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Abstract: Microbial cell surface display technology is a recombinant technology to express target proteins on the cell

membrane, which can be used to redesign the cell surface with functional proteins and peptides. Bacterial and yeast

surface display systems are the most common cell surface display systems of prokaryotic and eukaryotic proteins, that

are widely applied as the core elements in the field of biosensors due to their advantages, including enhanced stability,

high yield, good safety, expression of larger and more complex proteins. To further promote the performance of

biosensors, the biomineralized microbial surface display technology was proposed. This review summarized the

different microbial surface display systems and the biomineralized surface display systems, where the mechanisms of

surface display and biomineralization were introduced. Then we described the recent progress of their applications on

biosensors for different types of detection targets. Finally, the outlooks and tendencies were discussed and forecasted

with the expectation to provide some general functions and enlightenments to this aspect of research.

Introduction

Microbial cell surface display technology is a molecular
display technique that employs the gene recombination
method to fuse the gene sequences of target proteins and
carrier proteins into the microbial host cell (Ding et al.,
2019) so that the target proteins can be expressed and
localized on the surface of microbial cells, and remain their
independent spatial structure and biological activity (Pham
and Polakovic, 2020). In the last decade, this ground-
breaking technology has been broadly developed (Shibasaki
and Ueda, 2014), and research in the field has shown a
steady upward trend (Fig. 1a). So far, many proteins have
been successfully expressed on cell surfaces of fungi,
bacteria, mammals, and plants (Han et al., 2018b; Wang et
al., 2021). Therefore, microbial cell display technology has
become a helpful tool for displaying proteins on cell
surfaces (Ding et al., 2019).

Microbial cell surface display technology can realize the
functionalization of foreign proteins through a section of
carrier protein with secretory transport function and
membrane localization (Yang et al., 2019). So, the target

foreign protein can be transported and anchored on the cell
surface. Hence, the cell surface display system consists of
three components: host (microbial cell), carrier (anchoring
protein), and passenger (target foreign protein) (Han et al.,
2018b). (1) The host cell act as a substrate for fusion
proteins and anchoring proteins. (2) The carrier proteins,
also called anchoring proteins, are capable of secreting,
transporting, and anchoring foreign proteins to the
extracellular surface. (3) The passenger protein, also called
the target foreign protein, has a specific function.
Consequently, it is obligatory to closely coordinate the three
mentioned above-mentioned components for the
establishment of a proper surface display system. The fusion
modes of the target protein sequence and carrier protein
sequence mainly include C-terminal fusion and N-terminal
fusion (Han et al., 2018b). As the main microbial cell
surface display systems, bacterial and yeast surface display
systems have been widely used for the display of prokaryotic
and eukaryotic proteins, respectively, which have the
characteristics of vector diversity, high yield of recombinant
proteins, and flexible genetic engineering (Huang et al., 2018).

Up to now, microbial cell surface display technology has
been successfully used in many fields, including the
construction and high-throughput screening of peptide
library, whole-cell adsorbents for heavy metal pollution,
development of the live vaccine, recombinant whole-cell
catalysis, biofuel cells, biosensors, etc. (Chen et al., 2017;
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Ueda, 2016). Among them, there have been many advances in
cell surface display systems-based biosensors (Fig. 1b). In
particular, bacteria and yeast surface display systems have
been widely applied in a variety of biosensors (Jahns and
Rehm, 2012; Pham and Polakovic, 2020), involving various
fields including medical diagnosis, environmental monitoring,
food assay, biochemical analysis and so on (Chmielewski et
al., 2019; van Bloois et al., 2011). So far, a large number of
articles have been published on these aspects. This review
mainly introduces bacterial and yeast surface display systems,
and their biomineralized systems, the detection methods
based on these systems.

Microbial Surface Display System

Bacterial surface display system
The bacterial surface display system takes advantage of the
surface display technology to express target proteins on the
surface of bacteria for precise functionalization (Chen et al.,
2019). This system has been generally used in recombinant
bacterial vaccines, biofuel cells, whole-cell catalysts, and
bioremediation (Xiang et al., 2019). According to the source
of carrier proteins, bacterial surface display systems can be
categorized as Gram-negative bacterial surface display systems
and Gram-positive bacterial surface display systems (Liu et al.,
2020). At present, the carrier proteins are commonly used in
the surface display system of Gram-negative bacteria, such as
outer membrane proteins (OMPs), lipoproteins, Lpp-OmpT
(LOT), surface accessory structure subunits, ice nuclear
proteins (INP), and autologous transporters and so on (Hui et
al., 2019; Song et al., 2015; Wang et al., 2021; Zhang et al.,
2018b). On the other hand, the development of surface
display systems for Gram-positive bacteria is not as mature as
that for Gram-negative bacteria (Kim et al., 2021).

