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Abstract: Cardiovascular diseases (CVDs) are the leading cause of death globally. CVDs are a group of disorders of the

heart and blood vessels and include coronary heart disease, cerebrovascular disease and rheumatic heart disease among

other conditions. There are multiple independent risk factors for CVD, including hypertension, age, smoking, insulin

resistance, elevated low-density lipoprotein cholesterol (LDL-C) levels, and triglyceride levels. LDL-C levels have

traditionally been the target for therapies aimed at reducing CVD risk. High density lipoprotein (HDL) constitutes the

only lipoprotein fraction with atheroprotective functions. Early HDL-targeted therapies have focused on increasing

HDL-C levels. However, clinical trials have shown that raising HDL-C with niacin failed to achieve CVD reduction. A

possible explanation for these findings is that these drugs could interfere with lipid metabolism and cause alterations

in HDL structure and composition, leading to loss of functionality. As a result, targeting HDL-C levels would be

insufficient to achieve CVD risk reduction, making HDL functionality a more desirable focus for HDL-directed

therapies. There are several drugs which show the potential to improve HDL functionality. These drugs include

molecules already approved for human use, such as statins and niacin, and particularly, compounds currently

undergoing development such as apolipoprotein A-I mimetics and reconstituted HDL preparations. These therapies

show promising potential to improve HDL functionality specifically. Future therapeutic strategies should incorporate

HDL functionality as a main target of interest.

Introduction

HDL as a therapeutic target
Cardiovascular diseases (CVDs) stand as the primary global
cause of mortality, accounting for 17.9 million fatalities
annually. CVDs encompass a range of heart and blood
vessel disorders, including coronary heart disease,
cerebrovascular disease, and rheumatic heart disease, among
other conditions (Cardiovascular Diseases). Numerous
distinct risk factors contribute to the development of CVD,
such as hypertension, age, smoking, insulin resistance,
elevated concentration of low-density lipoprotein cholesterol
(LDL-C), and triglyceride levels (Linton et al., 2019; Huang
et al., 2020). In the majority of individuals, atherosclerotic

plaques start to form during young adulthood, emphasizing
the importance of focusing on plaque regression as the
preferred therapeutic strategy (Huang et al., 2020). LDL-C
levels have traditionally been the target for therapies aimed
at reducing CVD risk (Karalis, 2009). However, despite 78
weeks of treatment, the most potent LDL-lowering agent,
the proprotein convertase subtilisin/kexin type 9 (PCSK9)
inhibitor evolocumab, only resulted in a modest regression
of coronary atheroma volume, as measured through serial
coronary intravascular ultrasound, with a decrease of just
0.95%, despite lowering LDL-C levels by 60% (Nicholls
et al., 2016; Puri et al., 2016).

For quite some time, it has been established that
decreased levels of high density lipoprotein cholesterol
(HDL-C) in the bloodstream is associated with increased risk
of atherosclerotic CVD (Miller and Miller, 1975; Gordon
et al., 1977). Remarkably, HDL constitutes the only
lipoprotein fraction with atheroprotective functions (Navab
et al., 2011). These functions include its ability to promote
reverse cholesterol transport (RCT) and its antioxidant,
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antiinflammatory and antiapoptotic activities, among others
(Navab et al., 2011). Traditionally, HDL particles have been
evaluated in the clinical setting by measuring their
cholesterol content and the concentration of their main
apolipoprotein (apo), apo A-I (Walldius and Jungner, 2007).
In this context, it is worth discussing the role of cholesteryl
ester transfer protein (CETP) and lecithin:cholesterol
acyltransferase (LCAT). CETP plays a crucial role in HDL
metabolism by facilitating the transfer of cholesteryl esters
from HDL to apolipoprotein (apo) B-containing lipoproteins
in exchange for TG. Thus, CETP deficiency has been
associated with an increase in HDL particle size and HDL-C
content, while CETP overexpression has been linked to
smaller HDL particles and a decrease in HDL-C levels
(Chapman et al., 2010). On the other hand, LCAT is an
enzyme whose function is to convert free cholesterol to
esterified cholesterol, increasing its hydrophobicity. As a
result, cholesterol is sequestered towards the core of the
lipoprotein particle, causing it to acquire a spherical shape
(Dobiásová and Frohlich, 1999). Deficiency in the activity of
this enzyme is associated with low levels of HDL-cholesterol
(HDL-C) (Calabresi et al., 2012). However, there is
controversy regarding the association between this deficiency
and an increased risk of atherosclerosis (Savel et al., 2012).

Early HDL-targeted therapies have focused on increasing
HDL-C levels. Indeed, significant strides have been taken to
increase plasma HDL-C levels with medications like niacin
and CETP inhibitors (Huang et al., 2020; Mani and Rohatgi,
2015; Tall and Rader, 2017). Nevertheless, clinical trials have
demonstrated that raising HDL-C levels with niacin did not
result in a reduction in CVD (Mani and Rohatgi, 2015;
Hung et al., 2019). Similar findings have been observed with
CETP inhibitors (Tall and Rader, 2017; Bowman et al.,
2017). One plausible explanation for these outcomes is that
these drugs might affect lipid metabolism, inducing changes
in the structure and composition of HDL, ultimately leading
to a loss of its functional properties (Marsche, 2015). It is
worth noting that plasma HDL particles exhibit significant
heterogeneity in terms of their structure, size, composition,
and biological roles, that may explain why measures of
HDL-C and cardiovascular risk do not always correlate well.
HDL can be separated by sequential ultracentrifugation on
the basis of density, resulting in the large buoyant HDL2
and the small dense HDL3, which can be further
subfractionated into 5 distinct subpopulations (HDL2b,
HDL2a, HDL3a, HDL3b and HDL3c) (Camont et al., 2011).
HDL subpopulations interact with different cellular
receptors to remove excess cholesterol from cells, a key
pathway by which HDL may contribute to atheroprotection
(Camont et al., 2011). In fact, elevating HDL-C levels
through pharmaceutical means using niacin and CETP
inhibitors can potentially impact HDL subpopulations,
resulting in elevated cholesterol levels within HDLs and an
enlargement of HDL particles (Zanoni et al., 2016; Timón-
Zapata et al., 2011; Madsen et al., 2018). When compared to
the smaller, denser HDL3 particles, these larger HDL
subtypes may not interact as effectively with ATP-binding
cassette transporter A1 (ABCA1) and ABCG (Marsche,
2015). The interaction between HDL with ABCA1 and

ABCG1 is crucial in facilitating the process of cholesterol
efflux from macrophages to HDLs, which represents the
initial step of RCT. Moreover, CETP inhibition could
increase insulin resistance and cause fatty liver in CETP
expressing transgenic mice fed with a high-fat diet (Zhu
et al., 2018). Importantly, there is compelling evidence
indicating that the capacity of HDL to promote cholesterol
efflux is inversely correlated with CV events, even after
adjusting for other risk factors, such as HDL-C and apo A-I
levels (Rohatgi et al., 2014; Ebtehaj et al., 2019).
Nevertheless, it remains challenging to determine,
considering both clinical and biological perspectives,
whether certain subfractions exhibit superior in vivo
antiatherogenic properties than others. This may be
attributed to the fact that the antiatherogenic functions
exerted by HDL are based on dynamic processes, and static
assessment of isolated particles would not reflect the
coordinated work that different subfractions exert in vivo.
As a result, targeting HDL-C levels would be insufficient to
achieve CVD risk reduction, making the incorporation of
total HDL functionality a desirable outcome for HDL-
directed therapies.

HDL components
HDL is a circulating heterogenic complex of about 50% lipids
and 50% proteins, which in circulation carries different
enzymes and lipid transport proteins. In fact, proteomic and
lipidomic studies have identified hundreds of individual
proteins and more than 200 lipid species in these particles
(Kontush et al., 2013; Davidson et al., 2022).

Regarding HDL lipidome, it is well known that HDL
particles carry free cholesterol, cholesteryl esters and
triglycerides (Kontush et al., 2013). In addition, they also
contain numerous lipid species such as sphingomyelin,
ceramide, phosphatidylcholine, lysophosphatidylcholine,
phosphatidic acid, phosphatidyl serine, and sphingosine-1
phosphate, among others (Kontush et al., 2013; Brites et al.,
2017).

