

Therapeutic targets and signal transduction mechanisms of medicinal plant formula Gancao Xiexin decoction against ulcerative colitis: A network pharmacological study

Chenhao SHI¹; Maohong HUA²; Guanhua XU^{3,*}

¹ The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China

 2 Department of Respiratory Medicine, Xiaoshan Third People's Hospital, Hangzhou, China

³ Department of Emergency Medicine, Xiaoshan Third People's Hospital, Hangzhou, China

Key words: Gancao Xiexin decoction, Ulcerative colitis, Network pharmacology, Immunomodulatory function

Abstract: Background: Ulcerative colitis (UC) is a chronic disease that often presents with abdominal pain, diarrhea, hematochezia, and significant morbidity. Gancao Xiexin decoction (GXD), a traditional Chinese medicine, has been applied for the clinical treatment of UC, while its action mechanisms are unclear. Methods: The active ingredients and their targets of GXD, and UC-related targets, were derived from public databases. Protein-protein interaction, Gene Ontology (GO), and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to analyze the important active compounds, key targets, and signaling pathways. Then, molecular docking and animal experiments were performed to verify the findings. A total of 213 active compounds and 89 common targets of GXD for UC were obtained. Results: The hub gene network showed ALB, AKT1, IL6, TNF, VEGFA, TP53, CXCL8, MAPK1, PTGS2, and $IL1\beta$ may be potential targets of GXD against UC. GO and KEGG pathway enrichment analyses suggested that the action of GXD against UC was mainly related to response to oxygen levels, lipopolysaccharide, and molecule of bacterial origin, etc., and achieved by advanced glycation endproducts/receptors for advanced glycation endproducts signaling pathway in diabetic complications, hypoxia-inducible factor (HIF)-1 signaling pathway, interleukin-17/HIF-1 signaling pathway, TNF signaling pathway, etc. Molecular docking results showed that the GXD had good potency of action with the hub target. In vivo experiments showed that GXD significantly alleviated the symptoms of UC and down-regulated the expression of inflammatory factors, nuclear factor-KB and signal transducer and activator of transcription 3. Conclusions: The anti-UC action of GXD is mainly attributed to its anti-oxidative stress, antiinflammatory, and immunomodulatory functions.

Introduction

Ulcerative colitis (UC) is a chronic inflammatory colon disease that often presents with abdominal pain, diarrhea, and hematochezia (Kobayashi *et al.*, 2020). The incidence and prevalence of UC are on the rise in many developing countries in Asia and the Middle East (Ng *et al.*, 2019; Kotze *et al.*, 2020), and its causative factors involve genetic background, environmental factors, and immune dysfunction (Wei *et al.*, 2021). Currently, drugs commonly used in the clinical treatment of UC include 5-aminosalicylates, corticosteroids, cyclosporine, etc. (Luo and

Luo, 2021); however, these drugs have limited therapeutic effects and have notable side effects. Therefore, finding a new drug for the treatment of UC has become an urgent clinical problem.

To date, traditional Chinese medicine (TCM) has had an influence on various diseases, including UC. Gancao Xiexin decoction (GXD) consists of six herbs, namely Gancao (*licorice*), Banxia (*Arum Ternatum Thunb.*), Huanglian (*Coptidis Rhizoma*), Ganjiang (*Zingiberis Rhizoma*), Huangqin (*Scutellariae Radix*), and Dazao (*Jujubae Fructus*), was first recorded in the 'Shanghanlun,' written by Zhang Zhongjing (Luo *et al.*, 2022). Modern pharmacological studies have found that GXD has the ability to regulate the immune function of the body, enhance anti-hypoxia ability (Zhang *et al.*, 1997), regulate gastric mucosal secretion (Gao *et al.*, 2005), and anti-ulcer (Hu and Zhang, 2008). It is widely used in the clinical treatment of diseases of the digestive and immune systems

www.techscience.com/journal/biocell

This work is licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

^{*}Address correspondence to: Guanhua Xu, guanxi5220@163.com Received: 15 December 2022; Accepted: 30 January 2023; Published: 22 May 2023

(Zhao *et al.*, 2013a; Yan *et al.*, 2021). Meanwhile, some studies have suggested that GXD can treat UC, but the exact mechanism of action is not clear.

In the present study, we systematically introduced the compounds, targets, and action mechanisms of GXD to alleviate UC through a network pharmacology approach and then performed molecular docking simulation analysis to verify the binding affinity of the compounds and hub targets. Finally, we constructed a mouse model of UC to verify the effects of GXD on UC. Our study will lay the theoretical research foundation for subsequent studies of GXD for the treatment of UC and also provide potential clinical therapeutic targets for the treatment of UC.

Materials and Methods

Collection of targets for ulcerative colitis

Therapeutic targets for UC were mined from GeneCard (https://www.genecards.org/) (Safran *et al.*, 2010), Searching Online Mendelian Inheritance in Man (OMIM, http://www.omim.org/) (Amberger and Hamosh, 2017), and DisGeNET (http://www.disgenet.org) (Piñero *et al.*, 2017) databases with "ulcerative colitis" as index word and limiting to "*Homo sapiens*" species. The overlapped targets from these three databases were removed.

Prediction of active compounds and targets of Gancao Xiexin decoction

The active compounds of GXD were screened from public databases, including TCM Integrated Database (TCMID, http://www.bidd.group/TCMID/) (Huang *et al.*, 2018), TCM system pharmacology technology platform (TCMSP, https://tcmsp-e.com/) (Ru *et al.*, 2014), and Herb Ingredient' Targets (HIT, http://hit2.badd-cao.net/) (Ye *et al.*, 2011) and deleted some active compounds, for which no targets information is available.

Subsequently, the potential targets of GXD active ingredients were retrieved from TCMID, TCMSP, HIT, and Search Tool for Interacting Chemicals (STITCH, http://stitch.embl.de) (Szklarczyk *et al.*, 2016) databases. Then, the targets with compound-target associated scores >400 in STITCH databases remained and were normalized the name with the Gene module of the NCBI database.

