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Abstract: Acute respiratory distress syndrome (ARDS) is a life-threatening pulmonary disease typically caused by

microbial infections, trauma, inhalation of harmful gases, and other factors. It is characterized by an inflammation in

the lungs and increased alveolar permeability, leading to pulmonary edema and consequently, a low oxygen supply or

hypoxemia. ARDS is responsible for 1 in 10 admissions to intensive care units, and the mortality rate for patients

with severe ARDS is as high as 46%. Extensive efforts have been devoted to investigating the pathological mechanisms

of ARDS to develop new effective clinical strategies. Recent studies have reported that receptor-interacting serine/

threonine kinase 1 (RIPK1) is involved in the pathogenesis of ARDS. RIPK1 is a critical mediator of programmed cell

death and inflammation. Growing evidence suggests that RIPK1 plays a role in the pathogenesis of different

inflammatory diseases and serves as a promising pharmaceutical target. This review summarizes and sheds some light

on the recent findings regarding the role of RIPK1 and related molecules in the pathogenesis of ARDS.

Introduction

Acute respiratory distress syndrome (ARDS), a severe form of
acute lung injury (ALI), is a medical condition arising from a
lung injury and subsequent inflammatory response,
characterized by pulmonary edema/hyper-permeability and
hypoxemia. It is known to occur after exposure to infection,
trauma, inhalation, and other stimuli. Pulmonary
inflammatory factors accumulate in this condition, and at the
same time, the pulmonary capillaries are damaged, the
permeability is altered, and tissue fluid enters the alveoli,
leading to the formation of pulmonary dead space. The
accumulation of hyaline membrane (pulmonary edema) can
disrupt the gas exchange between the alveoli and capillary,
causing low oxygen supply (hypoxemia). This can
consequently lead to severe shortness of breath, weakness,
cough, fever, and collapsed alveoli. On the basis of the
decreased blood pressure, ADRS is measured by the ratio of
arterial oxygen partial pressure to fractional inspired oxygen
(PaO2/FiO2). The ratio is categorized by the 2012 Berlin
conference to identify the magnitude of ARDS and to further
determine its underlying causes as mild (200–300 mmHg),

moderate (100–200 mmHg), or severe (<100 mmHg) levels
(Ranieri et al., 2012; Papazian et al., 2019; He et al., 2021).
Moreover, previous studies have shown a definite
involvement of several signaling pathways, such as the nuclear
factor-κB (NF-κB) pathway and the mediating role of
RIPK1, in conjunction with the development of ARDS.
Currently, the underlying mechanism of ARDS has been the
subject of extensive research. However, the specific role of
RIPK1 in it has not been fully elucidated, hence, clarifying the
role of RIPK1 in ARDS may provide some insights for future
studies.

Receptor-interacting serine/threonine-protein kinase 1
(RIPK1) is a member of the serine/threonine/tyrosine kinase
family that mediates the innate immune cell defense in
response to various injuries as well as up-regulating the
inflammatory genes, this multi-domain protein kinase
determines whether a cell would undergo a pro-survival
pathway (NF-κB) or the programmed cell death pathway
(necroptosis or apoptosis) (Ofengeim and Yuan, 2013;
Degterev et al., 2014; Cuny and Degterev, 2021). The
scaffolding function and role of RIPK1 in kinase-mediated
cell death have been studied with much emphasis. Further,
this protein kinase was proposed to be the link to several
pathways for apoptosis, necroptosis, and pyroptosis, with
the first two pathways being heavily influenced by RIPK1
(D’Arcy, 2019; Malireddi et al., 2020). RIPK1 contains a C-
terminal death domain which is an important binding
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mediator to specific death receptor signals during tumor
necrosis factor-alpha (TNF-α) stimulation. Its N-terminal
serine/threonine kinase domain is responsible for the
necroptosis pathway and the RIPK1-dependent apoptosis
pathway. Additionally, the intermediate domain mediates
the activation of the pro-survival NF-κB and mitogen-
activated protein kinase (MAPK) via K377 ubiquitination by
cellular inhibitor of apoptosis (cIAP1/2) (Annibaldi et al.,
2018) and binding ligases (Meng et al., 2018). Interestingly,
RIPK1 can mediate the necroptosis and apoptosis pathways
by forming several complexes depending on the degree of
inflammation (Degterev et al., 2014; Liu et al., 2021). These
types of regulated cell death pathways, especially based on
the activation of RIPK1, are well-known in countless
inflammatory diseases such as multiple sclerosis and other
neurodegenerative diseases (Yuan et al., 2019). Since ARDS
is described as an inflammatory disease prompted by
cytokine storm and alveolus damage, it is evident that
RIPK1 is one of the many vital molecules taking part in this
inflammatory process.