In terms of HDL proteome, apo A-I and apo A-II
constitute the two most abundant apolipoproteins present in
HDL particles (Davidson et al., 2022). Beyond them, HDLs
also contain apo A-IV, apo C-II, apo C-III, apo C-IV, apo
D, apo E, apo F, apo H, apo J, apo L-1 and apo M (Brites
et al., 2017; Heinecke, 2009). Moreover, in plasma, HDL is
associated to enzymes and lipid transport proteins
responsible for its metabolism such as LCAT, phospholipid
transfer protein (PLTP) and CETP (Brites et al., 2017). In
addition, HDL particles can become enriched in
proinflammatory and prooxidant markers, such as serum
amyloid A (SAA) 1, SAA 2, SAA 4 and myeloperoxidase
(Heinecke, 2009). In contrast HDL carries several
antioxidant enzymes like paraoxonase (PON) 1, PON 3,
glutathione peroxidase 3 and lipoprotein-associated
phospholipase A2 (Brites et al., 2017). Finally, there are
additional proteins associated with HDL (more than 200),
that are relatively scarce and often only weakly bound to
HDL particles. Despite their low abundance, these auxiliary
proteins may play crucial roles in different biological
processes (Davidson et al., 2022; Goetze et al., 2021).
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The presence and interaction of these lipids, proteins and
enzymes determine HDL atheroprotective capacity,
highlighting the importance of HDL individual components.

HDL functionality
HDL particles present multiple atheroprotective activities.
Among these, the two most studied are their capability to
facilitate RCT and to inhibit the oxidation of LDL particles.
(Brites et al., 2017; Toth, 2003). As previously mentioned,
RCT involves multiple steps, with the first being the
promotion of cholesterol efflux from cells to HDL particles
(Martin et al., 2022). The second and third steps are carried
out by LCAT and CETP, respectively (Martin et al., 2022).
However, it should be noted that HDL has other properties
such as its antiinflammatory, antithrombotic and
antiapoptotic activities. In particular, HDL suppresses the
expression of adhesion molecules on endothelial cells,
consequently reducing the recruitment of blood monocytes
to the arterial wall, in addition to inhibiting cytokine
expression on these inflammatory cells (Barter et al., 2004).
HDL also increases nitric oxide (NO) production through
upregulation of endothelial NO synthase (eNOS) expression.
In fact, HDL stimulates eNOS through activation of the
kinase cascade by HDL scavenger class B receptor type 1
(SRB1) (Mineo et al., 2006; Kosmas et al., 2018). HDL’s
antithrombotic role can be manifested by stimulating
prostacyclin synthesis, as well as by reducing tissue factor
and selectin expression, resulting in the subsequent
suppression of thrombin generation via the protein C
pathway, inhibiting platelet activation (Mineo et al., 2006;
Kosmas et al., 2018). Furthermore, the potential

cytoprotective impact of HDL on endothelial cells may
involve the inhibition of the apoptotic pathway responsible
for endothelial cell self-destruction, achieved through a
reduction in the activity of P32-like proteases (Kosmas
et al., 2018; Sugano et al., 2000). Fig. 1 shows the main
cardioprotective functions of HDL.

Alterations in HDL functionality in different pathologies
Different pathologies can affect HDL quality and
functionality. In particular, dysfunctional HDL particles are
frequently found in pathologies characterized by the
presence of inflammation and oxidative stress (Bonizzi et al.,
2021). Our group has described alterations of HDL
functionality in multiple pathologies. In a prior study we
reported impaired capacity to promote cholesterol efflux in
HDL from patients with metabolic diseases such as
hypertriglyceridemia, obesity and type 2 diabetes (Martin
et al., 2022; Brites et al., 1999, 2000). Furthermore, we also
reported impaired cholesterol efflux in pathologies that
affect iron metabolism like iron deficiency and iron overload
(Meroño et al., 2015, 2017). Moreover, we described
diminished cholesterol efflux in an autoimmune pathology
such as rheumatoid arthritis (Pierini et al., 2021). In
addition to alterations in reverse cholesterol transport, our
group also reported impaired HDL antioxidant activity in a
wide array of pathologies such as metabolic syndrome, type
2 diabetes, obesity, iron deficiency, iron overload and
rheumatoid arthritis (Martin et al., 2022; Gomez Rosso
et al., 2017, 2014; Gómez Rosso et al., 2008; Meroño et al.,
2011; Meroño et al., 2010). Furthermore, other authors have
described alterations in HDL functionality in pathologies

FIGURE 1. HDL multiple atheroprotective activities. 1) Inhibits the expression of adhesion molecules on endothelial cells and thus decreases
the recruitment of blood monocytes to the arterial wall. 2) Antithrombotic function: Inhibits platelet activation by activating prostacyclin
synthesis and attenuating tissue factor and selectin expression, regulating negatively thrombin generation through the protein C pathway.
3) Antiapoptotic function: prevention of the suicide pathway on endothelial cells. 4) Anti-inflammatory function: Inhibits cytokine
expression. 5) Anti-oxidant function: prevents the oxidation of LDL particles. 6) Promotes RCT by promoting cholesterol efflux from cells
to HDL particles. HDL, high density lipoprotein; LDL, low density lipoprotein.
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such as cancer (Ganjali et al., 2019), endocrine disorders (van
der Boom et al., 2020) and autoimmune diseases (Sánchez-
Pérez et al., 2020).

Evaluation of HDL functionality
The complexities of HDL metabolism offer a huge challenge
that researchers must face and that are relevant to the
understanding of human biology to transform them into
clinical tools. To assess the issue of HDL function as a
potential therapeutic target, robust and simple analytical
methods are required for its evaluation. In this regard, the
complex pleiotropic effects of HDL make the development
of a single measurement challenging. Laboratory assays that
accurately measure HDL functionality must be developed,
validated and brought to high-throughput for clinical
purposes (Hafiane and Genest, 2015; Sacks and Jensen,
2018). Furthermore, HDL particles present multiple
atheroprotective functions, so developing a single measure
that can account for all of HDL properties makes the
challenge even greater (Hafiane and Genest, 2015). A major
confounding factor that makes the development of
standardized assays difficult is the method by which HDL
particles are isolated (Hafiane and Genest, 2015). Indeed,
HDL can be isolated by selective precipitation,
ultracentrifugation and electrophoresis, among other
methods (Hafiane and Genest, 2015). These techniques can
influence the results observed. Cholesterol efflux has
received much attention as a biomarker that could reflect
HDL functionality in vivo (Sacks and Jensen, 2018).
Nevertheless, it remains unclear whether therapies directed
at increasing cholesterol efflux can be atheroprotective
(Ronsein and Heinecke, 2017). Furthermore, even though
increasing HDL-C levels has shown little benefit to CVD,
there is no doubt about the inverse association between
HDL-C and CVD. However, the benefit of HDL-C appears
to plateau at 61 mg/dL (Pownall and Gotto, 2019;
di Angelantonio et al., 2009). In our opinion, the preferable
approach to HDL-directed therapies should seek to achieve
a balance between classic measures of HDL status such as
HDL-C and new measures that better reflect HDL quality.

HDL Functionality and Pharmacological Therapy

There are several drugs in use or in development which show
the potential to improve HDL functionality in conditions that
show impairment of these atheroprotective functions. These
therapies include, niacin, CETP and PCSK9 inhibitors,
recombinant LCAT, statins, pioglitazone, metformin,
ezetimibe, fibrates, lomitapide, RNA based drugs, apo A-I
mimetics and rHDL (Niacin-Health Professional, 2022; Wu
and Zhao, 2009; Zhang et al., 2017; Ward et al., 2019;
Muñoz-Hernandez et al., 2018; Durairaj et al., 2017;
Weinreich and Frishman, 2014; Smith, 2001; Rena et al.,
2017; Islam et al., 2018; Darabi et al., 2016). Therefore, these
drugs which have been shown to be capable of affecting
HDL functionality will be the main subject of the present
review.