As for the biosensors, the bacterial surface display system
can display the required enzymes on the surface of bacterial
cells, making them react on the surface, thus enhancing the
sensitivity, stability, and selectivity of biosensors (Han,
2020). For example, the surface display system based on

Escherichia coli was applied to construct the acetaldehyde
optical biosensor (Liang et al., 2021). The technique mainly
fixed the expressed fusion protein (acetaldehyde
dehydrogenase, AldDH) onto the outer membrane of E. coli
by LOT carrier. AldDH displayed on the surface can
catalyze the production of NADH, which can be detected by
the spectrometric method. Many relevant works
demonstrate that the bacterial surface display system has
many advantages (Fig. 2), including (1) bacterial surface is
better suited for displaying large-sized proteins, (2) this
system is highly productive. (3) This system can proliferate
by binary fission because bacterial systems are prokaryotic
cells (Park, 2020; van Bloois et al., 2011).

Yeast surface display system
The yeast surface display system is an important eukaryotic
protein surface display system (Teymennet-Ramirez et al.,
2021). The basic principle involves induction and expression
of the exogenous target protein gene sequence fused with a
carrier gene sequence in yeast cells (Chun et al., 2020), then
the fusion protein, guided by signal peptide, is secreted out
of the cell. The fused protein can be anchored in the yeast
cell wall, thereby immobilizing the foreign protein on the
surface of the yeast cell (Fan et al., 2020). The commonly
used carriers in yeast cell surface display systems mainly
include a-agglutinin, α-agglutinin, Flo1p, etc. (Han et al.,
2018b). In recent years, the yeast surface display system has
attracted great attention for displaying eukaryotic proteins
on the surface of cells (Gal et al., 2016). The yeast surface
display system has many advantages, such as superior safety,
post-translational modifications, proper folding and
glycosylation of proteins, disulfide isomerization of
eukaryotic proteins, simplicity of the cell culture and genetic
manipulation, and immobilization of protein (Hamilton and
Gerngross, 2007; Han et al., 2018b; Park, 2020; Teymennet-
Ramirez et al., 2021) (Fig. 2). As the most extensively used
yeast on surface display systems, Saccharomyces cerevisiae, a
unicellular eukaryote with a cell wall, has been widely
applied for construction of the biosensor (Chun et al., 2020;
Gal et al., 2016; Liang and Han, 2020a; Zhao et al., 2020).

FIGURE 1. (a) Number of published papers on microbial cell surface display systems by the end of December 2021. Data are from the Web of
Science. (b) Number of published papers on biosensors of microbial cell surface display systems by the end of December 2021. Data are from
the Web of Science.
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Biomineralized microbial surface display system
Biomineralization refers to the formation process of inorganic
minerals on organisms (Sang et al., 2020). The biggest
difference between biomineralization and general
mineralization lies in the involvement of
biomacromolecules, cells, and other organic substrates (Wei
et al., 2019). The characteristic of biological mineralization
is the transformation of ions in solution into solid minerals
under the control or influence of biological materials at
certain physicochemical conditions (Mangano et al., 2019).
So, biomineralization is a complex and dynamic process
regulated by organic matter, crystal growth mechanism, and
external environment. With the increasing attention to
biological mineralization, various biological substances (such
as the phage, violet membrane, bovine serum albumin, and
lysozyme) are used as templates (Liang and Han, 2020b;
Zhao et al., 2022) for the synthesis of bio-inorganic hybrid
materials (Han and Liu, 2017). Inspired by the bio-
templated mineralization described above, researchers have
begun to introduce biomineralization into phage surface
display systems (Han et al., 2016, 2017). Whereafter,
biomineralization was introduced into microbial cell surface
display systems, which generated the biomineralized
microbial surface display technology.