Acute Respiratory Distress Syndrome (ARDS): An
Overview

Early pathological stages of acute respiratory distress syndrome
The pathogenesis of ARDS involves a complex process of lung
injury and inflammation that results in impaired gas exchange
and respiratory failure. It can be divided into three phases:
exudative, proliferative, and fibrosis phases. This review will
focus on the exudative phase since it deals with the
preliminary stage characterized by excessive inflammation,
hyaline membrane formation, and hypoxemia (Walkey
et al., 2012). The exudative phase can be further broken
down into six sub-stages to better comprehend the
pathological features and mechanisms.

In the first stage (Fig. 1), the lungs are initially damaged
following exposure to external trauma, aspiration, infection,

or injury. The alveolar blood flow then decreases, platelets
begin to aggregate, and immune cells begin to release
inflammatory mediators such as histamine, serotonin, and
leukotrienes. This further recruits other immune cells and
the release of pro-inflammatory cytokines including, tumor
necrosis factor-alpha (TNF-α), interleukin (IL)-1β, and IL-6
that initiates several signaling pathways (Borriello et al.,
2017; Kanaoka and Austen, 2019; Karhausen et al., 2020;
Liu et al., 2022). In the second stage (Fig. 1), these
inflammatory mediators damage the alveolar-capillary
membrane, increasing its permeability, and causing fluid to
shift into the tissue space to result in tissue edema (Matthay
et al., 2012). At the same time, the released inflammatory
mediators and activated immune cells can also lead to the
recruitment of neutrophils and macrophages, which further
contribute to lung injury and inflammation. Neutrophils
release toxic substances, including neutrophil extracellular
trap (NET), that damage the lung tissue, while macrophages
release cytokines that attract more immune cells to the site
of injury (Williams et al., 2017; Abdulnour et al., 2018;
Herrera et al., 2022). In stages 3 and 4 (Fig. 2), as lung
tissue damage worsens, capillary permeability further
increases, leading to protein and fluid exudation and a spike
in tissue interstitial fluid osmotic pressure, resulting in
pulmonary edema formation. This consequently impairs the
lung capillary function, including a decrease in lung blood
flow, destruction of surface-active substances due to alveolar
fluid, alveolar collapse, and occurrence of atelectasis which
limits the gas exchange, hence a decrease in lung
compliance (Matthay et al., 2012; Mokra, 2020). In stage 5
(Fig. 3), even with adequate oxygen, the oxygen cannot
enter the blood, but CO2 can still be released, leading to
decreased oxygen supply in the blood with a PaO2/FiO2 that
is less than 300 mmHg, and the pulmonary edema
continues to worsen (Ohshimo, 2021). In stage 6 (Fig. 3),
excessive inflammation leads to pulmonary tissue fibrosis,
diffuse disorders worsen, and lung tissue becomes stiffer and
less compliant, leading to long-term respiratory impairment

FIGURE 1. Stage 1 presents how platelet aggregation triggers mast cells, basophils, and others to release histamine, leukotrienes, and several
inflammatory mediators in the interstitium, which recruit/promote other immune cells, such as the alveolar macrophages, to release pro-
inflammatory cytokines (Borriello et al., 2017; Kanaoka and Austen, 2019; Karhausen et al., 2020). The inflammatory mediators and
cytokines inflict damage to alveolar epithelium type 1/2 (AT1/2) cells as well as the capillary membrane, which signals a rush of
neutrophils and several immune cells to the affected alveoli and site of platelet aggregation. Additionally, neutrophils secrete neutrophil
extracellular traps (NETs) inside the alveolar space and capillary, wreaking havoc on the lung tissue and contributing to the formation of
tissue edema as shown in stage 2 (Matthay et al., 2012; Williams et al., 2017; Abdulnour et al., 2018; Herrera et al., 2022).
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(Gorman et al., 2022). Besides, stage 6 also presents CO2

retention lowering the pH level of the patient and adding
more deleterious outcomes for ARDS (Peschel et al., 2021;
Maamar et al., 2023).

Overall, the pathogenesis of ARDS involves a complex
interplay between the immune system, inflammatory
mediators, and lung tissue damage, resulting in impaired gas
exchange and respiratory failure. From a radiological
perspective, the pathogenesis of ARDS is characterized by
bilateral and patchy ground-glass opacities in the early
exudative phase, which corresponds to interstitial edema
and hyaline membranes. The spatial distribution of patchy
ground-glass opacities and areas of lobular sparing and
basal consolidations are the characteristic imaging features
of ARDS (Meyer et al., 2021). In the proliferative and
fibrotic phases of the disease, the radiological features are
characterized by traction bronchiectasis or bronchiectasis
within areas of increased attenuation on high-resolution
computed tomography (Butt et al., 2016).

Main Factors Promoting the Development of ARDS

ARDS is a severe respiratory condition that occurs when fluid
leaks into the lung’s air sacs, resulting in respiratory failure.

Current studies state that there are several pathological
mechanisms that contribute to the development of ARDS.

For instance, direct lung injury, such as pneumonia (viral
and bacterial), mechanical injury, or inhalation of gastric
contents, can cause damage to the alveolar-capillary
membrane, leading to inflammation, edema, and impaired
gas exchange (D’Alessio, 2018). Alternatively, indirect lung
injury is caused by non-pulmonary factors, mainly sepsis,
trauma, or pancreatitis. These injuries can lead to systemic
inflammation, which can then cause damage to the alveolar-
capillary membrane and result in ARDS (Mokra, 2020).

