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Analysis of functional hub genes indicates DLGAPS5 is linked to lung

adenocarcinoma prognosis
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Abstract: Introduction: The difficulty in treating lung adenocarcinoma (LUAD) is caused by a shortage of knowledge
about the biological mechanisms and a lack of treatment choices. Objectives: The aim of this study was to identify a
valuable molecular target for the treatment of LUAD. Methods: Using multiple databases, we screened for hub genes
in LUAD using Cytoscape and explored the expression and prognosis of DLG associated protein 5 (DLGAPS5) in
LUAD. We investigated the genetic variation, functional enrichment, and epigenetic activity of DLGAPS.
Furthermore, we evaluated the relationship between the tumor microenvironment (TME) and DLGAP5. Results: Our
study identified 10 hub genes in LUAD: CDC45, KIAA0101, DLGAP5, CDT1, NCAPG, CCNB1, CDCA5, CDC20,
KIF11, and AURKA. We discovered that DLGAP5 was overexpressed and associated with poor prognosis in LUAD.
DLGAPS5 exhibited an overall genetic variation frequency of 2%, and its DNA promoter was hypomethylated in
LUAD (p < 0.05). The expression of DLGAP5 in LUAD showed a positive correlation with the majority of Né-
methyladenosine (m6A)-methylation genes. Additionally, DLGAP5 was primarily associated with the cell cycle in
LUAD. Notably, there was a significant favorable association between DLGAP5 and CD274, CTLA4, HAVCR?2, and
LAG3 in LUAD. Conclusion: DLGAP5 may be a therapeutic target for LUAD, as it affects cancer cells proliferation

and development through the regulation of cell-cycle checkpoints and modulation of immune cell infiltration and

immune checkpoints in the TME.

Introduction

Lung cancer, including small cell and non-small cell lung
cancer, is one of the leading causes of death worldwide
(Sung et al., 2021). Non-small cell lung cancer encompasses
three pathological types: squamous cell carcinoma,
adenocarcinoma, and large cell lung cancer. Among them,
lung adenocarcinoma (LUAD) is the most prevalent type
(Hirsch et al., 2017).

The prognosis of LUAD has significantly improved due
to the development of various therapeutic approaches,
including chemotherapy, surgery, targeted therapy,
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radiotherapy, and immunotherapy (Succony et al., 2021).
Unfortunately, a poor 5-year overall survival rate is
observed in LUAD patients, primarily because some are
diagnosed at an advanced stage (Herbst ef al., 2018). Hence,
it is crucial to identify effective therapeutic targets and
prognostic biomarkers.

DLGAPS5, also known as DLG-associated protein 5, is a
gene that codes for DLG7 protein. During mitosis, DLG7
plays an important role in spindle assembly, kinetochore
fiber (K-fiber) stabilization, and chromosomal segregation
(Hsu et al., 2004; Wong and Fang, 2006; Ye et al, 2011).
The upregulation of DLGAP5 has been observed in colon
cancer, breast cancer, prostate cancer, liver cancer, and
endometrial cancer (Branchi et al, 2019; Chen et al., 2023;
Horning et al., 2018; Tsou et al., 2003; Zhang et al., 2018).
Further, high expression of DLGAP5 can confer resistance
to G2-M arrest induced by a mitosis inhibitor and reduce
the dependence of prostate cancer cell growth on the
androgen receptor signaling pathway (Horning ef al., 2018).
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Another study found that silencing DLGAP5 using siRNA
significantly suppresses the proliferation and invasion of
hepatocellular carcinoma cells (Liao ef al., 2013). Similarly,
Li et al. (2022) have demonstrated that DLGAP5
overexpression neutralizes the effects of miR-409-5p on
SKOV-3 cell growth, G2/M arrest, and apoptosis. Given
these studies, DLGAP5 overexpression may contribute to
cancer development.

However, to date, there have been a limited number of
systematic and comprehensive studies on the mechanism of
DLGAP5 in LUAD. In our research, we utilized data from
gene expression omnibus (GEO) and the cancer genome
atlas (TCGA), in addition to our findings, to convincingly
demonstrated that DLGAP5 expression is substantially
upregulated in LUAD and is associated with poor prognosis.
Our findings reveal the potential mechanism of DLGAP5 in
LUAD and emphasize its impact on the tumor
microenvironment (TME), providing valuable insights into a
novel approach for antitumor interventions.

Materials and Methods

Data collection and processing

RNA sequencing data and clinical information were obtained
from the GEO and TCGA databases. The inclusion criteria
were as follows: (a) diagnosis of lung adenocarcinoma; (b)
the dataset included more than 100 samples; (c) the cancer
samples had clinical data including, at minimum, sample
serial number, survival status, and survival time; (d) datasets
containing paired samples (normal vs. tumor) could be used
even if they lack clinical data. The exclusion criteria were as
follows: (a) samples without essential clinical information;
(b) samples with missing expression data for more than half
of the genes. Suppl. Table S1 provides the essential details of
the included datasets.

Screening of differentially expressed genes

The Limma package in R was used to identify differentially
expressed genes (DEGs) between LUAD samples and
normal samples in the GSE75037 and TCGA datasets. The
threshold values of DEGs were set as |log,FC| > 2 and false
discovery rate (FDR) < 0.05. A Venn diagram was generated
using Xiantao Academic Tools to visualize the common
upregulated and downregulated DEGs.