Biomineralized microbial cell surface display technology
is a combination of biomineralization and microbial surface
display technology, where the target proteins on the cell
surface provide nucleation sites of inorganic crystals to form
a bio-inorganic hybrid system. So far, there have been
several types of research on the biomineralized microbial
surface display system (Bian et al., 2022; Han et al., 2018a;
Han and Liu, 2017). The biomineralization can increase the
catalytic activity of enzymes on the surface of cells due to
allosteric effects (Fig. 2), a phenomenon in which an
allosteric effector binds to a site (allosteric site) on an
enzyme molecule, causing conformational change, thereby
indirectly managing the property of another particular site

(active site) on the same enzyme molecule. The above
positive performances are reflected in some studies. For
example, after Co3(PO4)2·8H2O biomineralization on the
cell surface, the displayed enzymes were transformed
from the inactive state to the active state by allosteric effects,
and the active state was “fixed” (Han and Liu, 2017)
(Fig. 3a). The activity of the biomineralized system is
increased by about three times, compared with the initial
cells (Fig. 3b). In addition, the mineralized cells were also
more stable than the original cells (Han and Liu, 2017). In
contrast to the biomineralized microbial surface display
system, conventional immobilization generally decreases the
catalytic activity of enzymes (Sharifi et al., 2018). Therefore,
biomineralized microbial surface display systems would
become ideal substitutes for conventional immobilized
enzymes and whole-cell catalysts.

Application of Microbial Cell Surface Display Systems on
Biosensors

The biosensor is an assay device that detects various analytes
(such as biomacromolecules and small organic molecules) by
the biological recognition elements (such as proteins, DNA,
and cells) (Park, 2019; Pyun et al., 2005). A biosensor
generally consists of three main parts (Fig. 4): receiver,
transducer, and other auxiliary equipment (Chen et al.,
2023). Among them, the core of the receiver is a molecular
recognition element, specifically surface-displayed enzymes.
The transducer can capture electrical or optical signals from
the enzymatic product by an electrode or optical probe
(Hou et al., 2015).

Microbial cell surface display technology is a powerful
tool to express and produce proteins on the cell surface and
has been widely applied to biosensors. As shown in Table 1,
biosensors employing surface-displayed enzymes are
superior to those employing traditional microbial whole-
cells. For traditional whole-cells, the substrate needs to enter

FIGURE 2. Three kinds of microbial
cell surface display systems and their
advantages.
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the cell in order to achieve enzyme-based catalytic reactions.
By contrast, the enzymes displayed on the cell surface can
directly come in contact with the reaction substrate, which
greatly improves the catalytic efficiency (Han and Liu,
2017). For the biosensors employing surface-displayed
enzymes, the reaction substrate (target) can be anything
theoretically. For the traditional microbial whole-cells, the
substrate must be able to cross the cell membrane and wall
(Ye et al., 2021). Accordingly, by applying microbial cell
surface display technology, biosensors can detect various
target substances. So far, reported biosensors employing
surface-displayed enzymes mainly involve four categories of
target substances:

organophosphorus pesticides, phenolic compounds, glucose,
and L-glutamate. According to the targets, different types of
enzymes are used in surface display systems, such as the
laccase (Li et al., 2021; Park et al., 2019; Wu et al., 2020;
Zhang et al., 2018a), organophosphorus hydrolase (Liang
et al., 2019), xylanase (Chen et al., 2012), exoglycanase
(Chen et al., 2012), and carbonic anhydrase (Fan et al., 2011).

Detection of organophosphorus pesticides
Organophosphorus pesticides (OPP) are phosphorus-based
organic compound pesticides that have been widely used in
agricultural production (Hassani et al., 2017). In addition, as
a strong neurotoxic cholinesterase inhibitor (Tang et al.,

FIGURE 3. An example of biomineralized microbial surface display systems. (a) Biomineralized organophosphorus hydrolase (OPH)-fused
cells exhibit enhanced catalytic activity due to the allosteric effects from “inactive” form to “active” form, where OPH is embedded in inorganic
crystal (Co3(PO4)2∙8H2O) (Han and Liu, 2017). (b) The obtained bio-inorganic hybrid whole-cell catalyst shows three times higher activity
than the original whole-cell catalyst. Reprinted (adapted) with permission from (Han and Liu, 2017). Copyright (2023) American
Chemical Society.