Niacin
Niacin is available in two forms, oral extended-release tablets
(ERT) and immediate-release tablets (IRT). Administration of
1 to 3 grams per day of ERT has been shown to lower serum
LDL-C levels while elevating HDL-C levels. Fig. 2 shows
niacin proposed mechanism of action. IRT are available in
formulations ranging from 50 to 500 mg. It is advisable to
initiate therapy with the lowest feasible dosage to minimize
the occurrence of adverse reactions (Djadjo and Bajaj,
2023). Niacin adverse effects include severe skin flushing,
tachycardia, palpitations, diarrhea and nausea (Habibe and
Kellar, 2023). Niacin can also present adverse interactions
with alcohol, antidiabetic drugs, and statins among others
(Habibe and Kellar, 2023). Evidence suggests that several
genetic markers associated with levels of traditional lipid
parameters such as TG, LDL-C and HDL-C can influence
the response to niacin treatment (Tuteja et al., 2018). Niacin
originally received approval from the US Food and Drug
Administration (FDA) for the purpose of secondary
prevention of CVD (Kamanna et al., 2009). Over time, its
approved indications were expanded to include managing
primary hyperlipidemia and mixed dyslipidemia, reducing
triglyceride levels, and preventing CV events when

FIGURE 2. Hypothetical hypolipidemic mechanisms of niacin. Niacin inhibits adenylyl cyclase, resulting in decreased activation of protein
kinase A (PKA) and cAMP levels, which together lead to reduced lipolysis. As a result, free fatty acid (FFA) plasma levels drop, and triglyceride
(TG) synthesis and apolipoprotein C3 (apo C3) expression in the liver are reduced, leading to decreased very low-density lipoprotein (VLDL)
formation. In addition, in vitro studies suggest that niacin also reduces TG synthesis and VLDL secretion by a direct inhibitory effect on
diacylglycerol acyltransferase 2 (DGAT2). HSL, hormone sensitive lipase; ATGL, adipose TG lipase.
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combined with statins (D’Andrea et al., 2019). However, the
FDA has recently announced withdrawal of previously
approved indications for the use of extended-release niacin
co-administered with a statin, based on evidence showing
that reducing triglycerides or raising HDL-C with any drug
does not improve CV risk in patients on statins (Ronsein
et al., 2021). In accordance, a recent study quantifying the
HDL proteome of subjects in 2 niacin clinical trials, the
CPC study (Carotid Plaque Composition) and the HDL
Proteomics analysis of the AIM-HIGH trial
(Atherothrombosis Intervention in Metabolic Syndrome
with Low HDL/High Triglycerides), showed that adding
niacin to statin therapy increases the abundance of auxiliary
proteins linked to atherogenesis, suggesting a possible
explanation why niacin therapy fails to provide
cardioprotection (Masana et al., 2015).

Regarding HDL function, pharmacological treatment
with niacin reduced CETP and LCAT mass and activity in
type 2 diabetic patients. In addition, HDL antioxidant
associated enzymes, PON1 and Lp-PLA2, were signicantly
decreased. However, niacin treatment was not associated
with modifications of the oxidative process according to the
lipoperoxide concentration in apo B-depleted plasma, which
is an indirect index of HDL oxidation, and the capability of
HDL to protect LDL against oxidation (Yvan-Charvet et al.,
2010). In addition, another study showed that niacin
treatment increased HDL cholesterol efflux from
macrophage foam cells and inhibited inflammatory
responses induced by toll-like receptor 4 (Yvan-Charvet
et al., 2010; Lukasova et al., 2011). Finally, a mouse model
study has demonstrated that, in response to niacin, the G-
protein coupled receptor, hydroxycarboxylic acid receptor-2
(HCAR2) on monocytoid cells and macrophages leads to
suppression of inflammatory responses and increased
cholesterol efflux (Lukasova et al., 2011). This evidence
suggests a new potential application for niacin in
pharmacology.

CETP inhibitors
In the bloodstream, CETP predominantly associates with
HDL and plays a key role in facilitating the transfer of
cholesteryl ester and triglycerides between HDL particles
and apolipoprotein B-containing lipoproteins, as well as
among different subtypes of the latter (Barter et al., 2003).
Studies using pharmacological CETP inhibitors have shown
promising results in animal models, with reductions in
atherosclerotic plaque burden when CETP activity was
inhibited (Nelson et al., 2022). Nevertheless, different
clinical trials using orally taken pharmacological CETP
inhibitors torcetrapib, dalcetrapib, evacetrapib, and
anacetrapib have shown that the risk of CVD did not
decrease even when substantial increases in HDL-C levels
were achieved (Barter et al., 2007; Nicholls et al., 2017;
Lincoff et al., 2017; Schwartz et al., 2012). Furthermore,
some CETP inhibitors showed adverse effects such as
increased blood pressure, inflammation and mortality
(Taheri et al., 2020; Tardif et al., 2017). Genetic
polymorphisms are one of the factors that could influence
individual response to CETP inhibition and contribute to
explain the results discussed above. In this regard, a

pharmacogenomics study reported that dalcetrapib could
lead to a significant reduction of cardiovascular events only
in the carriers of the AA genotype for the rs1967309 single-
nucleotide polymorphism of adenylate cyclase 9 (Tardif
et al., 2015). However, these results could not be confirmed
in a later study carried out in patients who presented acute
coronary syndrome (Tardif et al., 2022).

Pharmacological CETP inhibition may result in the
dysfunction of HDL by extending the half-life of HDL
particles. This can, in turn, make them more vulnerable to
adverse changes in their lipid and protein composition, as
well as oxidative and enzymatic modifications of their
protein and/or lipid components (von Eckardstein, 2022).
However, different studies in human patients showed that
cholesterol efflux was rather increased upon treatment with
CETP inhibitors (Brodeur et al., 2017; Metzinger et al.,
2020; Nicholls et al., 2015).

A recent work showed that the CETP inhibitors
evacetrapib and torcetrapib increase apo A-I in HDL
subspecies that also contain apo C-III (Furtado et al., 2022).
The presence of apo C-III on HDL that also contain apo E
eliminates its protective association against coronary heart
disease by impairing metabolic pathways active in RCT that
carries cholesterol from macrophages to the liver (Morton
et al., 2018). By contrast, in another study including 377
dyslipidemic patients, evacetrapib monotherapy increased
dose-dependent total and non–ABCA1-specific cell
cholesterol efflux and also increased ABCA1-specific cell
cholesterol efflux. Comparing with statin monotherapy,
evacetrapib associated with statins also increased total, non–
ABCA1- and ABCA1-specific cell cholesterol efflux
(Nicholls et al., 2015), suggesting that cholesterol efflux
capacity is substantially increased when potent CETP
inhibitors are used alone vs. when they are added to statins.

These results reveal the complex effects of potent CETP
inhibition on HDL remodeling and function that require
further investigation.

PCSK9 inhibitors
A promising area of research is the inhibition of PCSK9, a
protein that plays a key role in regulating cholesterol levels
in the body. PCSK9 works by binding to LDL receptors
(LDLr) on the surface of liver cells, causing the receptors to
be internalized and degraded (Suchowerska et al., 2022).
Fig. 3 shows PCSK9 mechanism of action. At present, there
are two FDA-approved monoclonal antibodies that
effectively inhibit the activity of PCSK9: alirocumab and
evolocumab. Both can be administrated subcutaneously
every two weeks or once monthly, depending on the dose
(Tsouka et al., 2018). Recently, both the European Union
and the FDA have granted approval for inclisiran, which is
a small interfering mRNA designed to hinder the
intracellular synthesis of PCSK9. The recommended dosing
regimen involves an initial 284 mg subcutaneous injection,
followed by another injection at 3-month, and subsequent
injections every 6 months thereafter (Ray et al., 2023). The
elevated cost of this particular treatment and the route of
administration have a significant impact on the adherence
of patients to this pharmacological alternative. The most
common side effects of PCSK9 inhibitors are injection-site
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reactions and Influenza-like symptoms (Gürgöze et al., 2019).
Pharmacogenomic studies carried out in individuals with
familial hypercholesterolemia have reported that the efficacy
of PSCK9 inhibitors such as evolocumab and alirocumab are
affected by polymorphisms in apo B, low density lipoprotein
receptor (LDL-R) and LDL-R adapter protein 1 genes
(Hindi et al., 2021). Remarkably, a recent metanalysis
provided evidence that the efficacy of PCSK9 inhibitors
could be similar for different ethnicities (Sawant and Wang,
2023).