Selection of hub genes and survival and expression analysis

The STRING database was utilized to examine functional
protein association networks (Szklarczyk et al., 2021). The
DEGs were first submitted to the STRING database. A
combined score of higher than 0.4 was used to extract all
protein—protein interactions (PPI) pairs. Nodes with the
highest degree (0.900) were identified as essential for
ensuring the overall stability of the network. The cytoHubba
plugin for Cytoscape (v3.9.0) was used to determine the
degrees of all nodes (Chin et al., 2014). The MCC algorithm
of the Cytoscape cytoHubba application was employed to
select hub genes. The Gene Expression Profiling Interactive
Analysis (GEPIA) database was used for the overall survival
analysis of the hub genes. At the same time, dataset
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GSE72094 was employed to validate the prognosis of the
hub genes using the R software package ‘survival. In
addition, dataset GSE32863 was utilized to confirm the
differential expression of the hub genes.

Clinicopathological characteristics and prognosis analysis of
DLGAP5 in lung adenocarcinoma

The clinical data from the TCGA LUAD dataset was used to
investigate the association between DLGAP5 expression and
clinicopathological ~characteristics of LUAD patients.
DLGAPS5 expression levels were categorized into two groups
using its median value in the TCGA LUAD dataset. The
effects of DLGAP5 expression and related clinico-
pathological factors on the survival of patients with LUAD
were analyzed through univariate and multivariate Cox
regression analysis.

Immunohistochemical validation and western blot analysis of
DLGAPS5 expression

To assess differences in DLGAP5 protein expression,
immunohistochemical (IHC) images of DLGAP5 were
obtained from the Human Protein Atlas (HPA).
Furthermore, paraffin specimens of 30 LUAD samples were
collected from the pathology department of the Sixth
Affiliated Hospital, Sun Yat-sen University. Each sample
included adjacent normal tissues and matched tumors. The
ITHC method was applied to evaluate DLGAP5 expression in
LUAD and adjacent normal tissues. DLGAP5 antibody
(Affinity Biosciences; DF6920) was utilized in the IHC
procedure. Cell morphology and staining patterns were
observed at low power (100x). Five random fields of view
were selected and recorded. The results of the THC were
quantitatively analyzed and compared using Image ]
software and GraphPad Prism 8. In addition, we used
western blotting to investigate the differences in DLGAP5
protein expression between A549 (lung adenocarcinoma
cells) and BEAS-2B (lung epithelial cells) cells.

DLGAP5 expression and survival analysis in a pan-cancer
dataset

The standardized pan-cancer dataset, which included
expression profile data and clinical information, was
downloaded from the University of California Santa Cruz
(UCSC) database. The expression data of DLGAPS5 in
samples was extracted and transformed using the log, (x +
0.001) function. Cancer types with fewer than 3 samples
were excluded, and duplicate data was removed.
Subsequently, the expression and clinical data of 33 tumor
types were collected. R software was used to analyze the
difference between normal and tumor tissues and generate
box plots for each tumor. In addition, the relationship
between DLGAPS5 expression and prognosis in each tumor
was analyzed using the log-rank method.

Genetic alteration and epigenetic analysis of DLGAP5 in lung
adenocarcinoma

The open-access tool c-BioPortal provides access to 225
cancer studies, enabling users to analyze, visualize, and
explore multidimensional cancer genome data. DLGAP5
gene mutations were investigated using c-BioPortal.
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UALCAN is an interactive online tool that offers detailed
multi-omics information on several cancers. We utilized
UALCAN to assess the promoter methylation of DLGAPS.
Moreover, we compiled a list of 21 genes associated with
RNA m6A methylation from previous research (Jiang et al.,
2021). From the TCGA pan-cancer dataset, we extracted the
expression data for DLGAP5 and 21 RNA m6A-
methylation-related genes. Thereafter, we investigated the
relationship between DLGAP5 and the genes associated with
RNA m6Amethylation. The findings were visualized and
presented in the form of a heatmap.

Functional enrichment analysis of DLGAP5

The transcriptome data of the TCGA LUAD dataset were
divided into two groups, high and low, based on the median
value of DLGAP5 expression. Differential expression
analysis was performed using the “Limma” package in R,
selecting genes with |log,FC| = 1 and FDR < 0.05. DEGs
related to DLGAP5 were further screened using a threshold
of qvalue < 0.05, p.adj < 0.05, and count > 2. Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analysis of these DLGAP5-related DEGs
were conducted using the “ClusterProfiler” package in R.
Finally, the outcomes of the enrichment analysis were
visualized using a dot plot.

Single-cell analysis of DLGAPS5 in lung adenocarcinoma

The CancerSEA is a specialized database, which aims to
comprehensively elucidate various functional conditions of
tumor cells at the single-cell level (Yuan et al, 2019). The
database contains an atlas of single-cell functional states,
encompassing data from 41,900 tumor single cells across 25
different tumor types and a total of 280 different cell types.
The database provides information on 14 different
functional statuses, including cell cycle, epithelial-
mesenchymal transition (EMT), angiogenesis, inflammation,
apoptosis, DNA damage, metastasis, stemness, DNA repair,
hypoxia, invasion, differentiation, proliferation, and
quiescence. In our study, we investigated the functional state
of DLGAPS5 in LUAD using the CancerSEA database.