FIGURE 4. Constituents of biosensors based on microbial surface displayed enzymes.

TABLE 1

A simple comparison between biosensors employing surface-displayed enzymes and biosensors employing traditional microbial whole-cells

Surface-displayed enzymes biosensors Traditional microbial whole-cell biosensors

Reaction position Extracellular Intracellular

Substrate sensing path Extracellular-sensing Intracellular-cell-membrane-extracellular-sensing

Catalytic efficiency High Low

Reaction substrate Anything theoretically Substrates crossing cell membranes and walls
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2014a), OPP can inhibit hydrolysis of acetylcholine (central
nervous system neurotransmitter), causing health problems
for animals and humans (Xu et al., 2018). Therefore, it is
necessary and urgent to search and employ the detection
methods of OPP residue. To overcome the above-mentioned
problem, many surface display systems and biomineralized
systems are actively studied and applied in biosensors for
the detection of OPP (Bian et al., 2022; Han et al., 2018a;
Liu et al., 2013; Tang et al., 2014a). In this section, we
discuss and provide some recent examples of the OPP
biosensor based on display systems.

Direct detection method based on organophosphorus hydrolase
Given that organophosphorus hydrolase (OPH) can
hydrolyze a wide range of organophosphorus ester bonds
(such as P—S, P—O, and P—F bonds) (Pundir et al., 2019;
Tang et al., 2014a), it has been developed as a key element
in OPP degradation and biosensing. For example, Tang et
al. (2014a) successfully constructed a mutated OPH
displayed on the surface of an E. coli strain, using INP as
the anchoring motif. Fortunately, the recombinant strain
was more robust and stable than the purified OPH,
promising for detecting OPP sensitively. Further, they
immobilized the fused-OPH on the surface of the ordered
mesopore carbons-modified glass carbon electrode to
develop a novel microbial biosensor for detecting p-
nitrophenyl OPP (Tang et al., 2014b). In addition, the
relationship between time and current was observed at
different OPP concentrations, then the experimental
conditions were optimized. Therefore, a fast and accurate
biosensor for detecting OPP was established by applying the
microbial cell surface display.

Our team synthesized a suitable composite material,
combined with biomineralization and microbial cell surface
display, and then constructed an ultra-sensitive
electrochemical biosensor to detect OPP residues (Han et
al., 2018a). The carbon nanotube@amino acid ionic liquid
(CNT@AAIL) composites were introduced into the
electrochemical biosensor based on mineralized OPH-fused
cells. Considering three reasons for this design: (1) OPH
could specifically hydrolyze organophosphorus compounds,
(2) to make up for the poor solubility of CNT during
electrode modification, AAIL with good fluidity, stability,
biocompatibility, and biodegradation was combined for the
first time, (3) electrochemical biosensor had the advantage
of high sensitivity, fast response speed, and positive real-
time detection. Particularly, we used AAIL as a stabilizer
and modifier to greatly improve the dispersion and
biocompatibility of CNT in the aqueous phase. The
obtained CNT@AAIL composite improved the electrical
conductivity and electrochemical activity of mineralized
OPH-fused cell (M-Cell). Surprisingly, the as-fabricated
biosensor was more accurate and had 2–8 orders of
magnitude lower detection limit than the OPP analytic
method reported. Thus, the anti-interference ability of the
OPP biosensor has also been proven to a certain extent.

In previous work, the mineralized OPH-fused cells were
prepared by embedding OPH into cobalt phosphate. The
synthetic bioinorganic hybrid material was applied to the
sensitive paraoxon biosensor. In the sensor, allosteric effects,

biomineralization techniques, and cell surface display
techniques were combined to enhance OPH activity (Han
and Liu, 2017). Therefore, the biomineralized microbial
surface display system was promising in the future,
especially for the establishment of ultra-sensitive and highly
selective biosensors (Han et al., 2018b). After continuous in-
depth research, we constructed a portable detecting OPP
device (Bian et al., 2022). We took full advantage of
structures, enzymes, and mineralized layers of displayed
cells as well. To detect pesticides quickly and conveniently,
we successfully prepared phosphate-mineralized
organophosphorus hydrolase-fused cells (M-OPH) through
the combination of biomineralization and microbial surface
display techniques. In brief, the portable detection device
was constructed by simply precipitating M-OPH on a
syringe filter. Small colored impurities of real samples could
be filtered out by M-OPH layer-modified filter membrane.
In this device, the catalytic activity of OPH was enhanced
by the allosteric effect caused by biomineralization; the
stability of OPH was also enhanced by the protective effect
of inorganic phosphate. With the tandem catalysis of the
copper phosphate and OPH, hydrolysates of OPP were
further reduced or oxidized to low-toxicity products.