The interaction between human PCSK9 and HDL
particles remains a subject of ongoing debate, and research
findings in this regard vary. Some recent studies have
indeed indicated that PCSK9 binds to HDL in the
bloodstream (Dafnis et al., 2022; Burnap et al., 2020),
whereas another study did not find any association
(Kosenko et al., 2013). An important question that has
arisen in the context of PCSK9 inhibition is its potential
effect on HDL function. Recent research has suggested that
PCSK9 inhibitors may have a negative effect on HDL
function, while other studies have found no such effect or
even a beneficial effect on HDL function. In this context, an
earlier study has proposed that PCSK9 hinders ABCA1-
dependent cholesterol efflux from macrophages when apo
A-I is present as the acceptor (Adorni et al., 2017a).
Additionally, another study has demonstrated that PCSK9
impedes ABCA1-mediated cholesterol efflux from
macrophages. This inhibition, attributed to the
downregulation of the Abca1 gene and ABCA1 protein
expression, implies that PCSK9 may have extrahepatic

effects that can potentially impact key aspects of
atherosclerosis development, such as the formation of
foam cells. (Adorni et al., 2017b). In addition, a recent
investigation has indicated that PCSK9 may have an impact
on the functional properties of HDL. Specifically, it was
found that PCSK9 reduces HDL’s ability to facilitate
endothelial cell migration and hinder the formation of
reactive oxygen species. Conversely, deactivating PCSK9
within HDL appears to enhance the atheroprotective
functions of HDL (Dafnis et al., 2022). In contrast, Palumbo
et al. (2022) evaluated a cohort of heterozygous familial
hypercholesterolemic patients and observed that inhibition
of PCSK9 has been shown to markedly enhance HDL
cholesterol efflux, primarily through pathways involving
ABCG1 and aqueous diffusion. Additionally, it reduces the
serum’s ability to load macrophages with cholesterol, which
is considered a proatherogenic marker and is associated
with an elevated CV risk (Adorni et al., 2019).

Recombinant LCAT
About 90% of esterified cholesterol in plasma is synthesized by
LCAT. Thus, LCAT plays a crucial role in HDL metabolism
and RCT (Vitali and Cuchel, 2021). However, studies in
humans and animals reported different results (Duan et al.,
2022).

Recently, 2 different recombinant human LCAT enzymes
(MEDI6012 and ACP-501) where shown to be safe in clinical
studies including subjects with stable CVD (George et al.,
2021; Shamburek et al., 2016). Hence, in a phase 2a double-
blind study, 48 subjects with stable coronary heart disease

FIGURE 3.Mechanism of action of anti-proprotein convertase subtilisin kexin 9 (PCSK9) monoclonal antibodies. 1) PCSK9 binds to the low
density lipoprotein receptor (LDLR) and directs it for degradation in lysosomes; 2) Anti-PCSK9 antibodies bind to PCSK9 and prevent it from
attaching to LDLr; 3) Without PSK9 attached, LDLR can be recycled to the cell surface increasing the uptake of LDL particles from circulation.
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were randomized on a statin to a single dose of MEDI6012 or
placebo. Administration of recombinant LCAT resulted in
dose-dependent increases in global and non-ABCA1 cell
cholesterol efflux (George et al., 2021), suggesting that
treatment with MEDI6012 may enhance RCT. In addition,
in a phase I trial, infusion of ACP-501 was shown to
increase HDL-C levels, cholesterol efflux and to favorably
alter HDL metabolism, decreasing small and intermediate-
sized HDL, and increasing large HDL particles (Shamburek
et al., 2016).

More recent, findings suggest that, in addition to
improving RCT, LCAT treatment may also improve other
antiatherogenic properties of HDL, such as its ability to
stimulate NO production from endothelial cells. HDL
isolated from patients with myocardial infarction (MI)
progressively lose the capacity to promote NO production
by endothelial cells, and the reduction is related to
decreased LCAT concentration. In vitro incubation of MI
patients’ plasma with recombinant human LCAT restores
HDL ability to promote endothelial NO production,
possibly related to significant modification in HDL
phospholipid classes (Ossoli et al., 2019).

It should be noted that both MEDI6012 and ACP-501 are
administered subcutaneously, representing a noteworthy
challenge in terms of patient adherence (Yang et al., 2022a).
In addition, adverse effects of recombinant LCAT therapy
seem to involve skin and subcutaneous issue disorders
(Shamburek et al., 2016).

Statins
Statins are the most common drugs used for the treatment of
dyslipidemia (Ward et al., 2019). Statins are selective
inhibitors of β-hydroxy-β-methylglutaryl coenzyme A
reductase (HMGCR), an enzyme involved in cholesterol
synthesis (Ward et al., 2019). Fig. 4 shows statins
mechanism of action. Side effects of statins include
fibromyalgia, headache, dizziness and tiredness (Side Effects,
2022). Moreover, statins present harmful interactions with
some immunosuppressors, protease inhibitors and
antibiotics (Side Effects of Metformin, 2022). Most statins
are orally administered once daily and peak plasma
concentrations achieved in 1–3 h. It takes about 6 weeks
before LDL-C levels are stabilized (Ward et al., 2019).
Pharmacogenomics studies on statins have reported several
genes that could influence both the response to these drugs
and the apparition of adverse effects (Zineh, 2007;
Canestaro et al., 2014). The effect of these genes would
depend on the specific statin considered (Zineh, 2007).
Similarly, polymorphisms in genes involved in lipid
metabolism such as ABCA 1, LDL-R and HMGCR can
influence the efficacy of statins (Hindi et al., 2021).
Moreover, there is evidence of interracial differences in the
response to statins (Lee et al., 2005). However, a later
metanalysis reported that response to statins would be
similar regardless of ethnicity (Sawant and Wang, 2023). On
the other hand, statin effect on HDL functionality remains
controversial (Muñoz-Hernandez et al., 2018; Lamon-Fava,
2013). In this regard, in a recent study, HDL proteome
correlated with statin use, reporting a less antiatherogenic
proteome in HDL3 particles from patients with type 1

diabetes mellitus (Toyoshima et al., 2023). On the other
hand, in a study carried out in hypercholesterolemic
patients both pravastatin and atorvastatin showed no effect
on cholesterol efflux (Khera et al., 2011). In another study,
atorvastatin failed to increase cholesterol efflux to total
HDL, HDL2b and HDL3c in diabetic patients (Muñoz-
Hernandez et al., 2018). Similarly, atorvastatin showed no
effect in cholesterol efflux to apo B-depleted plasma in
normolipidemic men (Ying et al., 2022). Furthermore,
atorvastatin and simvastatin have been shown to decrease
ABCA1 expression in macrophages and peripheral
mononuclear cells (Qiu and Hill, 2008; Genvigir et al.,
2010). Nevertheless, this effect could be abolished by loading
the macrophages with cholesterol (Song et al., 2011).
Moreover, statins would reduce the activity of CETP and
PLTP, both involved in HDL metabolism and maturation
(de Haan et al., 2008; Karalis et al., 2010). On the contrary,
pitavastatin and, to a lesser extent, atorvastatin and
simvastatin would increase ABCA1 expression in
hepatocytes (Maejima et al., 2011). In fact, pitavastatin (but
not atorvastatin) could increase ABCA1 half-life in
hepatocytes (Kobayashi et al., 2011). Consistently,
pitavastatin would increase HDL ability to promote
cholesterol efflux and its antioxidant activity (Pirillo and
Catapano, 2017; Miyamoto-Sasaki et al., 2013). In another
study, atorvastatin alone or in combination with ezetimibe
increased cholesterol efflux in a randomized clinical trial
(Lee et al., 2017). Similarly, simvastatin with or without
benzafibrate increased cholesterol efflux, but not HDL
antioxidant and antiinflammatory activities in diabetic
patients (Triolo et al., 2014). Moreover, rosuvastatin
increased cholesterol efflux and PON 1 concentration in

FIGURE 4. Mechanism of action of statins. Statins inhibit 3-
hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase in
hepatocytes. HMG-CoA reductase catalyzes the conversion of
HMG-CoA into mevalonate, a key step for cholesterol synthesis,
leading to reduced cholesterol availability. LDL, low density
lipoprotein.
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diabetic patients (Naresh et al., 2021). Consistently, in vitro
studies show that statins could promote PON 1 activity
(Marathe et al., 2019). Moreover, in a study carried out in
vitro, rosuvastatin inhibited foam cell formation and
stimulated ABCA1 and ABCG1 expression by promoting
autophagy in macrophages (Zhang et al., 2021). Similarly,
atorvastatin increased cholesterol efflux by promoting foam
cell lipophagy (Zheng et al., 2021). Furthermore, pravastatin
enhanced cholesterol efflux in chondrocytes (Wu et al.,
2022). In summary, the effect of statin therapy on HDL
functionality would depend on the statin employed and the
target organ.