Association between DLGAP5 expression and tumor cell
infiltration —and  immunotherapy prediction in lung
adenocarcinoma

The TME plays a crucial role in tumor formation and
progression. In this study, we employed two methods,
namely the Estimation of STromal and Immune cells in
MAlignant Tumor tissues using Expression data
(ESTIMATE) score and Microenvironment Cell Populations
(MCP)-counter score, to evaluate the association between
DLGAP5 and tumor immune cell infiltration in the TCGA
LUAD cohort using the SangerBox online tool. The
Wilcoxon signed-rank test was utilized to compare the
immune infiltration levels between low-DLGAP5 and high-
DLGAP5 groups. Additionally, to predict the potential
response to immunotherapy in patients with various levels
of DLGAP5, the Tumor Immune Dysfunction and Exclusion
(TIDE) algorithm was applied to the TCGA LUAD cohort.
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Correlation between DLGAP5 and immune check point genes
in pan-cancer

Based on the previous research (Thorsson et al., 2018), we
compiled 60 immune checkpoint (ICP) genes, consisting of
36 immune stimulators and 24 immune inhibitors. We
investigated the relationship between ICP genes and
DLGAP5 expression using the SangerBox tools. The results
were visualized and presented as a heat map.

Statistical analysis

The statistical analysis was carried out using the R version
4.1.0. Survival analysis was conducted using the Log-rank
test and the Kaplan-Meier method. Cox regression analysis
was utilized for both univariate and multivariate analysis.
The Student’s t-test or the Wilcoxon rank sum test was
utilized to compare continuous variables, as appropriate.
The Fisher’s exact test or Chi-square test was applied to
compare categorical clinicopathological variables. Spearson
correlation was applied for correlation analysis. Significance
levels were indicated as follows: ns, not significant, p > 0.05;
*p < 0.05; *p < 0.01; **p < 0.001; ***p < 0.0001.

Results

Screening of differentially expressed genes

To identify key genes related to LUAD, DEGs between normal
tissues and LUAD were analyzed using the GSE75037 dataset
from the GEO database and TCGA LUAD-related datasets. In
the GSE75037 dataset, 229 genes were upregulated and 458
genes were downregulated in LUAD compared to normal
tissues. In the TCGA LUAD dataset, 226 genes were
upregulated and 435 genes were downregulated (FDR <
0.05, |log,FC| > 2) (Figs. 1A and 1B). To identify commonly
differentially expressed genes, a Venn diagram was used to
visualize the overlap between the two datasets. Among these
two datasets, 110 genes were upregulated and 248 genes
were downregulated (Figs. 1C and 1D).

Protein-protein interaction network construction and hub gene
screening

To explore the relationship among the DEGs, the STRING
database was used to construct a protein-protein interaction
(PPI) network (Suppl. Fig. S1A). The MCC algorithm was
used in cytoHubba to identify the most significant nodes in
the PPI network, resulting in the extraction of the top 10
central nodes (Suppl. Fig. SIB). The hub genes identified
were CDC45, KIAA0101, DLGAP5, CDT1, NCAPG,
CCNBI1, CDCAS5, CDC20, KIF11, and AURKA.

Validation of prognostic values and the expression patterns of
hub genes

The GEPIA database was employed to investigate the
prognostic utility of identified hub genes. By setting the
median expression of the hub genes as the cut-off point, it
was observed that the low-expression group had better
overall survival compared with the high-expression group
(p < 0.05) (Figs. 2A-2]). The survival analysis was further



2456

(A) GSE75037
80 - : :
| |
| |
60 I [
= Lt |
@ L
a
e 40 +
g
" 20
o———— 19l _

Log, (Fold Change)

(C)  GSE75037 TCGA

LogZFC>2

HAOSHENG ZHENG et al.

B)
150
%
a 100 -
o
D
(]
-
! 50
o+ —————
-5 0 5
Log, (Fold Change)
(D) GSE75037 TCGA

LogZFC<-2

FIGURE 1. Identification of differentially expressed genes (DEGs) based on The Cancer Genome Atlas (TCGA) and GSE75037 datasets. The
volcano plot depicts the 687 DEGs (|log,FC| > 2; false discovery rate (FDR) < 0.05) in GSE 75037 lung adenocarcinoma (LUAD) tissues vs.
normal lung samples (A); The volcano plot depicts the 661 DEGs (|log,FC| > 2; FDR < 0.05) in TCGA LUAD tissues vs. normal lung samples
(B); 110 upregulated DEGs between TCGA and GSE75037 datasets (C); 248 downregulated DEGs between TCGA and GSE75037 datasets (D).

validated using dataset GSE72094, which yielded consistent
results (Suppl. Fig. S2). To further explore the differential
expression of hub genes, another dataset, GSE32863, was
analyzed, which also demonstrated significant upregulation
of these hub genes in tumor tissues (p < 0.05) (Fig. 2K).
Taken together, these results suggest that these hub genes
may play a crucial role in the development of LUAD.

Analysis of clinicopathologic characteristics of DLGAP5 in lung
adenocarcinoma

To further explore the potential clinical significance of
DLGAP5 in LUAD, we conducteda differential analysis of
DLGAP5  expression for various clinicopathologic
characteristics using TCGA LUAD samples. The findings
revealed that DLGAP5 expression was substantially
upregulated in males. DLGAP5 expression was lower in the
group aged over 65 compared with the group aged 65 or
below. Futher, DLGAP5 expression was higher in the T2
group compared with the T1 group. Moreover, DLGAP5
expression was higher in the NI, N2, and N3 groups
compared to the NO group. Lastly, the expression levels of
DLGAPS5 in Stage III and Stage IV groups were higher than
those in Stage I and Stage II groups (Suppl. Figs. S3A-S3F).
These findings suggest that the expression levels of DLGAP5
in LUAD may increase as the disease progresses.

Furthermore, we conducted univariate logistic regression
analysis to investigate the relationship between DLGAP5 and
the clinicopathologic variables (Table 1).