Enzyme inhibition method based on acetylcholinesterase
Acetylcholinesterase (AChE) has been successfully used in
OPP detection because organophosphorus is an effective
inhibitor of AChE (Qi et al., 2020). For example, Liang’s
team developed a fluorescence OPP detection method by
combining AChE mutants displayed on the yeast surface
and protein-directed electronegative fluorescent gold
nanoclusters (Au NCs), which improved the sensitivity of
AChE to OPP (Liang and Han, 2020a). Concretely, AChE
mutants and wild-type from Drosophila were wonderfully
displayed on the surface of S. cerevisiae cells, employing a-
agglutinin-mediated cell surface display technology. In
addition, the displayed AChE could catalyze the hydrolysis
of acetylthiocholine, to produce thiocholine, which could
not only bind to Au NCs through Au-S bonds but also
absorb Au NCs, resulting in Au NCs aggregation and
fluorescence quenching. More importantly, fluorescence
detection based on the yeast surface displayed AChE and
Au NCs was highly sensitive to minute amounts of OPP,
and the detection limit was 2–6 orders of magnitude lower
than previously reported methods. Therefore, combined
with the enzyme-modified microbial cell surface display
system and functional biological nanomaterials, the method
had good reliability for the measurement of real samples.

Detection of phenolic compounds based on surface-displayed
laccases
Phenolic compounds have a broad range of applications,
including production areas, such as energy, food additives,
and fine chemicals (Alcazar-Ruiz et al., 2023). Therefore,
some phenolic compounds are familiar to us, such as
phenol, cresol, thymol, eugenol, aminophenol, nitrophenol,
naphthol, carvacrol, chlorophenol, etc. (da Silveira et al.,
2015). However, phenolics have different toxicities. Due to
their existence in air, water, and food matrices, they pose a
significant risk of toxicity to the environment and humans
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(Govindhan et al., 2015). Therefore, the detection of phenolic
compounds is crucial to open up a path for ecological and
environmental protection.

Laccases are blue multicopper oxidases, which can
oxidize multitudinous aromatic compounds, including the
oxidation of phenolic compounds (Akram et al., 2022).
They are broadly distributed in bacteria, fungi, plants, and
insects (Agarwal et al., 2022). In continuous laccase-based
experiments, the immobilized laccase has been inevitably
employed (Saoudi and Ghaouar, 2019). Compared to the
free laccase, the immobilized laccase has more prominent
advantages: (1) increased thermal stability of enzymes, (2)
resistance to chemical reagents and extreme conditions, and
(3) easy separation from reactants and ability to perform
continuous bioreactor operation (Fernandez-Fernandez
et al., 2013). Therefore, microbial cell surface display
techniques are often used for preparing immobilized
laccases. Accordingly, more attention has been paid to
biosensors based on laccases displayed in recent years
(Ricklefs et al., 2014). For example, Zhang et al. (2018b)
developed an electrochemical microbial biosensor.
Mechanistically, the sensor could immobilize the bacterial
laccase on the E. coli cells and then adsorb modified living
cells on the glassy-carbon electrode by combining microbial
cell surface display and modified electrodes. In previous
work, the live bacterial laccase was directly adsorbed onto
the electrode surface and demonstrated the feasibility.
However, the live cell activity was not maintained (Zhang
et al., 2017). Therefore, Zhang et al. (2017) later designed a
laccase-immobilized biosensor by the surface display, and it
had been shown to maintain the adsorbed cells’ activity for
weeks or even months. Moreover, the electrochemical
response of detecting catechol employing the
electrochemical microbial biosensor kept a linear
relationship within the concentration scope of 5.0 to
300.0 μM under optimum pH. In addition, the proposed
biosensor presented certain anti-interference. In another
work (Acquaviva et al., 2018), when employed to detect
phenolics in real samples, the biosensor showed high
accuracy, almost comparable to the results obtained by
high-performance liquid chromatography; besides, high
reproducibility and stability were also reflected.