To further screen the active compounds and potential targets of GXD, several fishing methods were implemented. Drug-likeness (DL) is usually used to signify whether the compound has acceptable ADME (absorption, distribution, metabolism, and elimination) properties, and DL assessment of compounds helps to identify the active ingredients in TCM formulas (Yang *et al.*, 2018). The quantitative estimate of DL (QED) (Bickerton *et al.*, 2012) was used to further screen pharmaceutically active compounds in GXD and set 0.2 as the threshold value in this work. Then, the potential targets of GXD were evaluated using binomial statistical mode (Yang *et al.*, 2018; Liang *et al.*, 2014).

Protein-protein interaction (PPI) network

The common targets related to GXD and UC were retrieved by Venny 2.1.0 database (https://bioinfogp.cnb.csic.es/tools/ venny/) and then analyzed using the STRING database (https://string-db.org/). Subsequently, files of the PPI network were input into Cytoscape 3.8.0 software to visualize it.

Function enrichment analysis

Gene ontology (GO) and Kyoto Encyclopedia of Gene and Genomes (KEGG) pathway enrichment analysis was carried out by DAVID 6.8 (https://david.ncifcrf.gov/tools.jsp). In this study, the GO and KEGG analysis results were thought as significant using adjusted p < 0.01 corrected by the Bonferroni algorithm for each term.

Molecular docking analysis

Chemical structures of the active compounds were derived from the Zinc website (http://zinc15.docking.org) (Sterling and Irwin, 2015). Crystal structures of the hub proteins were obtained from the RCSB Protein Data Bank (PDB, http://www.rcsb.org/) (Burley *et al.*, 2017). Then, molecular docking was analyzed using PyMol 2.3.0 (Seeliger and de Groot, 2010), AutoDockTools 1.5.6 (Morris *et al.*, 2009), and AutoDock Vina 1.1.2 (Trott and Olson, 2010).

Construction of the mouse model for ulcerative colitis

All animal protocols were approved by the Animal Experimental Ethics Committee of Xiaoshan Third People's Hospital. Thirty female C57BL/6 mice (6–8 weeks old, 18–20 g, from GemPharmatech Co., Ltd., Nanjing, China) were housed at room temperature (24°C–26°C) with free access to food and the water cycle.

After 7 days, mice were randomized into six groups (n = 5), including control, model, low-dose GXD, middle-dose GXD, high-dose GXD, and positive control-sulfasalazine (SASP) groups. Mice in the control group received sterile water, while mice in other groups were treated with 2.5% dextran sodium sulfate (DSS, MP Biomedicals, CA, USA) for 7 days. Meanwhile, the mice in the GXD and SASP administer groups were given GXD at 3.7 g/kg (low-dose), 7.4 g/kg (middle-dose), 14.8 g/kg (high-dose), and SASP at 125 mg/kg, respectively. In comparison, mice in the control and model groups received 0.5% CMC-Na.

Disease activity index (DAI)

Weight assessment: no loss was scored as 0 points, 1%–5% loss: 1-point, 6%–10% loss: 2-points, 11%–15% loss: 3-points, more than 15% loss: 4-points. Stool assessment: good stool pattern was scored as 0-points, a loose stool: 2-points, and diarrhea: 4-points. Bleeding assessment: no rectal bleeding was scored as 0-point, no rectal bleeding: 2=points and heavy bleeding: 4-points.

Hematoxylin and eosin (H&E) staining

Colon tissues were fixed in 4% paraformaldehyde, dehydrated in a different concentration of ethanol, embedded in paraffin, and cut into 5 μ m thick slices. Slices were stained with H&E (Beijing Solarbio Science & Technology, Beijing, China). The pathological morphology of colon tissue was observed under a microscope (Olympus, Tokyo, Japan).

Quantitative real-time polymerase chain reaction (qRT-PCR) assay

Total RNA from colon tissues was isolated and reversetranscribed into cDNA by TRIzol reagent (Invitrogen, Carlsbad, CA, USA) and PrimeScript RT Master Mix (TaKaRa, Dalian, China), respectively. Each well (20 µL PCR reaction volume) included 10 µL of SYBR Green Mix (Applied Biosystems, CA, USA), 1 µL of cDNA, 2 µL of primer pair mix, and 7 µL of ddH2O. PCR was carried out on a system (MX3000P, Agilent Stratagene, Santa Clara, CA, USA) with the thermocycling conditions as follows: Initial denaturation at 95°C for 3 min, followed by 40 cycles of 95°C for 12 s and 62°C for 40 s. The levels of specific genes were calculated by the $2^{-\Delta\Delta CT}$ method. *GAPDH* worked as a reference gene. Primer sequences are listed in Suppl. Table S1.

Western blotting

Total proteins were extracted from colon tissues using RIPA lysis buffer (Beyotime, Shanghai, China), separated by gel electrophoresis, and transferred to membranes. Membranes were blocked by 5% fat-free milk for 1 h and incubated with p65-nuclear factor-(NF)-кВ (1:1000, ab207297, Abcam, Cambridge, UK), phosphorylated Signal transducer and activator of transcription 3 (p-STAT3; 1:1000, ab76315, (1:1000,ab68153, Abcam), STAT3 Abcam), and glyceraldehyde 3-phosphate dehydrogenase (GAPDH; 1:10000, ab181602, Abcam) antibodies at 4°C overnight, followed by incubation of secondary antibody (1:2000, ab6721, Abcam) for 1 h. Finally, the bands were visualized using an enhanced chemiluminescent reagents kit (Millipore, Darmstadt, Germany).

Statistical analysis

The Prism 8 (GraphPad, San Diego, CA, USA) software was used for statistical analyses. All data were exhibited with mean and standard deviation and analyzed using one-way ANOVA, followed by Tukey's test. p < 0.05 was considered to reflect a significant difference.

Results

Collection of therapeutic targets for ulcerative colitis

We found 63, 322, and 521 therapeutic targets for UC from GeneCard, OMIM, and DisGeNET databases, respectively. Then, 804 UC-related targets were finally retrieved after removing duplicate targets.