High DLGAPS5 expression was positively associated with
the invasion depth (T2, T3, and T4 vs. T1; OR, 1.982; 95% CI,
1.374-2.874; p < 0.001), lymph node metastasis (N1, N2, and
N3 vs. NO; OR, 2.164; 95% CI, 1.489-3.165; p < 0.001),
pathologic stage (Stage III, Stage IV vs. Stage I and Stage II;
OR, 2.093; 95% CI, 1.361-3.257; p < 0.001), gender (male vs.
female; OR, 1.685; 95% CI, 1.198-2.378; p = 0.003), and age
(more than 65 years vs. 65 years or lower; OR, 0.689;
95% CI, 0.486-0.974; p = 0.035). Collectively, these findings
suggest that DLGAP5 may function as an oncogene in LUAD.

Prognostic analysis of DLGAPS5 in lung adenocarcinoma

To investigate the independent prognostic role of DLGAP5 in
LUAD, we conducted a multivariate Cox regression analysis.
Table 2 presents the baseline characteristics of the patients.
Compared with the low-expression DLGAP5 group, the
high-expression DLGAP5 group had a higher proportion of
younger patients, males, positive lymph node metastasis,
and distant metastasis. The multivariate Cox regression
analysis demonstrated that DLGAP5 expression, T stage, N
stage, and M stage were independent prognostic factors of
overall survival (OS) in LUAD (Table 3). These results
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FIGURE 2. Validation of the expression comparison and prognostic values of hub genes. Survival analysis of hub genes using the Gene
Expression Profiling Interactive Analysis (GEPIA) database (A-J); The expression comparison of hub genes in GSE32863 (K) (****p < 0.0001).

TABLE 1

Logistic regression analysis of the association between DLGAP5 expression and clinicopathologic characteristics in the cancer genome

atlas (TCGA) lung adenocarcinoma (LUAD) cohort

Characteristics Total (n) Odds ratio (OR) p-value
T stage (T2 & T3 & T4 vs. T1) 532 1.982 (1.374-2.874) <0.001
N stage (N1 & N2 & N3 vs. NO) 519 2.164 (1.489-3.165) <0.001
M stage (M1 vs. MO) 386 2.113 (0.915-5.293) 0.090
Pathologic stage (Stage III & Stage IV vs. Stage I & Stage II) 527 2.093 (1.361-3.257) <0.001
Gender (Male vs. Female) 535 1.685 (1.198-2.378) 0.003
Age (565 vs. <=65) 516 0.689 (0.486-0.974) 0.035
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TABLE 2
The baseline characteristics of the patients
Characteristic = Low-DLGAP5  High-DLGAP5  p-value
n 249 250
Age, n (%) 0.016
<65 96 (19.6%) 123 (25.2%)
>=65 149 (30.5%) 121 (24.7%)
Sex, n (%) 0.003
female 151 (30.3%) 118 (23.6%)
male 98 (19.6%) 132 (26.5%)
T, n (%) 0.787
T1+T2 215 (43.3%) 218 (44%)
T3+T4 33 (6.7%) 30 (6%)
N, n (%) <0.001
N+ 61 (12.5%) 103 (21.1%)
NO 181 (37.1%) 143 (29.3%)
M, n (%) 0.030
MO 166 (46.8%) 165 (46.5%)
M1 6 (1.7%) 18 (5.1%)

indicate that DLGAP5 may serve as a prognostic biomarker
for LUAD.

Differential expression and prognosis analysis of DLGAP5 in
the pan-cancer dataset

To evaluate the significance of DLGAP5 in tumorigenesis, we
performed a pan-cancer differential expression analysis
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comparing DLGAP5 expression between tumor tissues and
normal tissues. DLGAP5 expression was higher in cancer
tissues compared with normal tissues in 30 tumor types (p <
0.05) (Fig. 3A). In addition, we performed a pan-cancer
prognosis analysis of DLGAP5. There were 12 tumor types,
including Brain Lower Grade Glioma (LGG), Kidney renal
papillary cell carcinoma (KIRP), Adrenocortical carcinoma
(ACC), Liver hepatocellular carcinoma (LIHC), Kidney
Chromophobe (KICH), LUAD, Mesothelioma (MESO),
Pancreatic adenocarcinoma (PAAD), Kidney renal clear cell
carcinoma (KIRC), Uveal Melanoma (UVM), Sarcoma
(SARC), and Bladder Urothelial Carcinoma (BLCA), where
high DLGAP5 expression was associated with poor
prognosis (Fig. 3B). These results suggest that DLGAP5 may
have a wuniversal impact on the development and
progression of cancers.

Immunohistochemical validation and western blot analysis for
the expression of DLGAPS5 in lung adenocarcinoma

Previous studies have shown that DLGAP5 is upregulated at
the mRNA level in LUAD. To determine whether DLGAP5
is also upregulated at the protein level, we performed
further investigation. Analysis of the HPA database revealed
that DLGAP5 was mainly expressed in the cytoplasm.
DLGAP5 expression in LUAD tissues was predominantly
strong or medium (Figs. 4A and 4B). In contrast, the
expression of DLGAP5 in normal tissues was either weak or
undetectable. To verify DLGAP5 protein expression, IHC
staining was performed using 30 pairs of samples collected
from the Sixth Affiliated Hospital, Sun Yat-sen University.
Representative images from three patients are displayed in
Figs. 4C-4E. DLGAP5 was found to be accumulated in
LUAD tissues, whereas its expression in normal tissues was

TABLE 3

Univariate and multivariate Cox regression analysis of different parameters on overall survival in lung adenocarcinoma (LUAD)