Both direct and indirect injuries mentioned above
systematically induce an inflammatory response and release
inflammatory mediators, such as cytokines, chemokines, and
leukotrienes during the early exudative phase of ARDS. One
of the pathways responsible for ARDS inflammation is the
NF-κB signaling pathway. The TNF-α cytokine induces its
activation, stimulating macrophages to release IL-6, IL-2,
and other pro-inflammatory cytokines. Additionally, under
the TNF-α stimulation, cell death such as necroptosis and
RIPK1-dependent apoptosis, can occur (Yuan et al., 2019; Li
et al., 2022). Another form of cell death causing damage to
the alveolar cell barrier is pyroptosis, known for its caspase
activation and gasdermin D (GSDMD) cleavage. The aspects

FIGURE 2. The increase of capillary membrane permeability in stage 3 creates an osmotic pressure between the interstitial spaces due to fluid
shift, which induces pulmonary edema formation (Matthay et al., 2012). Furthermore, this protein-rich edema breaks down the surfactant,
leading to alveolar collapse and limiting the exchange between oxygen and carbon dioxide in stage 4 (Mokra, 2020).

FIGURE 3. The combination of cellular debris in the fluid and atelectasis renders it impossible for the oxygen to get into the capillary
membrane in stage 5. In contrast, stage 6 shows pulmonary tissue fibrosis, which indefinitely restricts the gas exchange between the alveoli
and the membrane, as well as carbon dioxide retention in the blood (Ohshimo, 2021; Peschel et al., 2021; Gorman et al., 2022; Maamar et al.,
2023).
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of osmotic imbalance and the release of IL-1β and IL-18 could
bring devastating effects such as continuous recruitment of
immune cells and damage-associated molecular patterns
(DAMPs) release that includes the protein high-mobility
group box 1 (HMGB1) and lactate dehydrogenase (LDH)
(Roh and Sohn, 2018; Tan et al., 2021; Zheng et al., 2023).
The accumulation of reactive oxygen species (ROS) and iron
accumulation, along with lipid peroxidation are the main
features of ferroptosis. Just like immunogenic cell death, it
further recruits immune cells to the site of damage, and
much like pyroptosis, it also contributes to the release of
pro-inflammatory cytokines (Zheng et al., 2023). These
mediators cause major damage to alveolar epithelial cells
that line the air sacs in the lungs, consequently disrupting
the alveolar-capillary membrane. This further leads to
increased permeability and fluid accumulation in the lungs
and the subsequent development of pulmonary edema.
Likewise, injury to the endothelial cells, which line the blood
vessels in the lungs, can also lead to disruption of the
alveolar-capillary membrane, adding to the fluid
accumulation (Chen et al., 2021b). Many times such damage
to lung cells could also result in microthrombi formation,
making patients with ARDS susceptible to coagulation
abnormalities, causing additional damage to the alveolar-
capillary membrane and worsening the condition (Mackman
et al., 2020). Since ARDS is a complex inflammatory disease
involving multiple pathological mechanisms, these factors
and cell death pathways significantly contribute to the
development of respiratory failure.

Characteristics of Acute Respiratory Distress Syndrome

Development of pulmonary edema
At present, the pathogenesis of ARDS mainly revolves around
the occurrence and regulation of pulmonary edema and
inflammation, with pulmonary edema deemed an important
clinical feature of ALI and ARDS (Herrero et al., 2018).
Currently, there are two generally recognized reasons for
pulmonary edema in ALI/ARDS. The first is the damage to
pulmonary microvascular endothelial cells, which increases
the permeability of local capillaries. Further, the promotion
of the exudation of plasma-rich protein leads to the
“swelling” of tissue water. The second is the abnormal
quantity and function of aquaporins (Saguil and Fargo,
2020; Zeng et al., 2021). Alveolar fluid is cleared through
active or passive transport, in which active transport is
dominant. The aquaporin is an important medium for water
exchange between capillaries and air (Papadopoulos et al.,
2008; Rahmel et al., 2018). In mammals, 13 aquaporins have
been documented of which 6 aquaporins are distributed in
the lung tissue (Vassiliou et al., 2017). Studies have shown
that the expression and function of aquaporins are affected
due to lung diseases, and the fluid clearance in the alveoli
decreases, resulting in pulmonary edema (Xie et al., 2005;
Yadav et al., 2020). The accumulation of edema fluid in the
pulmonary interstitium and interstitial space will increase
the work done by the respiratory exchange. This inhibition
of gas exchange, reduction of oxygen intake as well as

carbon dioxide excretion, further leads to the development
of hypoxia into acute respiratory failure (Liu et al., 2022).