Identification of potential targets and potential targets of Gancao Xiexin decoction

From TCMID, TCMSP, and HIT databases, 371 active compounds of GXD were obtained. A total of 7154 potential targets of GXD active compounds were retrieved from TCMID, TCMSP, HIT, and STITCH databases. Next, 346 active compounds were suitable for DL screening (QED \geq 0.2). Then, from 285 active compounds, 692 potential targets were collated by binomial statistical mode. Subsequently, UC-related targets and GXD potential targets were entered into Venny 2.1.0, and after eliminating the redundancy, 89 common targets between UC and GXD

Gancao Xiexin Decoction Ulcerative colitis FIGURE 1. Venn diagram of Gancao Xiexin decoction (GXD) active components and ulcerative colitis-related targets.

were obtained (Fig. 1). Finally, 213 active compounds were mapped to 89 common targets. These 213 active compounds and 89 common targets are detailed in Tables 1 and 2, respectively. Furthermore, we constructed a Drug-compounds-targets (D-C-T) network using Cytoscape software with 213 active compounds and 89 common targets. The D-C-T network includes 309 nodes and 1545 edges (Fig. 2).

Construction of protein-protein interaction network

Interaction relationships of common targets were obtained using the STING database. The PPI network comprised 89 nodes and 1367 edges, with an average degree of 30.7; the larger sizes of the target nodes indicate that nodes have more degrees in the PPI network (Fig. 3A). Then, the top 10 hub degree genes, including *ALB*, *AKT1*, *IL6*, *TNF*, *VEGFA*, *TP53*, *CXCL8*, *MAPK1*, *PTGS2*, and *IL1* β , were screened out by Cytoscapehubba, a Cytoscape plug-in. The hub gene network consisted of 10 nodes and 45 edges (Fig. 3B).

Gene ontology and kyoto encyclopedia of genes and genomes enrichment analysis

GO enrichment analysis results contained 1107 biological process (BP) terms, 43 molecular function (MF) terms, and 18 cellular component (CC) terms when adjusted at p < p0.01. For BP terms, the common targets were mainly related to response to oxygen levels, lipopolysaccharide, the molecule of bacterial origin, etc. For MF terms, the common targets were mainly phosphatase, cytokine receptors, protein phosphatase binding, etc. For CC terms, the common targets were primarily located in the membrane microdomain, membrane raft, membrane region, etc. (Figs. 4A-4C). KEGG analysis remarkably enriched 144 pathways (p < 0.01), of which the top 15 pathways are presented in Fig. 4D. Most of the common targets were enriched in the AGE-RAGE signaling pathway in diabetic complication (hsa04933), HIF-1 signaling patly (hsa04066), endocrine resIance (hsa01522), etc. Additionally, to explain that GXD could treat UC, we used the key targets, top 15 KEGG pathways, and top 15 BP terms to construct a targetspathways-BP network, containing 106 nodes and 673 edges (Fig. 5). Furthermore, to further illustrate the ability of GXD

TABLE 1

The active compounds of Gancao Xiexin decoction

Chemical_name	QED	Chemical_name	QED
Panicolin	0.9056	DBP	0.4752
Skullcapflavone i	0.9056	Caffeic acid	0.4750
Dihydrooroxylin A	0.8871	Myristic acid	0.4726
Acacetin	0.8862	L-Ile	0.4718
Oroxylin	0.8862	Niacin	0.4715
Oroxylin a	0.8862	Leucine	0.4686
Wogonin	0.8862	Leucinum	0.4686
Calycosin	0.8850	Protoporphyrin	0.4661
Formononetin	0.8529	3,4,5-Trihydroxybenzoic acid	0.4656
Glabrone	0.8364	Mairin	0.4635
Glabridin	0.8323	HEX	0.4628
Berberine	0.8245	Thy	0.4627
Chrysin	0.8206	HX	0.4615
Glabranin	0.8174	Stigmasterol	0.4599
Zingerone	0.7944	MLT	0.4592
Butylated hydroxytoluene	0.7531	Licochalcone B	0.4567
(2S)-5,7,8-trihydroxyflavanone	0.7415	Licochalcone A	0.4563
Naringenin	0.7415	Evodin	0.4519
Apigenin	0.7403	Limonin	0.4519
(+)-Syringaresinol	0.7369	Obaculactone	0.4519
Jatrorrhizine	0.7352	Methionine	0.4506
Protopine	0.7258	Ursolic acid	0.4433
FER	0.7180	Glucosol	0.4389
Sinapyl alcohol	0.7059	10-Gingerol	0.4370
Eciphin	0.7058	Beta-sitosterol	0.4354
ANN	0.6970	Beta-sitosterol/beta-Sitosterol	0.4354
Vomifoliol	0.6968	Gamma-sitosterol	0.4354
Ferulic acid	0.6957	Lupeol	0.4329
Eugenol	0.6955	Malic acid	0.4307
Baicalein	0.6926	Hyacinthin	0.4290
Myristicin	0.6887	Uracil	0.4279
DIBP	0.6761	Istidina	0.4207
Isorhamnetin	0.6678	L-histidine	0.4207
Palmatine	0.6613	Tartaric acid	0.4150
Echinatin	0.6610	Aspartate	0.4134
p-Coumaric acid	0.6536	Hexadecanoicacid	0.4133
Ephedrine	0.6515	UND	0.4133
6-Gingerol	0.6465	Homoharringtonine	0.4123
Gingerol	0.6465	L-Valin	0.4120
Kaempferol	0.6372	Valine	0.4120
Anethole	0.6262	Pentadecylic acid	0.4059
Uralenic acid	0.6249	2-Aminobutyric acid	0.4014
Linalool	0.6172	D-2-Aminobutyrate	0.4014
Geraniol	0.6172	Proline	0.3999
Phenylalanine	0.6126	TBP	0.3996

(Continued)