Characteristics Total Hazard ratio (HR) (95% CI)

p-value univariate

HR (95% CI) multivariate p-value multivariate

(n) univariate analysis analysis analysis analysis
DLGAP5 499 <0.001
Low 249 Reference
High 250 1.731 (1.290-2.323) <0.001 1.625 (1.141-2.315) 0.007
Age 489 0.421
<65 219 Reference
>=65 270 1.128 (0.841-1.514) 0.421
Sex 499 0.518
Male 230 Reference
Female 269 0.909 (0.682-1.213) 0.518
T 496 <0.001
T1+T2 433 Reference
T3+T4 63 2.259 (1.543-3.307) <0.001 2.049 (1.339-3.134) <0.001
N 488 <0.001
NoO 324 Reference
N+ 164 2.493 (1.858-3.344) <0.001 2.028 (1.431-2.874) <0.001
M 355 <0.001
MO 331 Reference
M1 24 2.879 (1.790-4.632) <0.001 2.055 (1.220-3.460) 0.007
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(B)

CancerCode pvalue Hazard Ratio(95%CI)
TCGA-LGG(N=465) 4.10E-13 1.41(1.28,1.55)
TCGA-KIRP(N=276) 3.40E-10 1.83(1.51,2.20)
TCGA-ACC(N=77) 9.40E-07 1.75(1.39,2.20)
TCGA-LIHC(N=341) 1.10E-06 1.32(1.18,1.47)
TCGA-KICH(N=64) 1.50E-06 1.78(1.37,2.32)
TCGA-LUAD(N=490) 2.70E-06 1.28(1.15,1.42)
TCGA-MESO(N=84) 5.20E-06 1.60(1.31,1.96)
TCGA-PAAD(N=172) 1.70E-05 1.53(1.26,1.86)
TCGA-KIRC(N=515) 3.70E-04 1.29(1.12,1.49)
TCGA-UVM(N=74) 2.20E-03 1.67(1.19,2.33)
TCGA-SARC(N=254) 9.50E-03 1.19(1.04,1.35)
TCGA-BLCA(N=398) 0.04 1.14(1.00,1.29)
TCGA-PCPG(N=170) 0.09 1.74(0.93,3.25)
TCGA-PRAD(N=491) 0.13 1.48(0.89,2.44)
TCGA-HNSC(N=509) 0.2 1.10(0.95,1.28)
TCGA-CESC(N=273) 0.28 1.18(0.87,1.61)
TCGA-CHOL(N=33) 0.29 1.42(0.75,2.66)
TCGA-BRCA(N=1044) 0.36 1.06(0.94,1.19)
TCGA-SKCM(N=444) 0.42 1.05(0.93,1.18)
TCGA-UCEC(N=165) 0.65 1.07(0.81,1.41)
TCGA-THCA(N=501) 0.66 1.09(0.73,1.64)
TCGA-GBM(N=144) 0.71 1.03(0.88,1.21)
TCGA-ESCA(N=175) 0.78 fooeei@eeeeees [ 1.04(0.81,1.32)
TCGA-THYM(N=117) 2.90E-03 [ ®---oee [ 0.61(0.43,0.87)
TCGA-COAD(N=278) 0.08 0.74(0.52,1.04)
TCGA-READ(N=90) 0.13 0.60(0.31,1.16)
TCGA-LUSC(N=468) 0.23 0.91(0.78,1.06)
TCGA-LAML(N=144) 0.27 0.90(0.75,1.09)
TCGA-DLBC(N=44) 0.28 0.71(0.38,1.32)
TCGA-STAD(N=372) 0.31 0.93(0.81,1.07)
TCGA-OV(N=406) 0.52 0.96(0.85,1.08)
TCGA-TGCT(N=128) 0.78 0.84(0.25,2.85)
TCGA-UCS(N=55) 0.81 0.94(0.54,1.61)

T
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FIGURE 3. Differential expression (A) and prognosis analysis (B) of DLGAP5 in pan-cancer (*p < 0.05; ***p < 0.001).

weak or absent. We found that DLGAP5 expression was
substantially higher in LUAD tissues compared with normal
tissues by randomly selecting five fields of view from each
sample and using Image J to calculate the average optical
density (AOD) (Fig. 4F). Furthermore, we analyzed the
expression of DLGAP5 between A549 and BEAS-2B cells
using western blotting. We found that DLGAP5
documented a significantly higher expression in A549
compared to BEAS-2B (Figs. 4G and 4H).

Genetic alteration and epigenetic analysis of DLGAP5 in lung
adenocarcinoma

One of the crucial factors influencing gene expression is
genetic alteration (Matharu and Ahituv, 2020). Hence, we
explored the genetic alteration status of DLGAP5 by
utilizing the cBioPortal database, which included a total of
11 datasets comprising 3745 patients with LUAD. The
OncoPrintanalysis revealed that genomic alterations in
DLGAP5 were present in 2% of patients (Fig. 5B). The
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FIGURE 4. Immunohistochemical validation and western blot analysis for the expression of DLGAP5 in LUAD. Immunohistochemical
staining analysis of DLGAP5 in LUAD from the Human Protein Atlas (HPA) dataset (A, B); Typical representatives of
immunohistochemical data of DLGAP5 in paired LUAD samples (C, D, E); The statistical results of the differential expression of DLGAP5
in 30 paired LUAD samples (F) (***p < 0.001); DLGAPS5 protein expression was explored by Western blot analysis and semiquantitative
analysis of data for each group, n = 3/group (G, H) (***p < 0.001).

mutation frequencies of DLGAP5 varied across different 2.5% in the TCGA dataset (Firehose Legacy) (Fig. 5A).
datasets, with 3.25% in the Broad dataset (Imielinski et al.,  Further examination demonstrated that the DLGAP5 gene
2012), 2.6% in the OncoSG dataset (Chen et al,, 2020), and  exhibited eight mutation sites (Fig. 5C).
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(*p < 0.05) (D).