Detection of glucose
Glucose plays an essential role in cell homeostasis and
metabolism (Choi and Kim, 2022). It is the energy source
and the main energy-supplying substance of living
organisms (Zheng et al., 2016). More importantly, glucose
levels are closely linked to blood glucose levels (French et
al., 2022). Glucose testing is crucial for people as high blood
sugar levels can cause a variety of complications, such as
diabetes.

About the above problem, Liang’s team gave us
appropriate answers using genetically engineered techniques;
Liang et al. (2013b) first constructed an E. coli strain
displaying glucose dehydrogenase (GDH) from
Pseudomonas borealis on its surface with INP as an
anchoring motif. In addition, by combining the constructed

nanocomposite electrode, a novel glucose electrochemical
biosensor was developed. The low detection limit of the
prepared biosensor was 4 μM D-glucose. Later, they
discovered that by using GDH from Bacillus subtilis for
surface display, they could establish GDH mutants with
better substrate specificity, stability, and activity (Liang et
al., 2013a). In the same year, applying the same
combination of the surface display and carbon nanotube-
modified electrode, another biosensor for glucose detection
was developed (Wang et al., 2013). The difference was that
glucose oxidase (GOx) was displayed on the yeast surface
with a-agglutinin as the anchoring motif, and the electrode
was also changed. The low detection limit was 0.05 mM of
D-glucose. This was the first report on yeast surface
displaying GOx for glucose detection. More importantly, the
GOx-displaying yeast system had high specificity to glucose
and good stability over a broad pH range (3.5–11.5), as well
as at higher temperatures (56°C). Almost four years later,
they made more progress in biosensors for glucose
detection. Liu et al. (2017) prepared bi-enzyme-based
biosensors by collectively immobilizing GDH-displaying-
bacteria and glucoamylase-displaying bacteria. Further, they
constructed an electrochemical biosensor sensitive to
maltose and glucose and insensitive to other
monosaccharides and disaccharides. Interestingly, the
sensitivity to detect glucose was 3.75 times higher than
maltose at the same concentration. Compared with the
biosensor based on free enzymes, the dual-strain modified
electrodes showed better performance. The proposed
biosensor had a broad dynamic range (0.2–10 mM) and a
low detection limit (0.1 mM maltose). Biosensors designed
in triplicate had different specific mechanisms but employed
the same microbial cell surface display technology, from
which the widespread use and great importance of surface
display were proved. Later, Zhao et al. (2020) displayed
microbial GDH and cholesterol oxidase on the surface of
yeast cells and then prepared two biosensors for blood
biochemical indicators detection. The yeast cells were
immobilized on electrodes to construct electrochemical
biosensors for glucose and cholesterol detection. The glucose
biosensor efficiently responded at a wide concentration
range of 20–600 mg·dL−1.

Detection of L-glutamate
L-glutamate is a non-essential amino acid that occurs
naturally in protein-rich food (Liu et al., 2021). As a
functional amino acid, it plays a role in cell metabolism and
signaling (Lin et al., 2014). L-glutamate is also a significant
excitatory neurotransmitter in the human body. However,
excitotoxic processes mediated by glutamate are a major
cause of neuropathology (such as stroke) (Hazell, 2007;
Sheldon and Robinson, 2007). L-glutamate is also widely
served as food flavor enhancers, such as soy sauce, chicken
essence, monosodium glutamate (MSG), and some snack
flavorings (Kurihara, 2009). Nevertheless, MSG has been
associated with negative side effects, especially in animals,
including diabetes, obesity, neurotoxic, and hepatotoxic
(Kazmi et al., 2017). Therefore, neurodegenerative diseases
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caused by L-glutamate and the consumption of L-glutamate
should be taken seriously. So, an effective and convenient
technique for L-glutamate detection is urgently required.