Inflammation and immune cell infiltration
In earlier studies, ALI/ARDS was found to be a complex and
excessive inflammatory response of lung tissue after external
or internal stimulation through several signaling pathways,
including NF-κB, Janus kinases 2/signal transducers and
activators of transcription 3 (JAK2/STAT3), and MAPK to
name a few. Hence, it is of great significance to study the
pathogenesis of inflammation in order to reveal the
pathogenesis of ALI/ARDS (Li et al., 2022). A dysfunctional
inflammatory response initially drives ARDS with a rise in
the number of inflammatory cells after lung injury,
including polymorphonuclear leukocytes (PMN),
monocytes, and macrophages. Further, endogenous
molecules related to cell damage can recognize and bind to
toll-like receptors (TLRs) on lung epithelial cells and
alveolar macrophages and activate the innate immune
system (Bakopoulos et al., 2017). The innate immune
system defense mechanisms, such as the formation of NET
and the release of histones, can help capture pathogens but
may aggravate alveolar damage (Huppert et al., 2019). As
the most typical inflammatory response feature in lung
injury, neutrophil recruitment also plays an important role
during lung damage (Potey et al., 2019). A lung tissue that
has been severely injured, infected, or has been exposed to
inhaled toxic gases produces a large number of
inflammatory mediators and lipid metabolites. This
promotes the recruitment and activation of inflammatory
cells, including neutrophils and macrophages, in the lung
tissue. This forms a “cell network” of inflammatory response
and immune regulation in ALI/ARDS, such as the release of
cytokines (IL-1 β, IL-6, IL-8, and TNF-α, etc.) and
activation of the mentioned signaling pathways, thus,
forming the chain reaction of inflammation (Vassiliou et al.,
2017; Potey et al., 2019; Williams et al., 2017). Though to
some extent, this chain reaction helps to eliminate harmful
pathogens, it consequently causes damage to vascular
endothelial cells and lung epithelial cells. This affects the
material exchange between cells and tissues, then allowing
protein-rich fluids to enter the lung alveoli, which also
grounds for acute lung edema formation.

Under normal conditions, PMN plays an important role
in the host’s defense against foreign stimuli. The cells aid host
cells in killing microorganisms and reducing or controlling
acute inflammatory response (Akgul et al., 2001). Still, at the
same time, PMN release substances such as superoxide and
elastase, which leads to lung tissue damage and prolong the
viability of the PMN (Coldren et al., 2006). Murine animal
model studies have found that selective depletion of PMN
can reduce the production of tissue inflammatory factors
such as IL-8, and reduce lung tissue damage (Aeffner et al.,
2015; Koehler et al., 2020). However, there is a delay in the
apoptosis of PMN exuded into lung tissue during the onset
of ARDS. Further, alveolar lavage fluid of patients with early
ARDS can inhibit neutrophil apoptosis in vitro, while this
inhibition disappears when inflammation in late ARDS is
eliminated (Pallister, 2005).
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In the inflammatory exudative stage of ARDS, various
inflammatory mediators, including leukotrienes,
prostaglandins, ROS, proteases, and cytokines are formed/
released. Of these, TNF and interleukins are the most
influential. Research showed that TNF-α plays an important
role in capillary permeability change, inducing the activation
of endothelial cell activation, and the migration of
leukocytes, etc. Further, it is also an important cascade-
initiating factor in the inflammatory response (Pooladanda
et al., 2019). The dynamic change of TNF-α is earlier than
that of IL-1 β and IL-8 (Liu et al., 2022). Hence, the content
of TNF-α in lung tissue or alveolar lavage fluid can be
measured to determine whether ALI/ARDS occurs or not.
Additionally, IL-1, IL-6, and IL-8 play an important role in
the pathogenesis of ARDS, they can induce the chemotaxis
of inflammatory cells such as PMN, release inflammatory
mediators, and pyrogens (Song et al., 2020). It is worth
noting that after the acute inflammatory stage, there will be
lung tissue repair through the JAK2/STAT3 pathway as well
as the proliferation of type II alveolar epithelium cells.
However, its excessive activation along with the other
inflammatory pathways, can lead to differentiation of type I
alveolar epithelial cells, lymphocyte infiltration, and a
significant secretion of surfactant (Li et al., 2022). These
factors, which produce excessive cellular collagen tissue and
formation of extensive fibrosis, cause a reduction in lung
compliance, an increase of alveolar dead space, and
stubborn hypoxemia (Paris et al., 2020; Gokey et al., 2021;
Li et al., 2022).