Another factor that could affect the response to statin
therapy is the route of administration. Different strategies
have been developed to improve the efficiency of drug-
delivery to the target organ and prevent leakage in
circulation. Indeed, in a recent study, copolymer modified
atorvastatin-loaded discoidal rHDL strongly promoted
macrophage differentiation into antiinflammatory M2
phenotype (Zhang et al., 2021). Similarly, LIPOSTAT, a
simvastatin-loaded nanoliposome, was shown to enhance
cholesterol efflux from foam cells (Rakshit et al., 2021).
Furthermore, the combination of β-cyclodextrin and
simvastatin-loaded rHDL in a sink/shuttle structure showed
remarkable capacity to promote cholesterol efflux and
decrease inflammation in macrophages (He et al., 2020).
Importantly, the effect of statins on HDL functionality could
extend beyond CVD therapy and be useful for the treatment
of certain cancers and conditions such as osteoarthritis and
glaucoma (Wu et al., 2022; Yang et al., 2022b; Yang et al., 2023).

Pioglitazone
Pioglitazone is an antidiabetic medication (Smith, 2001). It is
administered orally once a day and peak plasma
concentration is achieved 2 h after administration
(Pioglitazone, 2017). Similar to statins, it takes several weeks
before the desired effect can be achieved (Smith, 2001).
Adverse effects of pioglitazone include headache, vision loss,
pain or difficulty urinating, muscle pain, and weight gain
among others (Pioglitazone, 2017). Pioglitazone selectively
stimulates PPAR-α and PPAR-γ (Smith, 2001).
Pharmacogenomic studies show that polymorphisms in
PPAR-γ, Adiponectin, resistin, lipoprotein lipase (LPL),
tumor necrosis factor-alpha and interleukin 6 (Il-6) genes
could potentially influence the response to pioglitazone
(Kawaguchi-Suzuki and Frye, 2013). The fact that
pioglitazone regulates PPAR-α raises the possibility that this
drug could affect HDL functionality, considering that the
major role of PPAR-α deals with regulating HDL metabolism
(Yoon, 2009). Indeed, there is evidence that pioglitazone
could increase HDL functionality. In a study carried out in
vitro, pioglitazone stimulated apo A-I secretion in HepG2
cells (Qin et al., 2007). These pioglitazone-induced apo A-I
particles were capable of promoting cholesterol efflux from
THP 1 macrophages (Qin et al., 2007). In another study
pioglitazone increased ABCA1 expression in THP
1 macrophages (Liu et al., 2014). Furthermore, pioglitazone
was capable of enhancing cholesterol efflux to HDL via both
ABCA1 and ABCG1 transporters in vitro and ex vivo,
employing sera from diabetic patients (Ozasa et al., 2011).

This effect of pioglitazone would depend on PPAR-α
activation (Ozasa et al., 2011). Furthermore, pioglitazone
enhanced cholesterol efflux from macrophages by simulating
PPAR-γ in mice (Ye et al., 2019). On the contrary, in
another study, PPAR-γ stimulation by pioglitazone reduced
ABCA1 expression in macrophages (Jiang and Li, 2017). In
another study, pioglitazone stimulated cholesterol efflux and
ABCA1 expression in gallbladder epithelial cells (Wang et al.,
2015). In summary, the effect of pioglitazone on cholesterol
efflux would depend on the type of cell and pathway
involved. In addition to cholesterol efflux, pioglitazone could
restore LCAT activity (Mirmiranpour et al., 2013).

Some studies have provided evidence that pioglitazone
could also affect HDL antioxidant capacity. Both in humans
and mouse models pioglitazone improved PON 1 activity
(Mirmiranpour et al., 2013; Mahmoudi et al., 2019). In fact,
pioglitazone was also proved to affect HDL resistance to
oxidation (McEneny et al., 2013).

Metformin
Metformin is usually employed as the first-line medication
against type 2 diabetes. In addition, large clinical trials have
shown that metformin can counteract diabetes-associated
CV complications (He et al., 2019). Metformin is
administered orally once or twice a day (He et al., 2019).
Peak plasma concentrations are observed 3 h. and glucose
lowering approximately 8 weeks after administration (He
et al., 2019). Side effects of metformin include nausea,
diarrhea, stomach ache and vitamin B 12 deficiency among
others (NIH, 2022). In addition, metformin can interact
with other antidiabetic medication such as insulin, plus with
some diuretics and corticosteroids (NIH, 2022). Evidence
suggests that the heritability of metformin response ranges
between 20% and 34% (Florez, 2017). Nevertheless, the
genetic markers identified thus far account for a small
fraction of the variability observed in response to stains
(Florez, 2017; Damanhouri et al., 2023). These findings
suggest that many other genetic determinants of metformin
action remain to be discovered and further
pharmacogenomics studies are needed. The mechanism
responsible for metformin-induced reduction of CV
complications is still unknown. In this regard, different
studies have suggested a positive effect of metformin on
HDL functionality. In a study carried out in THP 1 human
macrophages, metformin blunted foam cell formation
induced by palmitic acid (Song et al., 2010). Moreover, in
another study, metformin reduced foam cell formation,
increased cholesterol efflux and upregulated both ABCA1
and ABCG1 in macrophages (Damanhouri et al., 2023).
Metformin-mediated upregulation of ABCA1 and ABCG1
would depend on stimulation of fibroblast growth factor 21
(Luo et al., 2016). Similarly, metformin in combination with
atorvastatin stimulated cholesterol efflux and both ABCA1
and ABCG1 expression in rabbits (Luo et al., 2017). In fact,
metformin would be capable of restoring HDL ability to
promote cholesterol efflux impaired by glycation (Matsuki
et al., 2009). Furthermore, metformin could increase HDL-
induced cholesterol efflux in vascular smooth muscle cells
(Robichaud et al., 2022). This process would be mediated by
autophagy induced by metformin (Robichaud et al., 2022).
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In another study, metformin inhibited foam cell formation by
stimulating autophagy in macrophages from mice (Wu et al.,
2021). Moreover, metformin could promote cholesterol efflux
in chondrocytes (Xing et al., 2022). However, it should be
noted that metformin did not induce changes in ABCA1
expression in a study carried out in diabetic patients
(Fakhoury et al., 2022). Furthermore, metformin failed to
promote cholesterol efflux in young individuals with type 1
diabetes (Gourgari et al., 2021).

Beyond RCT, evidence suggests that metformin could
also affect HDL antioxidant activity. Metformin, alone or in
combination with lycopene simulated PON 1 activity in
obese mice (Motta et al., 2022). These results were
replicated in diabetic rats for both metformin with or
without lycopene (Figueiredo et al., 2020) and metformin
with or without curcumin (Roxo et al., 2019). In fact,
metformin-induced PON 1 activity resulted in a significant
decrease in lipid peroxidation in diabetic rats (Wójcicka
et al., 2016). Moreover, metformin could not only stimulate
PON 1 activity, but also upregulate its expression (Camps
et al., 2016). Furthermore, there is evidence that metformin
could, via AMPK activation, improve HDL antioxidant and
antiinflammatory activities in mice (Ma et al., 2017).