Glutamate oxidase (GluOx) and glutamate
dehydrogenase (Gldh) are two enzymes commonly used to
detect L-glutamate (Hughes et al., 2016; Mruga et al., 2021).
We have learned that Ozel et al. (2014) and Wang et al.
(2020) prepared biosensors for detecting L-glutamate based
on the fixation of GluOx and nanocomposite materials.
However, immobilized enzymes have certain advantages
over free enzymes (such as higher activity, greater stability,
ability to operate continuously, and more suitable for
industrialization) (Fernandez-Fernandez et al., 2013;
Ranimol and Sunkar, 2022), but compared with surface
display enzymes, immobilization is only a part of microbial
cell surface display. Microbial cell surface display techniques
can redesign cell surfaces using functional peptides or
proteins immobilized on the cell surface to endow cells with
some special features (Han et al., 2018b). Therefore, we
mainly introduce the employment of surface display
technology to detect L-glutamate. In this regard, Liu’s team
conducted relevant experiments. First, they reported that
Gldh is displayed on the surface of E. coli with the N-
terminal region of INP as an anchoring motif (Song et al.,
2015). This was the first report on the optical detection of
L-glutamate displayed on the bacterial surface. Additionally,
the optimal pH value and temperature for the Gldh-
displayed-bacterial cell surface were respectively 9.0°C and
70°C. The fused protein maintained almost 100% initial
enzyme activity after incubation for 1 month at 4°C. Clearly,
the Gldh-fused cell showed high cell activity. Then, based
on previous experiments, multiwalled carbon nanotubes,
and Gldh-displaying bacteria were modified onto glassy
carbon electrodes to prepare L-glutamate biosensors (Liang
et al., 2015). The biosensor had a low detection limit (2 μM)
and two linear sections of 10 μM–1 mM and 2–10 mM.
Thus, the above-discussed L-glutamate biosensor had good
selectivity, stability, and anti-interference to accurately
detect real samples.

Conclusion and Prospects

The bacterial surface display system, yeast surface display
system, and biomineralized microbial surface display system
are reviewed here. The bacterial surface display technology
makes full use of the principle of enzyme engineering and
opens promising potential. So far, many varieties of
anchoring motifs can be used to mediate the bacterial
surface display of heterologous proteins. The yeast cell
surface display technology has the advantages of display of
complex eukaryotic proteins with post-translational
modification or larger protein molecules. Both display
systems have many merits. For example, cell surface-
displayed enzymes can be facilely purified and reused, which
is more convenient and economical. The display of enzymes
on the surface of the cell can directly react with related
substrates, which can dramatically raise catalytic efficiency
and expand the types of targets. The cell surface supplies a
biologically compatible microenvironment that maintains

the stability of enzymes. However, some mechanisms of
both systems are still unknown. For example, not much is
known about the relationship between the quantity and
activity of the enzyme displayed on the cell surface. How are
enzymes displayed on the cell surface distributed to the
progeny microorganism after the cell division? These issues
still need to be explored.

Compared with the above two systems, the seldom-
researched biomineralized microbial surface display system
is more advanced and efficient and will be the research
hotspot with great development potential in the future. By
fusing cell surface display with multifunctional inorganic
nanomaterials, the biosensor will have higher sensitivity and
stability, which will trigger various assay strategies.
Theoretically, any enzymes can be displayed after the
optimization of the codon. In general, prokaryotic enzymes
are displayed on the surface of prokaryotic bacteria (such as
E. coli), and eukaryotic enzymes are displayed on the surface
of eukaryotic microorganisms (such as S. cerevisiae). So, the
enzyme to be displayed depends on the target analyte. The
enzyme can be selected according to the target to catalyze
the reaction of the target and produce the signal. For
example, OPH and AChE were used for surface display to
prepare biosensors for organophosphorus detection.
Laccases were used to prepare biosensors based on surface
display technologies for detecting phenols. Biosensors using
GDH, Gox, and glucoamylase displayed on the microbial
cell surface were developed to detect glucose. Gldh was used
for surface display to prepare biosensors for L-glutamate
detection. Therefore, more enzymes are expected to be
displayed for more assay targets.

Although the displayed cells are more stable and have
better catalytic efficiency than the untreated ones, the
present assay methods based on cell surface display systems
are still limited to several kinds of assay methods, including
electrochemical biosensing, fluorescence, and
spectrophotometry. More analytical methods should be
combined with cell-surface display techniques. The
biomineralized microbial surface display systems will have
enormous potential in self-powered sensors, flexible sensors,
single-molecule sensors, and in vivo non-invasive
microsensors. To some extent, this review provides some
information and insights for the research in the field of
biosensors based on the microbial surface display system.
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