Chemical_name	QED	Chemical_name	QED	
Azulol	0.6107	Gamma-aminobutyric acid	0.3980	
Morusin	0.6040	Prolinum	0.3862	
Eriodictyol	0.5988	Gulutamine	0.383	
Tetrahydroxyflavone	0.5984	Dodekan	0.380	
Coptisine	0.5914	Baicalin	0.368	
Betulinic acid	0.5913	Palmitic acid	0.365	
Hexahydrocurcumin	0.5890	Umbelliferone	0.362	
Nicotinic acid	0.5842	Asparagine	0.360	
Glabrol	0.5836	Asparamide	0.360	
Isoliquiritigenin	0.5824	Crystal VI	0.360	
Caprylic acid	0.5818	Palmitoleic acid	0.358	
Beta-elemene	0.5799	Alanine	0.356	
Nonanoic acid	0.5775	L-Alanine	0.356	
Alpha-terpineol	0.5750	LPG	0.356	
Hexanoic acid	0.5687	MRY	0.351	
Oleanolic acid	0.5678	Isovitexin/saponaretin	0.349	
l-Menthone	0.5673	Vitexin	0.349	
Crataegolic acid/Maslinic acid	0.5665	Threonin	0.349	
Hydroxytyrosol	0.5580	Threonine	0.349	
8-Gingerol	0.5540	I-Citral	0.343	
Scopoletol	0.5425	Citral	0.343	
Danshensu	0.5352	Citral/geranial	0.343	
THM	0.5350	Choline	0.340	
Succinic acid	0.5303	Glycine	0.337	
3,4-Dihydroxybenzoicacid	0.5265	(s)-Serine	0.333	
GENOP	0.5265	L-Serin	0.333	
Protocatechuic acid	0.5265	Linolenic acid	0.332	
6-Shogaol	0.5242	Zoomaric acid	0.325	
Shogaol	0.5242	Glucuronic acid	0.325	
Tetramethylpyrazine	0.5233	Tetradecane	0.321	
СМР	0.5211	Methylglyoxal	0.314	
Cineole	0.5192	Methose	0.310	
18 Alpha-glycyrrhetic acid	0.5188	Scutellarin	0.307	
18 Beta-glycyrrhetinic acid	0.5188	Riboflavine	0.304	
Alpha-glycyrrhetinic acid	0.5188	Vitamin-G	0.304	
Beta-glycyrrhetinic acid	0.5188	Stearic acid	0.301	
Glycyrrhetinic acid	0.5188	Glycyrrhizic acid	0.298	
BuOH	0.5171	EIC	0.294	
(+)-Catechin	0.5139	Hexanal	0.293	
Adenine	0.5125	L-Lysin	0.281	
(s)-Tyrosine	0.5110	GR	0.279	
DTY	0.5110	Guanosine	0.279	
GUN	0.5099	Catalpol	0.275	
Guercetol	0.5064	Hirsutrin	0.274	
Ouercetin	0.5064	Isoquercitrin	0.274	
Benzaldehvde	0.4967	Heptadekan	0.268	
WIN. VHP	0.4047	PCG	0.200	

(Continued)

Table 1 (continued)			
Chemical_name	QED	Chemical_name	QED
Catechol	0.4946	11-Octadecenoic acid	0.2630
Hydroquinone	0.4946	Vaccenic acid	0.2630
Gancaonin L	0.4938	Ginketin	0.2608
Trigonelline	0.4937	Ginkgetin	0.2608
Betulin	0.4918	Isoginkgetin	0.2608
Alpha-humulene	0.4851	Methyl hexadecanate	0.2468
Coumestrol	0.4848	Methyl palmitate	0.2468
Alpha-limonene	0.4838	Beta-carotene	0.2435
D-limonene	0.4838	Sucrose	0.2411
Hemo-sol	0.4838	Tetrandrine	0.2366
Limonene	0.4838	Chlorogenic acid	0.2326
Liquiritin	0.4838	Ethyl palmitate	0.2259
Liquiritin/liquiritoside	0.4838	Naringin	0.2174
Obacunone	0.4784	Oleic acid	0.2030
Columbianadin	0.4756		

TABLE 2

The potential targets of Gancao Xiexin decoction against ulcerative colitis

ID	Name	ID	Name	ID	Name	ID	Name
5243	ABCB1	1577	CYP3A5	1432	MAPK14	5730	PTGDS
9429	ABCG2	1956	EGFR	4312	MMP1	5739	PTGIR
109	ADCY3	2033	EP300	4318	MMP9	5742	PTGS1
113	ADCY7	51752	ERAP1	4353	MPO	5743	PTGS2
154	ADRB2	64167	ERAP2	4524	MTHFR	5970	RELA
7965	AIMP2	2099	ESR1	4780	NFE2L2	6319	SCD
207	AKT1	2150	F2RL1	4790	NFKB1	6382	SDC1
213	ALB	2695	GIP	4792	NFKBIA	23411	SIRT1
581	BAX	8477	GPR65	4843	NOS2	6532	SLC6A4
596	BCL2	3091	HIF1A	9520	NPEPPS	6647	SOD1
760	CA2	3106	HLA-B	8856	NR1I2	6714	SRC
836	CASP3	3162	HMOX1	2908	NR3C1	6774	STAT3
6347	CCL2	3265	HRAS	5047	PAEP	6863	TAC1
1490	CCN2	3383	ICAM1	5290	PIK3CA	6869	TACR1
595	CCND1	3586	IL10	5319	PLA2G1B	7040	TGFB1
1234	CCR5	3553	IL1B	5320	PLA2G2A	7097	TLR2
10803	CCR9	3558	IL2	5328	PLAU	7099	TLR4
1026	CDKN1A	3565	IL4	5444	PON1	7124	TNF
1387	CREBBP	3569	IL6	5465	PPARA	7157	TP53
1499	CTNNB1	3845	KRAS	5468	PPARG	7442	TRPV1
1511	CTSG	3952	LEP	5579	PRKCB	7422	VEGFA
3576	CXCL8	5594	MAPK1	5713	PSMD7	7494	XBP1
7852	CXCR4						

FIGURE 2. Drug-compounds-targets (D-C-T) network of Gancao Xiexin decoction (GXD). The yellow-green quadrilaterals represent the key targets. Different colored circles represent the compounds in different herbs. Grass-green circles represent compounds contained in a variety of herbs, and the red prisms represent different herbs.

FIGURE 3. (A) Protein-protein interaction (PPI) network, (B) Hub genes network.

FIGURE 4. Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genomes (KEGG) pathway enrichment analysis, (A) The top 15 biological processes (BP) bubble chart, (B) The top 15 molecular functions (MF) bubble chart, (C) The top 15 cellular components (CC) bubble chart, and (D) The top 15 KEGG bubble chart.

EGFA

FIGURE 6. Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genomes (KEGG) enrichment analysis of hub genes. (A) Biological process (BP); (B) KEGG pathway.

response to drug

to ameliorate UC, we also evaluated the relationship between the hub target and BP, KEGG, as shown in Fig. 6, according to which, AKT1, PTGS2, IL1β, TNF, and MAPK1 may play a vital role during UC treatment.