Treatment Measures for Acute Respiratory Distress
Syndrome

Given that ALI and ARDS are recognized as serious public
health problems due to their high incidence and mortality
rate, exploring more convenient and efficient treatment
methods for ARDS has always been a hot topic in the
medical science community (Dawood et al., 2012;
Friedrichson et al., 2021). The general treatment for ARDS
is to take respiratory support and actively treat the causes or
inducing causes, including keeping the respiratory tract
unobstructed, addressing hypoxia and improving
ventilation, monitoring and supporting other important
organ functions. Treatment is mainly divided into
mechanical ventilation, drug, surgical, nutritional treatment,
and other methods. Drug therapy, including glucocorticoids,
anti-inflammatory drugs, respiratory stimulants, and
antioxidants, has already been tested in the clinical trials of
ARDS (Yang et al., 2018). Interestingly, the use of exosomes
such as the mesenchymal stem cell (MSCs)-derived
exosomes was seen to inhibit many pro-inflammatory
cytokines and differentiation of T cells into Th17 cells in
endotoxin-induced mice. Further, it also promoted cell
regeneration, including the proliferation of alveolar type 2
progenitor (AT 2) (Olajuyin et al., 2019) cells and the re-
epithelialization of damaged lung cells. Furthermore, in
another study, microRNA-21-5p successfully reduced several
pro-apoptotic genes and inhibited caspase expression
(Li et al., 2015; Yin et al., 2019; Liu et al., 2022). These

potential novel treatments, accompanied by traditional
methods such as mechanical ventilation, may effectively
enhance the survivability of ARDS patients.

Generally, ALI and ARDS patients do not need surgery,
but once massive hemoptysis occurs, the airway should be
kept smooth, artificial airway and endotracheal intubation
should be established immediately. Double lumen
endotracheal intubation is preferred, and surgery should be
performed when necessary (Goh and Kong, 2020).
Mechanical ventilation is the basic treatment measure to
improve the gas exchange disorder of ARDS, such as
optimizing the positive end-expiratory pressure or PEEP
(Sahetya et al., 2017; Liaqat et al., 2022). Mechanical
ventilation auxiliary treatment is an important component
of the current mechanical ventilation strategy, such as prone
position ventilation technology, extracorporeal membrane
oxygenation technology, etc. However, this method can also
bring invasive damage to the lung, which is deleterious and
life-threatening (Bates and Smith, 2018).

Receptor-Interacting Serine/Threonine-Protein Kinase 1
(RIPK1): An Overview

The structure of RIPK1
RIPK1 is a protein kinase related to cell death and is important
in various cell death pathways. RIPK1 mainly participates in
multiple biological processes, such as apoptosis, necrosis,
and inflammation.

The structure of RIPK1 includes the N-terminal death
domain (DD), the middle conjugate enzyme structure
domain (kinase-like domain, KD), and the C-terminal
serine/threonine kinase domain. The DD domain can
interact with other proteins containing DD domains,
thereby forming a signal complex. The KD domain has
kinase activity, which can auto-phosphorylate and cross-
phosphorylate other target proteins and, the kinase domain
is the final catalytic part of RIPK1 (Yuan et al., 2019).

The mechanism of RIPK1 in inducing inflammation or cell
death
When external stimuli stimulate cells, certain pro-
inflammatory cytokines released by innate immune cells
provide a host-defense mechanism that conducts the cell to
undertake three signaling pathways, namely NF-κB,
apoptosis, or necroptosis (Qadri et al., 2018; Chen et al.,
2021a). Initially, the binding of TNF-α cytokine to the
trimerized receptor TNFR-1, followed by the recruitment of
the C-terminal DD and the TNFR1-associated death domain
protein (TRADD) of RIPK1 to the DD of the trimerized
receptor, generally initiates the pro-survival or cell death
regulation.

After its recruitment, the activated RIPK1, identified by
the S166 phosphorylation, is subjected to a series of
complex formations. Complex I begins with the binding of
TRADD-RIPK1 to the TNFR-associated factor-2 (TRAF2),
after which the cIAP1/2 is recruited to create K63 ubiquitin
chains. This K63 chain binds with the linear ubiquitination
chain assembly complex (LUBAC), which does linear
ubiquitylation to TRADD-RIPK1 (Yuan et al., 2019). After
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the linear ubiquitylation of the TRADD-RIPK1 complex, K63
ubiquitin chains utilize and bind with TAK1 (transforming
growth factor-β-activated kinase 1) and TAK1-binding
protein 2/TAK1-binding protein 3 (TAB2/TAB3).
Additionally, the linear ubiquitin chain activates the NF-κB
essential modulator (NEMO) and IKK (IκB kinase). These
two elements are important for the pro-survival NF-kβ
signaling pathway, which regulates the transcriptional
expression of inflammatory genes such as nucleotide-
binding domain and leucine-rich repeat-containing
protein 3 (NLRP3), AC20, and cellular FLICE (FADD-like
IL-1β-converting enzyme)-inhibitory protein (cFLIP)
(Dolcet et al., 2005; Safa, 2013; Zhang et al., 2019).