Ezetimibe
Ezetimibe is another LDL-C-lowering drug highly used in the
clinical setting (Savarese et al., 2015). It interacts with
Niemann–Pick C1-Like 1 (NPC1L1) protein to decrease
intestinal absorption of LDL (Savarese et al., 2015; Phan
et al., 2012). It is usually employed in combination with
statins and capable of achieving a further 25% reduction of
LDL-C compared to treatment with statins alone (Savarese
et al., 2015). Ezetimibe is administered orally and peak
concentration is achieved 4–12 h after administration
(Drugbank, 2023a). LDL-C lowering is usually observed 2
weeks after the initiation of therapy (Side Effects of
Ezetimibe, 2023). Its side effects include diarrhea, abdominal
pain and tiredness (Side Effects of Ezetimibe, 2023). Genetic
studies on the efficacy of ezetimibe suggest that it could be
influenced by polymorphisms on genes associated with lipid
metabolism such as NPC1L1, HMGCR and the
transcription factor sterol regulatory binding protein 1
(Hindi et al., 2021). Interestingly, a recent metanalysis found
that there are no major differences in the response to
ezetimibe treatment among the different ethnicities (Sawant
and Wang, 2023). Regarding its effect on HDL, Ezetimibe
can produce modest increases in HDL-C (About Ezetimibe,
2023). In terms of HDL functionality, results are
controversial. Ezetimibe was reported to increase PON 1
expression and activity in an animal model of non-alcoholic
fatty liver disease (Hussein et al., 2012). On the contrary,
ezetimibe reduced PON 1 activity in subjects who were
receiving statin therapy (Tang et al., 2012). The fact that
ezetimibe is usually administered with statins constitutes a
confounding factor and further studies on ezetimibe effect
over HDL are needed.

Fibrates
Fibrates are amphipathic derivatives of fibric acid (Grundy
et al., 2005). Fibrates are employed to treat atherogenic

dyslipemia characterized by high TG and low HDL-C levels
(Grundy et al., 2005). Fibrates are administered orally and
peak concentrations depend on the type of fibrate
(Balendiran et al., 2007). Several weeks are needed before
desired effects can be observed (Balendiran et al., 2007).
Side effects include diarrhea, abdominal pain, dizziness,
jaundice and headaches (Fibrates, 2022). Furthermore,
fibrates can interact with blood thinners and
immunosuppressors with harmful results (Fibrates, 2022).
Fibrates stimulate peroxisome proliferator activated receptor
alpha resulting in reduced fatty acids, TG and VLDL
synthesis (Steiner, 2007). In parallel, production of Apo
A-I and ABCA 1 is up-regulated (Steiner, 2007).
Pharmacogenomic studies show that response to fibrates
could be influenced by polymorphisms in PPAR-α, Apo E,
Apo A-I, Apo B, Apo C-III, Apo AV, IL-6 and LPL genes
(House and Motsinger-Reif, 2020). Furthermore, the efficacy
of fibrates could also be affected by epigenetic modifications,
specifically methylation levels, on the gene CEMIP2, which
codifies a cell-surface transmembrane protein (House and
Motsinger-Reif, 2020). Fibrates have been shown to be
capable of increasing cholesterol efflux to HDL in animal
models (Balendiran et al., 2007; Fournier et al., 2013).
Nevertheless, studies carried out in humans have been
contradictory (Gomaraschi et al., 2015). In a previous study
fenofibrate increased ABCA 1 dependent cholesterol efflux
to HDL in dyslipidemic patients (Franceschini et al., 2007).
However, those results could not be replicated in a later
study by the same group (Franceschini et al., 2013). In
another study, fenofibrate also failed to increase cholesterol
efflux to HDL (Maranghi et al., 2011). In contrast,
bezafibrate increased cholesterol efflux in patients with type
2 diabetes (Triolo et al., 2014). Interestingly fenofibrate
shows greater capacity to stimulate PON 1 activity than
bezafibrate (Sahebkar et al., 2016). In summary, the effect of
fibrates on HDL functionality would depend not only on the
type of fibrate, but also on the specific function studied.

Lomitapide
Lomitapide specifically inhibits microsomal triglyceride
transport protein (MTP) (Ahn and Choi, 2015). MTP plays
a crucial role in the assembly of VLDL particles (Ahn and
Choi, 2015). As a result, lomitapide shows great efficiency at
reducing both apo B and LDL-C levels (Ahn and Choi,
2015). Lomitapide is administered orally and peak
concentrations are achieved in 6 h (Drugbank, 2023b). Lipid
lowering is usually achieved after 6 weeks (Perry, 2013).
Importantly, in addition to the usual diarrhea, dizziness and
headaches, side effects of lomitapide include liver damage
(Cuchel et al., 2007). Regarding HDL, lomitapide reduces
HDL-C levels and evidence suggests it could also decrease
ABCA 1 dependent cholesterol efflux, without changes in
ABCG 1- and SRBI- mediated efflux (Yahya et al., 2016).

RNA-based therapy
An innovative approach to the treatment of CVD involves
targeting upstream processes, inhibiting the mRNA
translation of proteins specifically implicated in lipid
metabolism. Two categories of compounds have been
primarily employed for this purpose: antisense
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oligonucleotides (ASO) and double-stranded short interfering
RNA (siRNA) (Gareri et al., 2022). An important advantage of
this approach is that it allows the targeting of several grams of
a specific protein with a single RNA molecule, extending the
intervals between doses (Gareri et al., 2022). Side effects
depend on the specific therapy, but a main disadvantage of
RNA-based drugs is that they need to be injected,
potentially lowering patient adherence (Gareri et al., 2022).
FDA-approved Mipomersen, an ASO that targets apo B, has
shown remarkable capability to reduce apo-B, LDL-C, TG
and non-HDL-C; however, it exerts no significant effect on
HDL (Fogacci et al., 2019). Another FDA approved RNA-
based drug, the previously mentioned Inclisiran, a siRNA
targeted against PCSK9, has displayed the ability to increase
HDL-C levels in addition to decreasing parameters
associated with apo B-containing lipoproteins (Cupido and
Kastelein, 2020). Similar results have been observed with
Volanesorsen, an ASO directed against apo C-III (Kolovou
et al., 2022). Nevertheless, the effect of these drugs on HDL
functionality has not been tested. In this regard, evidence
from animal models suggests that ASOs against
angiopoietin-like protein 3, which inhibits endothelial lipase
and is involved in HDL metabolism, increase RCT (Bell
et al., 2021). Moreover, the same group reported previously
that ASOs against CETP could also increase RCT (Bell
et al., 2013). In conclusion, the focus of RNA-based therapy
for CVD has been directed to molecules associated with apo
B containing lipoproteins, developing RNA drugs for HDL-
associated enzymes and proteins could be a fertile ground
for new therapeutic developments.

Apo A-I mimetics
Short synthetic peptides with sequences that mimic those
found in natural apo A-I have been studied since the 1980’s
for their potential to generate HDL-like nanoparticles and
improve the function of endogenous HDL. These peptides
are designed to replicate the behavior of apo A-I in
promoting the formation and functions of endogenous
HDL. Among the reported properties of apolipoprotein
mimetic peptides are: 1) lipid-associating ability, 2)
stimulation of HDL maturation and remodeling, 3)
promotion of cholesterol efflux, and 4) antiinflammatory
and antioxidant activities (Leman, 2015). However, it is
important to note that most mimetics need to be
administered intravenously, which constitutes a
disadvantage when compared to drugs, such as statins, that
can be administered orally. In addition, it should be noted
that many of the studies with apo A-I mimetics have been
carried out in mice, which do not naturally express CETP
(Hogarth et al., 2003). The effect of CETP on apo A-I
mimetics is unknown and makes extrapolation of results
from animal models to humans difficult. Fig. 5 shows the
effect of apo A-I mimetics on RCT.

