent cartilage degradation and OA (Fig. 3).

The molecular mechanism of NFAT1 deficiency-induced
OA was investigated by chromatin immunoprecipitation
(ChIP) and promoter activity assays using chondrocytes
isolated from femoral head articular cartilage of 3- to
4-month-old wild-type mice or Nfat1-/- mice with early hip
OA. ChIP assays showed direct binding of NFAT1 to
promoters of 21 of the 25 tested genes encoding cartilage-
matrix proteins, growth factors, inflammatory cytokines,
matrix-degrading proteinases, and specific transcription

factors. Promoter activity assays of representative anabolic
and catabolic genes showed NFAT1-DNA binding
functionally regulated the promoter activity of specific target
genes in wild-type chondrocytes but not in Nfat1-/-

chondrocytes or in wild-type chondrocytes transfected with
mutated NFAT1 binding sequences. These studies indicate
that NFAT1 protects articular cartilage against degradation
by directly regulating the transcription of target genes in
these chondrocytes. NFAT1 deficiency causes defective
transcription of specific anabolic and catabolic genes in
articular chondrocytes, leading to increased matrix
catabolism and degradation and destruction of the articular
cartilage (Zhang et al., 2019a) (Fig. 4).

A study by Greenblatt et al. (2013) showed that cartilage-
specific deletion (via the collagen-2 promoter) of NFAT2
(NFATc1) or NFAT4 (NFATc3) in cartilage displayed no
histologic or clinical abnormalities; double deletion of
NFAT1 and NFAT4 showed similar histologic and clinical
abnormalities observed in NFAT1-deficient mice. However,
the mice lacking both NFAT1 and NFAT2 in cartilage
displayed severe, spontaneous OA with 100% penetrance,
with subluxation of the elbow at about 1 week of age and
the metatarsals at an age of about 3 weeks (Greenblatt et al.,
2013). Those developmental defects in specific joints were
not observed in NFAT1-deficient mice. These findings

FIGURE 3. A schematic illustration of the physiological and
pathological conditions of nuclear factor of activated T cell 1
(NFAT1) in articular cartilage of mice. In physiological conditions,
NFAT1 functions normally by binding its target genes and
regulating their expression, resulting in balanced anabolic and
catabolic activities of articular chondrocytes, which is essential for
articular cartilage homeostasis. In pathological conditions,
dysfunction of NFAT1 results in imbalanced anabolic and catabolic
activities of articular chondrocytes, leading to articular cartilage
degeneration and, finally, the onset of osteoarthritis (OA).
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suggest that NFAT1 is more important than NFAT2 or
NFAT4 for the maintenance of articular chondrocyte
function and the prevention of spontaneous OA in adult mice.

The epigenetic mechanism is responsible for the up- and
down-regulation of NFAT1 signaling and also directly
regulates the expression levels of many anabolic and
catabolic genes in articular cartilage that are involved in the
pathogenesis of OA. In OA chondrocytes, loss of
methylation at CpG sites in the promoter region was
associated with increased expression of MMP-3, -9, -13, and
ADAMTS-4 (Roach et al., 2005; Cheung et al., 2009).
Hypermethylated CpG sites in the COL9A1 promoter
attenuated SOX9 binding, resulting in the downregulation of
COL9A1 expression in OA cartilage (Imagawa et al., 2014).
Demethylation of the CpG site at −299 bp of the interleukin
(IL)-1β promoter increased the transcriptional response of
IL-1β to other inflammatory cytokines in human articular
chondrocytes (Hashimoto et al., 2009). Specific and highly
expressed long non-coding RNA-CIRs regulate the
expression of collagen, aggrecan, MMP13, and ADAMTS-5
in OA cartilage (Liu et al., 2014). Moreover, miRNA-222
regulates MMP13 expression by targeting histone
deacetylase 4 during the progression of OA (Song et al., 2015).

Future Perspectives

This review mainly focuses on the recent advances in the
regulatory role of NFAT1 signaling in articular chondrocyte
activity and its implication in the pathogenesis of OA.
Notably, OA is a whole joint disease involving other joint
tissues: subchondral bone, synovium, menisci, joint capsule,
and ligaments. Pathological changes in these joint tissues
may affect the biological and mechanical properties of
articular cartilage. Insufficient recognition of the effect of
pathological changes in other joint tissues on OA
pathogenesis may negatively affect the efficacy of disease-
modifying OA drug (DMOAD) candidates. Therefore,
future studies should include the regulatory role of NFAT1
signaling in non-cartilaginous cells and the effects of
NFAT1 deficiency on periarticular bone and soft tissues.
Additionally, many animal models of OA do not translate
into replications in human trials. Further work is needed to
investigate if NFAT1 deficiency is involved in the
pathogenesis of OA in humans.

In the past three decades, many clinical trials targeting
the inhibitor of a single proinflammatory cytokine or
proteinase as a candidate DMOAD have been unsuccessful
due to insufficient efficacy and/or severe side effects. No
DMOAD candidates have been approved by drug regulatory
agencies in the United States or other countries (Hellio le
Graverand et al., 2013; Kloppenburg and Berenbaum, 2020).
These failed clinical trials suggest that inhibition of a single
catabolic molecule may not be sufficient for the treatment of
OA because the abnormality of both catabolic and anabolic
factors is involved in its pathogenesis. NFAT1 is an
upstream transcription factor that regulates many catabolic
and anabolic factors that are proposed to be involved in OA
pathogenesis (Zhang et al., 2019a, 2019b); thus, NFAT1
could be more effective than the previously tested DMOAD
candidates targeting a single downstream catabolic or
anabolic molecule if it is confirmed to be one of the risk
factors for the initiation and/or progression of OA in humans.
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