Molecular docking

The interactions between the active compounds and hub targets were investigated to further explore the action mechanism of the GXD compounds. Nine active compounds baicalin, betulinic (maslinic acid, acid, glycyrrhizic protopine, liquiritin, baicalein, acid. isoliquiritigenin, and gingerol; the detailed information is elucidated in Table 3) and eight hub genes (MAPK1, PTGS2, AKT1, TP53, IL6, ALB, and TNF) were selected for molecular docking analysis. After setting the threshold affinity <-5 kcal/mol, we obtained 59 pairs of docking results (Table 4). The top 10 pairs of docking results are exhibited in Fig. 7. Among them, the binding affinity of maslinic acid with tumor necrosis factor (TNF) was -9.7 kcal/mol, which was contributed by bonding with SER-60 and LEU-120 residues. The binding affinity of baicalin with PTGS2 was -9.7 kcal/mol, which was contributed by bonding with HIS-388, TYR-385, THR-212, and HIS-214 residues. The binding affinity of betulinic acid with TNF

was -9.6 kcal/mol, which was contributed by bonding with HIS-388, TYR-385, THR-212, and HIS-214 residues.

C-type lectin re

Verification through animal experiments

To verify the effect of GXD on UC, we established a UC mouse model by administering 2.5% DSS. DAI scores were used to assess the severity of colitis in mice. As shown in Fig. 8A, compared with the control group, DAI scores were significantly increased in the model group. While GXD and SASP administration decreased the DAI scores. Additionally, the colon length was significantly shorter in the model group than in the control group. GXD and SASP administration notably suppressed the shortening of colon length in UC mice (Figs. 8B and 8C). The colon in the model group showed tissue damage with mucosal architecture and apparent inflammatory cell infiltration. Likewise, GXD provided a therapeutic effect in a dosedependent manner (Fig. 8D).

To further verify whether GXD could act against UC, we detected the levels of inflammatory cytokines and potential targets using qRT-PCR and western blotting. The mRNA levels of inflammatory cytokines interleukin (IL)-1β, IL-17, IL-6, TNF-a, and cyclooxygenase (COX)-2 were markedly increased in the model group; then they were weakened by

TABLE 3

Synonyms	Chemical abstracts service (CAS)	Molecular formula
Betulinic acid	472-15-1	$C_{20}H_{40}O_2$
Maslinic acid	4373-41-5	$C_{30}H_{48}O_4$
Protopine	130-86-9	$C_{20}H_{19}NO_5$
Gingerol	23513-14-6	$C_{17}H_{26}O_4$
Baicalein	491-67-8	$C_{15}H_{10}O_5$
Baicalin	21967-41-9	$C_{21}H_{18}O_{11}$
Liquiritin	551-15-5	$C_{21}H_{22}O_9$
Isoliquiritigenin	961-29-5	$C_{15}H_{12}O_4$
Glycyrrhizic acid	1405-86-3	$C_{42}H_{62}O_{16}$

Chemical structure of active ingredients in Gancao Xiexin decoction

TABLE 4

Results of 59 pairs of molecular docking analysis

Chemical	PDB	Gene	Bestaffinity
Maslinic acid	2az5	TNF	-9.7
Baicalin	5f19	PTGS2	-9.7
Betulinic acid	2az5	TNF	-9.6
Protopine	1e7a	ALB	-9.4
Baicalin	4gv1	AKT1	-9.3
Liquiritin	4nif	MAPK1	-9.2
Liquiritin	1e7a	ALB	-9.2
Baicalein	5f19	PTGS2	-8.8
Protopine	4nif	MAPK1	-8.6
Protopine	4gv1	AKT1	-8.6
Protopine	2az5	TNF	-8.6
Baicalin	4nif	MAPK1	-8.6
Baicalin	4j4l	IL6	-8.6
Baicalin	1e7a	ALB	-8.6
Liquiritin	4gv1	AKT1	-8.6
Baicalein	4nif	MAPK1	-8.5
Liquiritin	5f19	PTGS2	-8.4
Glycyrrhizic acid	5f19	PTGS2	-8.4
Isoliquiritigenin	4nif	MAPK1	-8.3
Glycyrrhizic acid	1h26	TP53	-8.3
Maslinic acid	1e7a	ALB	-8.2
Protopine	4j4l	IL6	-8.2
Liquiritin	4j4l	IL6	-8.2
Isoliquiritigenin	5f19	PTGS2	-8.2
Isoliquiritigenin	1e7a	ALB	-8.1
Glycyrrhizic acid	4j4l	IL6	-8.1
Baicalein	4gv1	AKT1	-8
Baicalein	1e7a	ALB	-8
Maslinic acid	1h26	TP53	-7.9
Betulinic acid	4gv1	AKT1	-7.7
Betulinic acid	1h26	TP53	-7.7
Baicalein	2az5	TNF	-7.7
Baicalin	1h26	TP53	-7.7
Gingerol	5f19	PTGS2	-7.6
Isoliquiritigenin	4gv1	AKT1	-7.6
Protopine	5f19	PTGS2	-7.5
Protopine	1h26	TP53	-7.4
Gingerol	1e7a	ALB	-7.4
Baicalin	2az5	TNF	-7.4
Isoliquiritigenin	4j4l	IL6	-7.4
Maslinic acid	4gv1	AKT1	-7.2
Liquiritin	2az5	TNF	-7.2
Glycyrrhizic acid	2az5	TNF	-7.2
Betulinic acid	5f19	PTGS2	-7
Gingerol	4gv1	AKT1	-7

(Continued)

Table 4 (continued)			
Chemical	PDB	Gene	Bestaffinity
Isoliquiritigenin	2az5	TNF	-7
Baicalein	4j4l	IL6	-6.9
Maslinic acid	4j4l	IL6	-6.8
Gingerol	4nif	MAPK1	-6.8
Liquiritin	1h26	TP53	-6.8
Glycyrrhizic acid	4gv1	AKT1	-6.8
Maslinic acid	5f19	PTGS2	-6.7
Betulinic acid	4nif	MAPK1	-6.6
Betulinic acid	4j4l	IL6	-6.6
Baicalein	1h26	TP53	-6.6
Isoliquiritigenin	1h26	TP53	-6.3
Gingerol	2az5	TNF	-6.2
Gingerol	4j4l	IL6	-6.1
Gingerol	1h26	TP53	-5

dose-dependent addition of GXD (Fig. 9A). Meanwhile, the protein expression of p65-NF- κ B, p-STAT3, and STAT3 using western blotting assay revealed that oral administration of 2.5% DSS obviously enhanced p65-NF- κ B and p-STAT3 expression levels, while GXD and SASP addition reversed this enhancement of DSS. Besides, the expression of STAT3 did not change in all groups (Fig. 9B).