Gene expression is regulated by various epigenetic
modifications, including DNA promoter methylation and
RNA m6A methylation, which play a role in the
development and progression of cancers (Chen et al., 2017).
In this study, we utilized the UALCAN database to
investigate the promoter methylation level of the DLGAP5
gene in LUAD tumor tissues compared with normal tissues.
The result indicated that the methylation of the DLGAP5
promoter in LUAD tumor tissues was markedly lower than
that in normal tissues (p = 0.031) (Fig. 5D). Furthermore,
we investigated the relationship between DLGAP5 and
m6A-methylation-related genes in LUAD. The analyses
showed that the high-DLGAP5-expression group exhibited
higher expression levels of the following genes: RBM15B,
METTL14, WTAP, ZC3H13, VIRMA, YTHDEF2, CBLLI,
RBM15, YTHDC1, YTHDEF3, IGF22BP1, YTHDEFI,
HNRNPA2B1, HNRNPC, FMR1, LRPPRC, and ELAVLI1
(Fig. 6A). Then, we performed a correlation analysis and
found significant positive correlations between DLGAP5
and several m6A-methylation-related genes, including
YTHDFI (r = 0.219, p < 0.001), YTHDF3 (r = 0.224, p <
0.001), HNRNPA2BI (r = 0.396, p < 0.001), IGF2BP1 (r =
0.392, p < 0.001), ELAVLI (r = 0.428, p < 0.001), LRPPRC
(r = 0490, p < 0.001), RBMI15B (r = 0.148, p < 0.001),
FMRI1 (r = 0.197, p < 0.001), RBM15 (r = 0.325, p < 0.001),
WTAP (r = 0.355, p < 0.001), CBLL1 (r = 0.383, p < 0.001),
VIRMA (r = 0.424, p < 0.001), and HNRNPC (r = 0.519, p
< 0.001) (Figs. 6B-6R). These findings suggest that RNA
m6A methylation and DNA promoter methylation may play
a crucial role in the epigenetic regulation of DLGAP5 in
LUAD.

Functional enrichment analysis of DLGAP5

To gain insights into the underlying mechanisms by which
DLGAP5 contributes to the poor prognosis of LUAD, we
conducted GO/KEGG analysis and identified a total of 442
DEGs, including 260 downregulated genes and 182
upregulated genes (Fig. 7A). The top 50 upregulated and
downregulated DEGs were used to generate a heat map
(Fig. 7B). Using the criteria p.adj < 0.05, qvalue < 0.05, and
count > 2, we analyzed DLGAP5-related DEGs and found
that they were involved in 415 biological processes, 92 cell
components, 51 molecular functions, and 11 KEGG
pathways. The top 10 items for KEGG, molecular functions,
cell components, and biological processes were displayed in
a bubble graph (Figs. 7C-7F). GO analysis revealed that
DLGAP5-related DEGs were primarily associated with cell
cycle, chromosome, carbohydrate derivative binding, and
other biological processes. KEGG pathway analysis revealed
their significant connections to cellular senescence, oocyte
meiosis, cell cycle, and other pathways. Moreover, utilizing
the single-cell CancerSEA database, we investigated the
association between DLGAP5 and 14 functional states in the
pan-cancer. The analyses revealed significantly strong
positive correlations between DLGAP5 and cell cycle (r =
0.71, p = 0.00), invasion (r = 0.67, p = 0.00), DNA repair (r
= 0.56, p = 0.00), proliferation (r = 0.56, p = 0.00), DNA
damage (r = 0.54, p = 0.00), EMT (r = 0.48, p = 0.00), and
metastasis (r = 045, p = 0.00) (Figs. 8A-8G). Taken
together, these findings provide further insight into the
functional implications of DLGAP5 in LUAD and its
association with critical processes involved in cancer
progression.
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FIGURE 6. Relationship between DLGAP5 expression and RNA m6A-methylation-related genes in LUAD. High-DLGAP5 expression group
with higher expression of METTL14, RBM15, RBM15B, WTAP, VIRMA, CBLL1, ZC3H13, YTHDCI, YTHDFI1, YTHDF2, YTHDEF3,

IGF22BP1, HNRNPA2B1, HNRNPC, FMR1, LRPPRC, ELAVLI1

YTHDEF3, HNRNPA2BI1, IGF2BP1, ELAVL1, LRPPRC, RBM15B, FMR1, RBM15, WTAP, CBLL1, VIRMA, and HNRNPC (B-R) (ns, p =

0.05; *p < 0.05; **p < 0.01; **p < 0.001).

The correlation between DLGAPS5 expression and immune cell
infiltration, ICP genes, and immunotherapy response in lung
adenocarcinoma

We employed two algorithms, the ESTIMATE score and
MCP-counter score to evaluate the relationship between
tumor immune infiltration and DLGAP5 expression in the
TCGA LUAD dataset using Sangerbox tools. In the

(A); DLGAP5 expression has positive correlation with YTHDFI,

ESTIMATE score analysis, the results showed that the high-
DLGAP5-expression group had a significantly lower Stromal
Score (p < 0.05), Immune Score (p < 0.05), and Estimate
Score (p < 0.05) compared with the low-DLGAPS5-
expression group (Figs. 9A-9C). The MCP-counter score
analysis showed that the high-DLGAP5-expression group
exhibited higher levels of CD8_T_cells (p < 0.001), higher
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FIGURE 7. Identification and functional analysis of DLGAP5-related differentially expressed genes (DEGs). The volcano plot depicts the 442
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Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis of DEGs in TCGA LUAD data (F).

levels of cytotoxic_lymphocytes (p < 0.001), lower levels of
B_lineage (p < 0.001), higher levels of NK_cells (p <
0.0001), higher levels of monocytic_lineage (p < 0.01), lower
levels of myeloid_dendritic_cells (p < 0.0001), lower levels of
neutrophils (p < 0.0001), lower levels of endothelial_cells (p
< 0.0001), and higher levels of fibroblasts (p < 0.001)
compared with the low-DLGAP5-expression group (Fig. 9D).