The first apo A-I mimetics were based on the class A
amphipathic helix structure that apo A-I residues 41 to 243
form (Smith, 2010). Two of the first mimetics developed
were 18A and 37pA. 18A is the prototype 18-residue
peptide, and 37pA is a dimer of two 18A peptides with a
proline spacer (Anantharamaiah et al., 1985). Similar to apo
A-I, these peptides can transform a phospholipid emulsion

of dimyristoylphosphatidylcholine (DMPC), into disc-like
rHDL particles (Anantharamaiah et al., 1985). The same
group developed a series of more hydrophobic analogs with
an increasing number of phenylalanine substitutions
(referred to as 2F, 3F, 4F and 5F) (Datta et al., 2001).
Several of these analogs exhibited increased lipid association
activity and the 4F peptide demonstrated the strongest
ability to absorb oxidized fatty acids and antiinflammatory
activity (van Lenten et al., 2008). Similar to apo A-I, a
considerable subset of these peptides has the potential to
function as acceptors for cellular cholesterol through
ABCA1. Nevertheless, it is noteworthy that when present in
elevated concentrations, these peptides manifest detergent-
like characteristics and possess the capability to extricate
cholesterol from cells in an ABCA1-independent manner
(Remaley et al., 2003). Remarkably, 5F peptide reduced
aortic root atherosclerosis when injected to C57BL/6 mice
fed a high cholesterol atherogenic diet (Garber et al., 2001).

Peptide 4F has been the most studied of apo A-I
mimetics and has shown the most promising results to date.
APP-018, an analog of 4F which can be administered orally,
reduced aortic root lesion in apo E-deficient mice (Navab
et al., 2002). Moreover, APP-018 treatment increased small
preβ-HDL levels and HDL antiinflammatory activity (Navab
et al., 2004). In one study, APP-018 and statins were
capable of triggering the regression of lesions in the aortic
root and the entire aorta in apo E deficient mice (Navab
et al., 2005). Nevertheless, in another study, these results
could not be replicated when APP-018 was administered

FIGURE 5. Effect of apolipoprotein A-I mimetics on reverse
cholesterol transport. Apolipoprotein (apo) A-I mimetics have the
potential to increase cholesterol efflux from cells to high density
lipoproteins (HDL) via ATP binding cassette subfamily (ABC) A1,
ABCG1 and scavenger receptor class B type 1 (SRB1). Additionally,
apo A-I mimetics can increase lecithin:cholesterol acyltransferase
(LCAT) activity and HDL maturation. Mature HDL particles
present increased lipid exchange with apo B containing
lipoproteins via cholesteryl ester transfer protein (CETP),
increasing cholesterol delivery to the liver. LDL, low density
lipoprotein. LDLR, low density lipoprotein receptor.
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without statins in apo E-deficient mice (Li et al., 2004).
Furthermore, in two other animal studies, 4F presented
potent antiinflammatory activity (van Lenten et al., 2008;
Navab et al., 2012). In a phase I clinical trial, which
included 50 patients with coronary artery disease, APP-018
increased HDL antiinflammatory activity when administered
orally in high doses (Bloedon et al., 2008). However, in
another study, in which 4F was administered by intravenous
infusion or by subcutaneous injection, 4F failed to raise
HDL antiinflammatory or antioxidant activities (Watson
et al., 2011). Interestingly, in a recent study, 4F restored
HDL antioxidant activity when added to a mixture that
contained dysfunctional HDL isolated from diabetic patients
(Feng et al., 2022). Furthermore, 4F decreased oxidation and
increased NO production in mice fed a western diet (Ning
et al., 2021). In fact, 4F could protect against oxidation and
inflammation even after hypoxia exposure (Paul et al.,
2021). Moreover, evidence suggests that 4F protects against
endothelial dysfunction (Jiang et al., 2021). Similarly, 4F
could improve left-ventricular hypertrophy, which results
from coronary artery disease, in rabbits (Kraler et al., 2021).
Furthermore, 4F could inhibit cardiac remodeling after MI
(Hamid et al., 2020).

Another peptide, ATI-5261, a single amphipathic helix,
was shown to be highly efficient promoting cholesterol
efflux and reducing plaque lipid content in apo E deficient
mice (Bielicki et al., 2010). 6F is another apo A-I mimetic
with potent antioxidant and antiinflammatory effects. Its
main advantage over other mimetics is that it does not
require end blocking for its production, raising the
possibility that it could be synthetized by living organisms
and facilitating large scale production (Chattopadhyay et al.,
2013; Navab et al., 2013). In fact, tomatoes have been
genetically engineered to express 6F. When fed to mice,
these tomatoes have produced impressive reductions in
atherogenic lessons (Chattopadhyay et al., 2013). The reason
for these findings would be that oral administration of apo
A-I mimetics is more effective due to the intestine being the
main site of action (Hogarth et al., 2003). The apo A-I
mimetic peptide 37pA is highly capable of inducing
cholesterol efflux; however, its high lipid affinity makes it
cytotoxic (Ning et al., 2021). As a result, another peptide
named 5A was designed by replacing 5 amino acids of 37pA
with alanine residues making it less cytotoxic, but retaining
its capacity to promote cholesterol efflux (Sethi et al., 2008).
In fact, 5A can promote efflux via both ABCA1 and ABCG1
transporters (Amar et al., 2010). Moreover, 5A presents
antiinflammatory and antioxidant activities (Tabet et al.,
2010). Another apo A-I mimetic is etc-642, a complex of a
22-amino acid peptide that forms an amphipathic helix and
phospholipids. etc-642 causes a shift in HDL subfractions
towards the highly antiatherogenic preß-HDL and increases
cholesterol efflux and antiinflammatory activity by blunting
the expression of necrosis factor (NF)-kB and endothelial
adhesion molecules in endothelial cells (di Bartolo et al.,
2011a, 2011b; Iwata et al., 2011).

D’Souza et al. (2010) conducted a noteworthy
investigation into the impact of 22 distinct bihelical
apolipoprotein A-I mimetic peptides on cholesterol efflux, as
well as their anti-inflammatory and antioxidant properties.

Intriguingly, none of the examined compounds exhibited
superiority across all antiatherogenic functions. These
results indicate that apo A-I mimetic peptides more closely
resembling apo A-I do not necessarily improve all various
antiatherosclerotic functions. Moreover, combining several
apo A-I mimetic peptides, each mimicking different
structural aspects of apo A-I, may prove to be a valuable
strategy to mimic the various antiatherosclerotic properties
of apo A-I (Stoekenbroek et al., 2015).

It is important to note, that apo A-I mimetics are
currently being studied for the treatment of other diseases
apart from CVD. The disease models in which
apolipoprotein mimetic peptides have shown benefit include
cancer (Hogarth et al., 2003), colitis (Hogarth et al., 2003),
asthma (Ghosh et al., 2022), sickle cell disease (Reddy et al.,
2014), insulin resistance (Reddy et al., 2014), endotoxemia
(Reddy et al., 2014), lung fibrosis (Wygrecka et al., 2023),
HIV infection (Daskou et al., 2022), Parkinson’s disease
(Jiang and Bai, 2022), and cognitive function and
Alzheimer’s disease (Hogarth et al., 2003; Vanherle et al.,
2022). Moreover, 4F was shown to inhibit in vitro
replication of SARS-COV-2 (Kelesidis et al., 2021).

In summary, apo A-I mimetics are a promising tool
for the treatment not only of CVD and related
complications, but also of a number of other diseases. In
fact, in recent years, researchers have produced mimetics for
other apolipoproteins, such as apo E, apo C-III and apo J.
Overall, there are currently 60 different peptides that have
been approved for human use and over 150 peptides that
are in various stages of clinical development (Wolska et al.,
2021).

Reconstituted HDL
HDL is highly heterogeneous and composed of hundreds of
lipids and proteins. rHDL provides tools that allow a better
understanding of HDL composition and its roles in CVD.
Infusion of exogenous HDL is known as HDL replacement
therapy. rHDL is synthesized by the combination of apo A-I
(or its mimetics) and phospholipids (Huang et al., 2020).
One of the first and most studied rHDL particles was etc-
216, composed of apo A-I Milano and phosphatidylcholine
(POPC). Apo A-I Milano is a naturally occurring mutant of
apo A-I that was shown to possess cardioprotective
properties superior to wild type apo A-I (Franceschini et al.,
1980). These particles increased cholesterol efflux and
reduced atherosclerotic plaques in mice (Nicholls et al.,
2011). Moreover, etc-216 showed higher antiinflammatory
activity and plaque regression than wild type HDL in rabbits
(Nissen et al., 2003; Ibanez et al., 2012). Unfortunately,
clinical trials had to be stopped due to increases in
neutrophile and decreases in lymphocyte count (Huang
et al., 2020). As a result, another rHDL containing apo A-I
Milano and POPC was designed and named MDCO-216. It
was tested in patients with coronary artery disease and it
showed none of the adverse effects of its predecessor whilst
increasing cholesterol efflux (Reijers et al., 2017; Kempen
et al., 2014). Moreover, MDCO-216 increased preß-HDL
concentration and cholesterol efflux in healthy volunteers
and patients with stable coronary artery disease (Kempen
et al., 2016; Kallend et al., 2016). Nevertheless, MDCO-216
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failed to trigger plaque regression in patients with acute
coronary syndrome (Nicholls et al., 2018).