Discussion

Recently, clinical studies have found that GXD reduces the expression of inflammatory cytokines in the serum of UC patients (Zhao *et al.*, 2013b; Guo, 2017; Wang *et al.*, 2016). However, the anti-UC therapeutic mechanism of GXD has not been characterized. In this study, network pharmacology combined with molecular docking was used to unravel the therapeutic targets and action mechanisms of GXD against UC.

Using a network pharmacology assay, the active compounds, potential targets, and action mechanisms were obtained. The D-C-T network showed that quercetin, hexadecenoic acid, palmitic acid, baicalein, choline, baicalin, and so on may be the main active compounds of GXD against UC. Quercetin is a polyhydroxy flavonoid with a variety of biological functions, such as anti-oxidation, antiinflammation, and anti-viral action. Quercetin inhibits the release of pro-inflammatory mediators and proinflammatory protein expression (Habtemariam and Belai, 2018). Baicalin inhibits the expression of IL-33 and NF- κ B p65, increases IkB-a levels, and regulates T17/Treg balance and intestinal flora to exert anti-inflammatory effects (Zhang et al., 2017; Zhu et al., 2020). These suggest that GXD affects inflammation, which is also confirmed by the GXD-mediated up-regulation suppressing of inflammatory factors in UC mice.

Moreover, the hub genes network suggested that ALB, AKT1, IL6, TNF, VEGFA, TP53, CXCL8, MAPK1, PTGS2, and $IL1\beta$ may be the potential targets of GXD against UC. TNF-a, a major inflammatory factor, is involved in the pathogenesis of inflammatory bowel disease (IBD), and UC is a subtype of IBD. Anti-TNF-a drugs are commonly used in the treatment of UC (Oliveira *et al.*, 2021). IL-1 β is a key mediator in the development of UC, leading to increased intestinal epithelial permeability and stimulating neutrophil recruitment to infected colonic tissue, resulting in colonic mucosal edema and necrosis (Neurath, 2014). TP53 is an oncogene closely associated with colon carcinogenesis and could be a key target for UC prevention and treatment (Lu et al., 2017; Elmashad et al., 2016). Additionally, PTGS2 (COX-2) plays a specific role in inflammation and is expressed in epithelial cells and monocytes in IBD (Farrokhyar et al., 2001; Cox et al., 2005). Here, the mRNA expression changes of IL6, TNF-a, IL1β, and COX-2 in UC mice were reversed by GXD addition, which indicates that these potential targets may be the therapeutic targets for UC treatment.

GO and KEGG enrichment analyses revealed the potential GXD anti-UC effect achieved via the advanced glycation endproducts/receptors for advanced glycation endproducts (AGE-RAGE) signaling pathway in diabetic complications, HIF-1, IL-17, and TNF signaling pathways, etc. One meta-analysis suggested that genetic polymorphisms in IL-17A and IL-17F may increase the risk of UC development in both allelic and dominant models (Li et al., 2014). AGE and RAGE are involved in and mediate various oxidative stress signaling pathways, inducing reactive oxygen species production and activating NF-kB, leading to inflammatory responses, apoptosis, and microvascular disease (Fukami et al., 2014). RAGE polymorphisms and increased levels of RAGE have been identified in patients with IBD, and AGE/RAGE

FIGURE 7. The top 10 molecular docking of the active compound-hub gene. (A) Maslinic acid to tumor necrosis factor (TNF), affinity = -9.7 kcal/mol, (B) Baicalin to Prostaglandin-endoperoxide synthase 2 (PTGS2), affinity = -9.7 kcal/mol, (C) Betulinic acid to TNF, affinity = -9.6 kcal/mol; (D) Protopine to albumin (ALB), affinity = -9.4 kcal/mol; (E) Baicalin to serine-threonine kinase 1 (AKT1), affinity = -9.3 kcal/mol; (F) Liquiritin to mitogen-activated protein kinase 1 (MAPK1), affinity = -9.2 kcal/mol; (G) Liquiritin to ALB, affinity = -9.2 kcal/mol; (H) Baicalein to Prostaglandin-endoperoxide synthase 2 (PTGS2), affinity = -8.8 kcal/mol; (I) Protopine to MAPK1, affinity = -8.6 kcal/mol; (J) Protopine to AKT1, affinity = -8.6 kcal/mol.

involvement in inflammation is associated with the activation of NF- κ B and its response to oxidative stress (Moura *et al.*, 2020). All these indicate that GXD acts against UC via multiple pathways.

Additionally, molecular docking results showed GXD compounds have good binding ability to hub proteins. In

vivo experiments showed that GXD could significantly alleviate the symptoms of UC, including reducing DAI score, improving colonic tissue damage and inflammatory cell infiltration, and increasing colonic length. Meanwhile, GXD treatment down-regulated the expression of inflammatory factors NF- κ B and STAT3 in UC mice.

FIGURE 8. Gancao Xiexin decoction (GXD) treatment attenuates dextran sodium sulfate (DSS)-induced colitis in mice. (A) Disease activity index (DAI), (B–C) Colon length, (D) Representative hematoxylin and eosin staining of colon sections (n = 3). ***p < 0.001 *vs*. control group; ^{##}p < 0.01 and ^{###}p < 0.001 *vs*. model group; ^{\$}p < 0.05, ^{\$\$}p < 0.01, and ^{\$\$\$}p < 0.001 *vs*. low-dose GXD group.