ICP genes affect the proliferation and development of
cancer cells by regulating immune surveillance (Muenst ef
al, 2016). To probe the potential role of DLGAP5 in
immunotherapy, we examined the relationships between
DLGAP5 expression and two main categories of immune
modulators in human cancers, revealing a correlation
between DLGAP5 and immune modulators across various
cancer types. We discovered that DLGAP5 expression

showed positive correlations with the majority of immune
inhibitors and immune stimulators in Glioma (GBMLAA),
LGG, Pan-kidney cohort (KIPAN), KIRC, Thyroid
carcinoma (THCA), UVM, Lymphoid Neoplasm Diffuse
Large B-cell Lymphoma (DLBC), LIHC, MESO, LUAD,
BLCA, Breast invasive carcinoma (BRCA), Prostate
adenocarcinoma (PRAD), Colon adenocarcinoma (COAD),
and Colon adenocarcinoma/Rectum (COADREAD).
Conversely, the DLGAPS5 expression exhibited negative
correlations with immune inhibitors and immune
stimulators in  Thymoma (THYM), Glioblastoma
multiforme (GBM), Lung squamous cell carcinoma (LUSC),
and Cervical squamous cell carcinoma (CESC). Notably, in
LUAD, DLGAP5 showed a strikingly strong positive
correlation with CD274 (PD-L1), LAG3, HAVCR2, and
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FIGURE 8. Correlation analysis between DLGAP5 and functional status of cancer cells by using the CancerSEA database. The correlation
between DLGAP5 and the functional status of cancer cells (cell cycle, invasion, DNA repair, proliferation, DNA damage, epithelial-

mesenchymal transition (EMT), and Metastasis) (A-G) (***p < 0.001).

CTLA4 (Fig. 10A). Furthermore, we utilized the TIDE
database to evaluate the effect of DLGAP5 on the
immunotherapy response in LUAD. The results revealed
that patients with higher DLGAP5 expression in the TCGA
cohort exhibited poorer responses to immunotherapy (Figs.
10B and 10C).

Discussion

A comprehensive understanding of the pathogenesis of LUAD
and the discovery of promising valuable biomarkers are
crucial for identifying potential therapeutic targets and
improving patient outcomes. The findings of our research
suggest that DLGAP5 may serve as a promising target for
the treatment and prognosis of LUAD. A previous report
has shown that DLGAP5 has a prognostic value in

non-small cell lung cancer (Wang et al, 2018), which is
consistent with our findings, supporting the significance of
DLGAPS5 in lung cancer. However, our study goes beyond
previous research by providing a comprehensive exploration
of the role of DLGAP5 in LUAD, including the analysis of
its association with genes involved in m6A modifications
and ICP.

Based on a comprehensive analysis of expression and
survival, we identified 10 hub genes (CDC45, KIAA0101,
DLGAP5, CDT1, NCAPG, CCNBI, CDCA5, CDC20,
KIF11, and AURKA) that might be associated with LUAD
progression. Notably, most of these genes have been studied
in the context of LUAD, further supporting their potential
significance in LUAD. For example, Huang et al. (2019)
identified CDC45 as an oncogene for lung cancer. Further,
KIAAO0101 has been characterized as a prognostic marker in
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LUAD, affecting the regulation of tumor immune infiltration
(Hu et al., 2020). Cao et al. (2021) have found that lung cancer
cell proliferation, viability, and cisplatin resistance are
inhibited by CDT1. Sun et al. (2022) identified NCAPG as
an important component in NSCLC oncogenesis and
progression, providing a potential target for NSCLC
treatment and prognosis prediction. Another study
discovered that CCNB1 upregulation facilitates the
progression of LUAD cells, which may be negatively
regulated by miR-139-5p (Bao et al., 2022). Li et al. (2021)
discovered that KIF11 is critical for the proliferation of
LUAD cancer cells and has potential as a promising
therapeutic target and independent prognostic factor for
LUAD patients. Another team demonstrated that AURKA
activity is necessary for epidermal growth factor receptor
(EGFR)-mutant lung adenocarcinoma cells to develop
resistance in response to EGFR inhibitors (Shah et al,
2019). Furthermore, Shen et al. (2022) found that silencing
the oncogene CDCAS5 induces apoptosis and Gl phase
arrest in LUAD cells via the p53-p21 signaling pathway.
Notwithstanding these findings, the underlying mechanism
of DLGAP5 in LUAD has seldom been analyzed
comprehensively.

In our study, we found that DLGAP5 expression was
upregulated in LUAD, as verified by our own samples in the
IHC and western blot experiments. Besides, we observed
that DLGAP5 expression, along with T, N, and M stages
had independent prognostic effects on the survival of LUAD
patients. Furthermore, the results of pan-cancer analysis
revealed differential expression of DLGAP5 in 30 types of
common tumors, with 12 of them exhibiting high DLGAP5
expression and poor prognosis. Interestingly, DLGAP5 was
shown to be associated with the prognosis of some kinds of
patients, including breast cancer, colorectal cancer,
endometrial cancer, liver cancer, and prostate cancer. These
findings, combined with our data, indicate the possibility of
a universal mechanism through which DLGAPS5 influences
tumor growth.