LUBAC can be ubiquitinated through the CYLD enzyme,
the inhibition of TAK1 (transforming growth factor-β-
activated kinase-1) as well as the inhibitor of apoptosis
protein (cIAP1 and cIAP2). The deubiquitination of LUBAC
initiates the phosphorylation and dissociation of RIPK1
from complex I leading to its dimerization. Further, the
splitting of this dimerized pRIPK1 is essential in RIP1-
dependent apoptosis and necroptosis (Meng et al., 2018;
Cao and Mu, 2021). The interaction of p-RIPK1 with RIPK3
phosphorylates this protein kinase forming the necrosomal
assembly/complex IIb (pRIPK1-pRIPK3), which then drives
the recruitment and oligomerization of the mixed lineage

kinase domain-Like protein (pRIPK1-pRIPK3-MLKL),
MLKL is then translocated to the cell membrane and
triggers necroptosis (Geng et al., 2017; Sauler et al., 2019;
Yuan et al., 2019). On the other hand, the formation of
FADD-RIPK1-caspase 8-cFLIP (complex IIa), in which the
removal of the cFLIP inhibitor of caspase 8, induces the
caspase cascade (Caspase-3/7) initiating the extrinsic RIPK1-
dependent apoptosis (Sauler et al., 2019). Moreover, the
active caspase-8 can cleave RIPK1, further contributing to
the necrosomal assembly formation (Fig. 4). Activation of
RIPK1 plays a major role in these pathways, where its
recruitment to the death domain of specific protein
receptors and its scaffolding function helps to regulate the
survival and cell death during an exogenous or endogenous
injury. However, there are studies suggesting that this
protein kinase could either be therapeutic (inhibition of
necrostatin-1 stable or Nec-1s) or harmful (cytokine storm)
(Yuan et al., 2019; Cao and Mu, 2021; Liu et al., 2023).

RIPK1 in Acute Respiratory Distress Syndrome

Necroptosis in alveolar macrophages of virus-induced acute
respiratory distress syndrome
Previous studies found that pro-inflammatory/cytotoxic
alveolar macrophages are responsible for the damage and

FIGURE 4. Schematic diagram of necroptosis and the RIPK1-dependent apoptosis pathways (cleavage of caspase-8 from complex IIa starts the
caspase cascade) (TRADD: TNFR1-associated death domain; TRAF2: TNFR-associated factor-2; LUBAC: linear ubiquitination chain assembly
complex; CYLD: cylindromatosis; TAB2/TAB3: TAK1-binding protein 2/TAK1-binding protein 3; TAK1: transforming growth factor-β-
activated kinase; NEMO: NF-κB essential modulator; IKK: IκB kinase; FADD: fas-associated death domain; MLKL: mixed lineage kinase
domain-Like protein).
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development of ARDS releasing TNF-α, IL-1β, IL-6, IL-12,
IFNγ, etc., during infection for limiting the spread of viral
loads (Laskin et al., 2019). For instance, the influenza A
virus can elevate the accumulation and release of TNF-α
mRNA, subsequently advancing to cell death, and the
presence of free lipopolysaccharide (LPS) increases the
production of this cytokine from the infected macrophages
(Nain et al., 1990; Peschke et al., 1993; Bender et al., 1993).
Further, the swine influenza virus (e.g., H1N1) induces the
RIPK1 in porcine alveolar macrophage to phosphorylate the
S579 location of dynamin-related protein 1 (DRP1),
triggering the NLRP3 inflammasome activation. It also
promotes IL-1β production inducing more inflammatory
cytokine release and cell death via necroptosis and apoptosis
(RIPK1–RIPK3–Caspase-8) (Kuriakose et al., 2016; Park
et al., 2018). Faust and Mangalmurti (2020). have
exhaustively reviewed that the formation of complex IIb
(RIPK1-RIPK3-MLKL) and the RIPK1-independent TRIF-
RIPK3, caused by bacterial and viral pulmonary infections
generally directs the programmed cell death of the alveolar
macrophages, along with the type I and type II alveolar
epithelial cells. Further, the key molecules in complex IIb
could either protect or prevent the replication of viral
pneumonia, more specifically, the insulative role of RIPK3
to the transcriptional and post-transcriptional levels of some
pathogens (Faust and Mangalmurti, 2020). Apart from the
influenza virus, the respiratory syncytial virus (RSV) could
also benignly induce ARDS (Hammer et al., 1997). Its
binding receptors (RSV-G glycoprotein and RSV-F fusion
glycoprotein) bind to the apical ciliated epithelial cells in the
respiratory tract to induce intracellular replication activating
the innate inflammatory immune response followed by
necroptosis in the epithelial cells (Nam and Ison, 2019).
This RSV-induced ARDS was supported by experiments
conducted by research. For example, Santos et al. (2021)
found activated RIPK1, RIPK3, and MLKL in both TNF-
mediated mouse macrophage (Ripk3−/− mice) and human
monocytes, which was promoted by RSV, confirming cell
death of alveolar macrophage via necroptosis and in turn,
damage the lung epithelial cells. In contrast, Simpson et al.
(2020) reported that necroptosis was seen to promote viral
load suppression by attenuating the RSV-induced HMGB1
translocation in pediatric donors of human aortic
endothelial cells (hAEC). Hence, cases of necroptosis activity
could be detrimental or beneficial depending on the
conditions.