CER-001 is another rHDL made of recombinant human
apo A-I, sphingomyelin (SPM), and dipalmitoylphosphatidyl
glycerol. CER-001 increased cholesterol efflux, promoted
plaque regression and decreased inflammation in animal
studies (Tardy et al., 2014). Nevertheless, in a clinical trial,
CER-001 failed to promote plaque regression 6 weeks after
administration (Tardif et al., 2014). Similarly, CER-001
could not promote plaque regression in patients with acute
coronary syndrome 10 weeks after administration in

combination with statins (Nicholls et al., 2018). CSL-111 is
a rHDL which contains wild type apo A-I and
phospholipids. It was capable of reducing inflammation
and improving post-ischemic heart function in mice
(Richart et al., 2019; Bhushan et al., 2012, 2014).
Nevertheless, CSL-111 could not achieve plaque regression
and increased markers of liver damage in humans (Tardif
et al., 2007). To avoid these adverse outcomes, a new
formulation called CSL-112 was developed. It contains wild
type apo A-I, POPC and sucrose serving as a stabilizing
agent. CSL-112, when administered, demonstrated an
augmentation in cholesterol efflux from macrophages
(Diditchenko et al., 2013). Furthermore, it was shown to
achieve plaque correction in two human clinical trials
(Tardif et al., 2007; Waksman et al., 2010). A mayor phase
III clinical trial is presently underway (Korjian et al., 2023).
Fig. 6 shows the main rHDL preparations.

The principal rHDL-based therapies enumerated earlier
exhibit notable distinctions in their composition, dosing
regimens, pharmacokinetic profiles, and pharmacodynamic
properties. Numerous multifaceted factors could underlie
the ineffectiveness of certain of these therapies. Initially, the
study duration might have been insufficient to yield
meaningful results. Additionally, the dosage employed might
have been inadequate to achieve the desired therapeutic
effect, or the frequency of administration may not have been
sufficient. Furthermore, it is well-established that oxidative

FIGURE 6. The five main reconstituted HDL preparations. Apo,
apolipoprotein; HDL, high density lipoprotein.

FIGURE 7. Multiple properties of reconstituted high density lipoproteins. Reconstituted high density lipoproteins (rHDL) present several
atheroprotective effects. Some rHDL present potent antioxidant activity leading to reduced radical oxygen species (ROS) production in
cells and decreased oxidized LDL (oxLDL) formation. Furthermore, rHDL can inhibit the secretion of cytokines and adhesion molecules in
different cell types. In addition, rHDL have remarkable capacity to promote cholesterol efflux and reverse cholesterol transport. Finally, rHDL
represent an efficient vehicle for drug delivery to multiple target cells. PON 1, paraoxonase 1; apo, apolipoprotein; LPS, lipopolysaccharide;
MCP-1, monocyte chemoattractant protein 1; VCAM-1, vascular cell adhesion molecule 1; ICAM-1, intercellular adhesion molecule 1;
ABCA1, ATP binding cassette subfamily A1; ABCG1, ATP binding cassette subfamily G1; SRB1, scavenger receptor class B type 1.
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stress and inflammation have the capacity to modify the
composition and functionality of HDL, potentially
compromising its atheroprotective properties following
administration (Huang et al., 2020). A recent meta-analysis
which included studies carried out in both humans and
animal models showed that HDL/apo A-I replacement
therapy was not associated with decreases in atheroma
volume in humans, but it did associate with changes in
lesion area in mice (Abudukeremu et al., 2021). The authors
conclude that further studies are necessary to explain the
differences between animals and humans.

An important factor that could affect rHDL performance
is the type of apo A-I employed. Indeed, in recent years,
different formulations of rHDL which employ synthetic apo
A-I mimetics instead of naturally occurring apo A-I have
been developed. One of these preparations employs the
aforementioned 18 A peptide, known for its antioxidant
capacity (Hogarth et al., 2003). Other rHDL preparations
have included the 5A peptide and have shown promising
results in animal models by triggering plaque regression
(Schwendeman et al., 2015; He et al., 2021). One
preparation which has received much attention is etc-642,
which includes the mimetic 22A, specifically engineered to
activate LCAT. This preparation was shown to greatly
increase HDL-C levels in dyslipidemic patients (van
Capelleveen et al., 2014). In a recent study, authors tested
the ability to promote cholesterol efflux and esterification of
3 of these preparations and found that the mimetics with
the highest capacity to promote both steps of RCT in vitro
could no replicate those results in vivo (Yuan et al., 2023).
These findings underscore the significance of both

pharmacodynamics and pharmacokinetics in determining
the effectiveness of rHDL formulations. Similar to apo A-I
mimetics, a main disadvantage of rHDL is the need to be
administered intravenously, which could affect patient
adherence (Huang et al., 2020).

In recent years, rHDL preparations have received great
interest as delivery mechanisms for drugs and different
biomolecules (Huang et al., 2020). Indeed, rHDL can
efficiently deliver drugs to macrophages and atherosclerotic
plaques. In mice, rHDL was capable of efficiently deliver
simvastatin to atherosclerotic plaques, leading to a decrease
in inflammation, plaque regression and an increase in the
half-life of statins (Duivenvoorden et al., 2014). Moreover,
rHDL particles have been developed for the delivery of
antisense nucleotides and small interference RNA (Raut
et al., 2018; Lacko et al., 2015). Fig. 7 shows the main
properties of rHDL preparations.

Concluding Remarks and Future Perspectives

LDL-C levels have historically been the target for therapies
aimed at reducing CVD risk. Nevertheless, despite the
remarkable reductions in LDL-C levels achieved with drugs
such as statins and PCSK9 inhibitors, significant residual
risk persists. On the other hand, therapies aimed at
increasing HDL-C have, for the most part, failed to achieve
CVD reduction. When added together, these facts have
made HDL functionality a therapeutic target of the utmost
interest. Indeed, several drugs described in the present
review have shown promising results in enhancing HDL
functionality. Fig. 8 shows the main drugs capable of

FIGURE 8. Action of different therapies on HDL functionality. CETP, cholesteryl ester transfer protein; PCSK9, proprotein convertase
subtilisin/kexin type 9; LCAT, lecithin:cholesteryl acyl transferase; apo, apolipoprotein; HDL, high density lipoprotein. *Controversy in
different studies. Need of a deeper understanding of the mechanisms involved. **Depends on the statin employed.
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enhancing HDL functionality These drugs include molecules
already approved for human use, such as statins and niacin,
and, particularly, compounds currently undergoing
development such as several apo A-I mimetics and rHDL
preparations. Indeed, there are currently over 150 mimetic
peptides at some stage of development, in addition to
several rHDL preparations. These therapies show promising
potential to specifically improve HDL functionality.
Moreover, rHDL has the added benefit of notably improving
drug delivery to the intended organ/tissue, enhancing
therapeutic response. Nevertheless, pharmacogenomic data
on these drugs is still scarce and further studies on the effect
genetic variants have on their efficacy are needed. Moreover,
studies analyzing ethnic differences in the response to these
drugs are lacking and minorities are underrepresented.
More genetic studies are necessary to establish a better
therapeutic alternative both on a population and on an
individual level. Nevertheless, evidence is strong and future
therapeutic strategies should incorporate HDL functionality
as a main target of interest, seeking a balance between these
new parameters and traditional quantitative markers such as
HDL-C, in order to achieve a better assessment of CVD risk
and its management. Finally, the focus on HDL
functionality could extend the benefits of these drugs
beyond CVD management and into the treatment of several
other illnesses, such as cancer, endocrine disorders, and
autoimmune diseases.
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