To study the reason behind the high expression of
DLGAP5 in LUAD, we utilized the c-BioPortal database to
explore the mutation profile of DLGAPS5. Interestingly, we
found that the mutation rate of in LUAD was only 2%,
which does not fully account for its high expression in
LUAD. In addition, we found hypomethylation in the
promoter region of DLGAP5 in LUAD tumor tissues
compared with normal tissues, which can partially explain
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the elevated mRNA levels of DLGAP5in LUAD tumors. RNA
m6A methylation plays a crucial role in the control of RNA
expression. Therefore, we conducted a correlation analysis
between DLGAP5 and m6A methylation-related genes,
discovering that they were strongly correlated in LUAD.
This suggested that the mechanism of m6A methylation
may be crucial in regulating DLGAP5 expression in LUAD.
Another study reported that the m6A methylation regulator
heterogeneous nuclear ribonucleoprotein C (HNRNPC)
promotes the growth and metastasis of non-small cell lung
cancer through its regulation of DLGAP5 (Shi et al., 2022),
which supports our findings. There may be additional
mechanisms, such as chromosomal histone modification or
RNA mlA/m5C modification, that contribute to the
upregulation of DLGAP5 in LUAD. However, these
potential mechanisms were not investigated given the scope
of this study.

To further study the molecular mechanisms of DLGAP5
in LUAD, we conducted GO and KEGG analyses. These
analyses revealed several signaling pathways related to
LUAD proliferation, invasion, and metastasis, including the
cell cycle, cell senescence, the p53 signaling pathway, and
DNA replication. Interestingly, these pathways have been
studied in LUAD. For instance, Kim et al. (2021) have
shown that PAF restructures the dimerization partner, RB-
like, E2F and multi-vulval class B (DREAM) complex to
promote lung tumorigenesis by circumventing cell
quiescence. Another report found that inhibition of dyskerin
pseudouridine synthase 1 (DKC1) induced telomere-related
cell senescence and apoptosis in LUAD (Kan et al., 2021).
Additionally, Wang et al. (2021) reported that the
autophagy-p53-Zebl axis can be utilized by cancer stem
cells for self-renewal, oncogenesis, and development.
Furthermore, another study found that DDX59 promotes
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DNA replication in LUAD (You et al., 2017). These findings
highlight the significance of the aforementioned signaling
pathways in LUAD and provide new directions for further
research. In our study, we employed the CancerSEA to
investigate the function of DLGAPS5 in LUAD at the single-
cell analysis level. We discovered a significant association
between DLGAP5 and the cell cycle (r = 0.71, p < 0.001),
which corroborates the findings of the GO and KEGG bulk
analyses. These results support the notion that DLGAP5
influences LUAD growth primarily by affecting cell cycle
regulation.

The TME is essential for promoting tumor growth,
invasiveness, and metastasis (Herndndez-Camarero et al.,
2021). We utilized the ESTIMATE score and MCP-counter
score to evaluate the involvement of DLGAP5 in the TME
of LUAD. Our results showed that the high-DLGAPS5-
expression group had a lower Stromal Score, lower Immune
Score, and lower Estimate Score, indicating higher tumor
purity. These findings indicate that DLGAP5 may affect
immune cell infiltration in the TME. Feng et al. (2021) also
reported a positive correlation between elevated DLGAP5
expression and immune infiltration level in clear cell renal
cell carcinoma, which supports our findings. Another study
found that DLGAP5 expression has a positive correlation
with Th2 cells and a negative correlation with NK cells in
bladder cancer (Rao et al., 2022). Moreover, we investigated
the association between ICP genes and DLGAP5 expression
and found a strikingly positive correlation between DLGAP5
and CD274 (PD-L1), LAG3, HAVCR2, and CTLA4. These
genes are among the biomarkers of T-cell exhaustion
(Wherry, 2011), which refers to the impairment or loss of
T-cell functions in patients with chronic infections or
cancer. Hence, the expression of DLGAP5 may contribute to
T-cell exhaustion within the TME in LUAD. Lastly, we used
the TIDE database to evaluate the impact of DLGAP5 on
the efficacy of immunotherapy in LUAD. Our analysis
revealed that patients with high DLGAP5 expression
exhibited poorer responses to immunotherapy. Collectively,
these findings suggest that DLGAP5 could be a valuable
immunotherapeutic target for LUAD.

Our study has some limitations that should be noted
before making broad conclusions. First, this work relied
primarily on bioinformatics analysis. Therefore, further in
vivo and in vitro studies are needed to validate the potential
role of DLGAP5 in LUAD. Second, this research utilized
retrospective data, which may introduce potential biases and
confounding factors. Thus, future prospective studies are
warranted to verify our findings. Third, the lack of clinical
trials evaluating anti-DLGAP5 therapeutic monoclonal
antibodies is a limitation. As a result, the absence of
concrete examples and clinical data hinders our ability to
demonstrate the efficacy of anti-DLGAP5 drugs in
prolonging survival in LUAD patients.

In summary, our research findings indicate that
DLGAPS5 is upregulated in LUAD, and its expression level is
associated with the prognosis of LUAD patients. DLGAP5
seems to exert significant effects on LUAD cell proliferation
and invasion through various mechanisms, including
regulation of cell-cycle checkpoints and modulation of
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immune cell infiltration and immune checkpoints in the
TME. These findings suggest that DLGAP5 holds promise
as a therapeutic target and potential prognostic biomarker
for LUAD. Further in vitro and in vivo studies are necessary
to confirm our observations and elucidate the precise role of
DLGAP5 in LUAD.
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