Role of RIPK1 in Virus-Induced Acute Respiratory Distress
Syndrome

In general, RIPK1 is actively present during viral infections of
ARDS since its elevated up-regulation along with RIPK3,
caspase-3, caspase-8, and MLKL can be seen in almost all
cases. This suggests that these listed inflammatory mediators
are intimately involved in this syndrome (Pan et al., 2016).
Furthermore, the extensive activation of RIPK1 molecule
can be seen in deceased patients with severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced

COVID-19. For instance, Xu et al. (2021), from the
Southern University of Science and Technology, Shenzhen,
China, found high levels of pro-inflammatory cytokine
transcripts in the bronchoalveolar lavage fluid (BALF), lung
tissue, and peripheral blood mononuclear cells (PBMC).
Additionally, a staggering number of activated RIPK1 in the
lung epithelial cells was also mentioned in their study.
Although the researchers found no evidence of necroptosis
due to the lack of phosphorylated MLKL, apoptotic-
mediated cell death of macrophage and epithelium was
suggested due to the high amounts of detected cleaved-
caspase-3 (c-casp3). Likewise, SARS-CoV-2 was identified to
manipulate the RIPK-mediated inflammatory response of
the host to its benefit in the angiotensin-converting enzyme-
2 (ACE2+)-abundant type II pneumocytes (Xu et al., 2021).
The RNA-dependent RNA polymerase (RdRp) (NSP12)
protein is a key molecule for the replication of RNA-based
viruses. Its RdRp domain (amino acid residues S367 to
F920) and interface domain (amino acid residues A250 to
R365) interact with the kinase domain of RIPK1 to activate
it. This binding secures viral entry and survival through
transcriptional induction of host factors such as the SARS-
CoV-2 binding protein ACE2, epidermal growth factor
receptor (EGFR), and certain inflammatory cytokines
contributing more damage to the development of ARDS
(Gordon et al., 2020; Xu et al., 2021; Pathania et al., 2022).

H7N9 is a sub-type of the influenza A virus (IAV) family
that was identified around 2013 in China. Several infected
patients had critical respiratory problems such as ARDS and
organ failures (40% fatality rate), leading to their untimely
death (Gao et al., 2013; Huang and Wang, 2020). Zhang
et al. (2019) found that this avian IAV infects CD14+
monocyte on PBMCs and incessantly activates both the
apoptosis and necroptosis pathway. Although the RIPK1
level was seen to be reduced 3 h post-infection, the 12-h
mark showed its gradual increase, and necroptosis was still
observed due to the rising level of RIPK3 and p-MLKL.
Simultaneously, though treatment with Nec-1 and RIPK3
inhibitor (GSK’872 + GSK’843; GSKs) did not increase the
cell viability levels of H7N9 infected monocytes, these
inhibitors tremendously expunged the MLKL
phosphorylation and possibly abrogated the necrotic
pathway. Interestingly, another study found higher protein
levels of RIPK1, RIPK3, and p-RIPK3 along with the MLKL
and p-MLKL in H7N9-induced ARDS from deceased
patients affirming cell death through necroptosis. They
suspected that the formation of the necrosomal complex
was due to the lack of cIAP2 expression and of its inhibition
of RIPK1 (Qin et al., 2019). Another type of IAV known as
H1N1 or the swine flu caused a massive public health
emergency back in 2009. The flu caused 575,000 deaths and
over 201,200 respiratory-related deaths globally (Dawood
et al., 2012; Chauhan and Gordon, 2020). Like the H7N9
influenza A virus, people infected with the swine flu
progressively developed ALI-ARDS. The virus was observed
to up-regulate RIPK1 expressions in alveolar macrophages
to induce IL-1β production, contributing to lung
inflammation and damage (Park et al., 2018).
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RIPK1 in Other Pathological Factor (Bacterial and
External)-Induced Acute Respiratory Distress Syndrome

External factors and unhealthy lifestyle habits can also
contribute to the development of ARDS. For example, air
pollution, smoking, alcohol, and illegal substance abuse are
among the few causes of the syndrome (Lin et al., 2018;
Moazed et al., 2018). Cigarette smoke has been known to
damage lung epithelial cells and walls of the alveoli.
According to Pouwels et al. (2016), smoking can also induce
necroptosis, and activate/release DAMPs prompting the
innate immune system to respond to the site of cigarette
smoke-induced necroptosis. The involvement of necroptosis
provides a clue in the pivotal role of RIPK1 during cigarette
smoke exposure. The researchers used Nec-1 inhibitor to
confirm necroptosis in DAMP release and as a treatment to
reduce neutrophilic inflammation. Other than mediating the
activation and release of DAMPs, RIPK1 can activate the
PARylated proteins generated by activated poly (ADP-
ribose) polymerase 1 (PARP1) in the parthanatos pathway,
which is the common pathway of programmed cell death in
cigarette smoke exposure. Also known as the PARP1/
apoptosis-inducing factor (AIF) (Greenwald and Pierce,
2019) signaling pathway, this form of cell death reacts to
DNA damage caused by the inhalation of smoke and
elevates the transcription of pro-inflammatory genes (Jang
et al., 2018). Although the studies are limited regarding its
interaction with PARP1, previous studies have shown
evidence that the catalytic domain of PARP1 can interact
and bind with RIPK1 during oxidative stress stimulation,
which activates the mediator and triggers parthanatos cell
death pathway (Jang et al., 2018; Künzi and Holt, 2019).

Apart from the external factors that cause ARDS, LPS
from gram-negative bacteria is generally used to induce
ALI/ARDS in murine models to study and study the disease.
Such ALI/ARDS-based stimulation works since the LPS-
TLR4 (lipopolysaccharide-Toll-like receptor 4) signaling
pathway could also induce necroptosis in alveolar
macrophages, which promotes the formation of toll/
interleukin-1 receptor domain-containing adaptor protein
(TIRAP) and toll/interleukin 1 receptor-domain-containing
adapter-inducing interferon-β (TRIF) joined with the
RIPK1-RIPK3-MLKL complex. However in the events of
tissue damage, the caveolae-mediated TLR4 internalization
prevents this complex formation decreasing the alveolar
macrophage necroptosis (Chen et al., 2010; Fan and Fan,
2018). In previous studies, LPS was also shown to amplify
inflammation in COVID-19-induced ARDS since it
increases the ROS production, and activates the p38-MAPK
pathway through interaction with CD14+ receptors,
including the TLR4. Further, it generally amplifies the
activation of the NF-κB pathway in THP-1 monocytic cells,
these effects could also have lasting changes in pulmonary
functions (Peschke et al., 1993; Tsikis et al., 2022). A report
suggests that the apoptotic involvement of RIPK1 on the
inflamed lung of a gram-negative bacterium Pasteurella
multocida-infected chicken leads not only to necroptosis but
also edema and hyperemia (Li et al., 2020). This was due to
the activation of RIPK1-dependent apoptosis and initiation

of the NF-κB signaling pathway causing inflammation of the
alveolar pneumocytes (Pasparakis and Vandenabeele, 2015;
Nežić et al., 2022). Hence, RIPK1 manages to display its
presence and cell death capabilities in every aspect of non-
pulmonary factors of ARDS, whether it is bacteremic sepsis
or chronic airway inflammation.

Conclusion

This review discusses the role of RIPK1 and related apoptotic
and necroptotic signaling pathways in the pathogenesis of
ARDS. Many recent findings suggest that RIPK1 and related
cell death machinery molecules might be potential targets
for developing therapeutic strategies in treating ARDS. The
death domain of RIPK1 initiates the formation of
subsequent complexes and their pathways toward the
survival or death of the cell. It is clear that RIPK1
recruitment to the TRADD starts the ubiquitylation and
ligase inhibition of RIPK1, which leads to the NF-κB
pathway, while its dissociation from this complex I leads to
either apoptosis or necroptosis. While RIPK1-dependent
apoptosis relies on the caspase cascade, i.e., the cleavage of
caspase 8 to other caspases (3/7), necroptosis relies heavily
on the MLKL phosphorylation. The major aspects of these
signaling pathways in inflammatory diseases are well
known. However, the function of RIPK1 is not restricted to
caspase and MLKL activation alone, rather, it also interacts
with many molecules, such as in the cases of virus-induced
ARDS.

In COVID-19-induced ARDS, RIPK1-dependent
apoptosis was often observed in lung epithelial cells and
alveolar macrophages, suggesting that RIPK1 is present at
high levels during the cytokine storm of COVID-19-induced
ARDS, while its interaction with the RNA-dependent RNA
polymerase (RdRp) domain ensures viral survivability and
entry (Aftab et al., 2020). Further, in IAV-induced ARDS,
the predominant presence of p-MLKL and p-RIPK3
determined that necroptosis was the mode of cell death in
most cases (Xu et al., 2021). Moreover, the influenza swine
virus also utilizes RIPK1 to phosphorylate the dynamin-
related protein 1 (Drp1) at S579 to produce IL-1β cytokine
through NLRP3 inflammasome activation and completely
enhance lung inflammation by inducing cytokine
production (Valera-Alberni et al., 2021). Necroptosis could
also be induced in the alveolar macrophage in the lung
epithelial cells, and provide advantageous survival of the
RSV-induced ARDS, using its binding receptors to
manipulate the macrophage into activating the immune
response and completely destroy the epithelial cells. In
several studies where necrostatin was used as an inhibitor of
RIPK1, the pRIPK1-pRIPK3-MLKL complex was reduced,
which led to the mitigation of necroptotic cell death
(Pouwels et al., 2016; Lee et al., 2019). Nec-1s, as one of the
first inhibitors and markers for RIPK1 has laid a substantial
contribution to clinical trials of inflammatory diseases in
this context (Yuan et al., 2019). Therefore, the
acknowledgment of the functions of RIPK1 as a cell death
mediator has been the subject of interest in the field of
immunology. Further, the outstanding discovery of its
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inhibitor molecules, such as necrostatin, and GSKs, has made
it a focal point for a potential therapeutic target for
inflammatory diseases, including ALI/ARDS. Although there
is still a need for an in-depth analysis of its mechanism and
effect, the potentials for its use in treatment from studies are
highly promising.
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