FIGURE 9. (A) Effect of Gancao Xiexin decoction (GXD) on the expression of inflammatory cytokines, including cyclooxygenase (COX)-2, interleukin (IL)-17, IL-1 β , IL-6, and tumor necrosis factor (TNF)- α were detected by the quantitative real-time polymerase chain reaction assay (n = 3). (B) Effects of GXD on the expression of p65-nuclear factor (NF)- κ B, phosphorylated signal transducer and activator of transcription 3 (p-STAT3 and STAT3) were detected using western blot assay (n = 3). ***p < 0.001 vs. control group; "p < 0.05, "#p < 0.01, and "##p < 0.001 vs. model group; "p < 0.05, "\$p < 0.01, and "##p < 0.001 vs. low-dose GXD group.

In conclusion, network pharmacological analysis revealed that GXD has 89 targets and 213 compounds potentially involved in the treatment of UC. GO and KEGG enrichment analyses showed that the action mechanism of GXD in the treatment of UC is related to its antioxidant, anti-inflammatory, and immunomodulatory functions. Molecular docking suggests that the hub genes MAPK1, PTGS2, AKT1, TP53, IL6, ALB, and TNF may be potential targets for GXD against UC. Animal experiments have shown that GXD can downregulate the inflammatory levels of UC mice, as well as the expression of NF-KB and p-STAT3. Our research provides a scientific basis for the subsequent development and development of GXD in the treatment of UC. However, our study also had shortcomings; for example, we did not explore the specific mechanisms by which GXD is used to treat UC.

Funding Statement: The authors received no specific funding for this study.

Author Contributions: The authors confirm contribution to the paper as follows: study conception and design: Chen-hao Shi, Guan-hua Xu; data collection: Chen-hao Shi, Mao-hong Hua; analysis and interpretation of results: Chen-hao Shi, Mao-hong Hua, Guan-hua Xu; draft manuscript preparation: Chen-hao Shi. All authors reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Ethics Approval: All animal protocols were approved by the Animal Experimental Ethics Committee of Xiaoshan Third People's Hospital.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the present study.

References

- Amberger JS, Hamosh A (2017). Searching online mendelian inheritance in man (OMIM): A knowledgebase of human genes and genetic phenotypes. *Current Protocols in Bioinformatics* 58: 1.2.1–1.2.12. https://doi.org/10.1002/cpbi.27
- Bickerton GR, Paolini GV, Besnard J, Muresan S, Hopkins AL (2012). Quantifying the chemical beauty of drugs. *Nature Chemistry* **4**: 90–98. https://doi.org/10.1038/nchem.1243
- Burley SK, Berman HM, Kleywegt GJ, Markley JL, Nakamura H, Velankar S (2017). Protein data bank (PDB): The single global macromolecular structure archive. *Methods in Molecular Biology* 1607: 627–641. <u>https://doi.org/10.1007/</u> 978-1-4939-7000-1
- Cox DG, Crusius JB, Peeters PH, Bueno-de-Mesquita HB, Pena AS, Canzian F (2005). Haplotype of prostaglandin synthase 2/ cyclooxygenase 2 is involved in the susceptibility to inflammatory bowel disease. *World Journal of Gastroenterology* **11**: 6003–6008. <u>https://doi.org/10.3748/ wjg.v11.i38.6003</u>

- Elmashad NM, Ziada DH, Hasby EA, Mohamed AEM (2016). Immunohistochemical expression of proinflammatory enzyme COX-2 and p53 in ulcerative colitis and its associated dysplasia and colorectal carcinoma. *Journal of Microscopy and Ultrastructure* 4: 195–202. <u>https://doi.org/</u> 10.1016/j.jmau.2016.03.003
- Farrokhyar F, Swarbrick ET, Irvine EJ (2001). A critical review of epidemiological studies in inflammatory bowel disease. *Scandinavian Journal of Gastroenterology* 36: 2–15. <u>https:// doi.org/10.1080/00365520150218002</u>
- Fukami K, Yamagishi S, Okuda S (2014). Role of AGEs-RAGE system in cardiovascular disease. *Current Pharmaceutical Design* 20: 2395–2402. https://doi.org/10.2174/13816128113199990475
- Gao Y, Si Y, Shang J, Wen R, Niu X (2005). Effects of 3 kinds of Xiexin decoction and their different combinations on gastric mucus composition in normal rats. *Chinese Traditional Patent Medicine* 27: 69–74.
- Guo S (2017). Modified Gancao Xiexin decoction in the treatment of ulcerative colitis for 57 cases. *Guangming Journal of Chinese Medicine* 32: 992–994.
- Habtemariam S, Belai A (2018). Natural therapies of the inflammatory bowel disease: The case of Rutin and its Aglycone, Quercetin. *Mini-Reviews in Medicinal Chemistry* 18: 234–243. <u>https://doi.org/10.2174/1389557517666170120152417</u>
- Hu Y, Zhang Y (2008). Effect of Gancao Xiexin decoction on serum NO and NOS in patients with recurrent aphthous ulcer. *Practical Pharmacy and Clinical Remedies* **11**: 143–144.
- Huang L, Xie D, Yu Y, Liu H, Shi Y, Shi T, Wen C (2018). TCMID 2.0: A comprehensive resource for TCM. *Nucleic Acids Research* 46: D1117–D1120. <u>https://doi.org/10.1093/nar/</u> <u>gkx1028</u>
- Kobayashi T, Siegmund B, Le Berre C, Wei SC, Ferrante M, Shen B, Bernstein CN, Danese S, Peyrin-Biroulet L, Hibi T (2020).
 Ulcerative colitis. *Nature Reviews Disease Primers* 6: 74. https://doi.org/10.1038/s41572-020-0205-x
- Kotze PG, Underwood FE, Damiao A, Ferraz JGP, Saad-Hossne R et al. (2020). Progression of inflammatory bowel diseases throughout Latin America and the Caribbean: A systematic review. *Clinical Gastroenterology and Hepatology* 18: 304– 312. https://doi.org/10.1016/j.cgh.2019.06.030
- Li J, Tian H, Jiang HJ, Han B (2014). Interleukin-17 SNPs and serum levels increase ulcerative colitis risk: A meta-analysis. *World Journal of Gastroenterology* **20**: 15899–15909. <u>https://doi.org/10.3748/wjg.v20.i42.15899</u>
- Liang X, Li H, Li S (2014). A novel network pharmacology approach to analyse traditional herbal formulae: The Liu-Wei-Di-Huang pill as a case study. *Molecular BioSystems* 10: 1014– 1022. https://doi.org/10.1039/C3MB70507B
- Lu X, Yu Y, Tan S (2017). p53 expression in patients with ulcerative colitis—associated with dysplasia and carcinoma: A systematic meta-analysis. *BMC Gastroenterology* **17**: 111. https://doi.org/10.1186/s12876-017-0665-y
- Luo M, Luo Y (2021). Imperatorin relieved ulcerative colitis by regulating the Nrf-2/ARE/HO-1 pathway in rats. *Inflammation* **44**: 558–569. <u>https://doi.org/10.1007/</u> s10753-020-01353-3
- Luo YT, Wu J, Zhu FY, Wu JQ, Wu P, Liu YC (2022). Gancao Xiexin decoction ameliorates ulcerative colitis in mice via modulating gut microbiota and metabolites. *Drug Design Development and Therapy* **16**: 1383–1405. <u>https://doi.org/</u> 10.2147/DDDT.S352467

- Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. *Journal of Computational Chemistry* **30**: 2785–2791. <u>https://doi.org/10.1002/jcc.21256</u>
- Moura FA, Goulart MOF, Campos SBG, da Paz Martins AS (2020). The close interplay of nitro-oxidative stress, advanced glycation end products and inflammation in inflammatory bowel diseases. *Current Medicinal Chemistry* **27**: 2059– 2076. https://doi.org/10.2174/0929867325666180904115633
- Neurath MF (2014). Cytokines in inflammatory bowel disease. Nature Reviews Immunology 14: 329–342. <u>https://doi.org/</u> 10.1038/nri3661
- Ng SC, Kaplan GG, Tang W, Banerjee R, Adigopula B et al. (2019). Population density and risk of inflammatory bowel disease: A prospective population-based study in 13 countries or regions in Asia-Pacific. *American Journal of Gastroenterology* **114**: 107–115. <u>https://doi.org/10.1038/</u> s41395-018-0233-2
- Oliveira RG, Damazo AS, Antonielli LF, Miyajima F, Pavan E, Duckworth CA, Lima J, Arunachalam K, Martins DTO (2021). Dilodendron bipinnatum Radlk. Extract alleviates ulcerative colitis induced by TNBS in rats by reducing inflammatory cell infiltration, TNF-α and IL-1β concentrations, IL-17 and COX-2 expressions, supporting mucus production and promotes an antioxidant effect. Journal of Ethnopharmacology 269: 113735. <u>https://doi.org/</u> 10.1016/j.jep.2020.113735
- Piñero J, Bravo À, Queralt-Rosinach N, Gutiérrez-Sacristán A, Deu-Pons J, Centeno E, García-García J, Sanz F, Furlong LI (2017). DisGeNET: A comprehensive platform integrating information on human disease-associated genes and variants. *Nucleic Acids Research* 45: D833–d839. <u>https://doi.org/10.1093/nar/gkw943</u>
- Ru J, Li P, Wang J, Zhou W, Li B et al. (2014). TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. *Journal of Cheminformatics* 6: 13. <u>https://doi.org/10.1186/1758-2946-6-13</u>
- Safran M, Dalah I, Alexander J, Rosen N, Iny Stein T et al. (2010). GeneCards version 3: The human gene integrator. *Database* 2010: baq020. https://doi.org/10.1093/database/baq020
- Seeliger D, de Groot BL (2010). Ligand docking and binding site analysis with PyMOL and Autodock/Vina. Journal of Computer-Aided Molecular Design 24: 417–422. <u>https://doi.org/10.1007/s10822-010-9352-6</u>
- Sterling T, Irwin JJ (2015). ZINC 15—ligand discovery for everyone. Journal of Chemical Information and Modeling 55: 2324– 2337. https://doi.org/10.1021/acs.jcim.5b00559
- Szklarczyk D, Santos A, von Mering C, Jensen LJ, Bork P, Kuhn M (2016). STITCH 5: Augmenting protein-chemical interaction networks with tissue and affinity data. Nucleic

Acids Research 44: D380–D384. <u>https://doi.org/10.1093/nar/</u>gkv1277

- Trott O, Olson AJ (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. *Journal of Computational Chemistry* **31**: 455–461. <u>https://doi.org/10.1002/jcc.21334</u>
- Wang GQ, Wei WH, Yang J (2016). Effects of Gancao Xiexin decoction on serum levels of IL-17 and IL-23 in patients with ulcerative colitis. *Journal of Nanjing University of Traditional Chinese Medicine* 32: 25–28.
- Wei YY, Fan YM, Ga Y, Zhang YN, Han JC, Hao ZH (2021). Shaoyao decoction attenuates DSS-induced ulcerative colitis, macrophage and NLRP3 inflammasome activation through the MKP1/NF-κB pathway. *Phytomedicine* **92**: 153743. https://doi.org/10.1016/j.phymed.2021.153743
- Yan J, Yan Y, Young A, Yan Z, Yan Z (2021). Effectiveness and safety of Chinese medicine decoctions for behcet's disease: A systematic review and meta-analysis. Evidence-Based Complementary and Alternative Medicine 2021: 8202512. https://doi.org/10.1155/2021/8202512
- Yang M, Chen J, Xu L, Shi X, Zhou X, An R, Wang X (2018). A network pharmacology approach to uncover the molecular mechanisms of herbal formula Ban-Xia-Xie-Xin-Tang. *Evidence-Based Complementary and Alternative Medicine* 2018: 4050714. https://doi.org/10.1155/2018/4050714
- Ye H, Ye L, Kang H, Zhang D, Tao L et al. (2011). HIT: Linking herbal active ingredients to targets. *Nucleic Acids Research* 39: D1055–D1059. <u>https://doi.org/10.1093/nar/gkq1165</u>
- Zhang S, Hao L, Gong C, Song Y, Yi C (1997). Effects of Gancao Xiexin decoction on immune function and normobaric hypoxia tolerance in mice. *Pharmacology and Clinic of Traditional Chinese Medicine* 13: 12–13.
- Zhang CL, Zhang S, He WX, Lu JL, Xu YJ, Yang JY, Liu D (2017). Baicalin may alleviate inflammatory infiltration in dextran sodium sulfate-induced chronic ulcerative colitis via inhibiting IL-33 expression. *Life Sciences* 186: 125–132. https://doi.org/10.1016/j.lfs.2017.08.010
- Zhao C, Cai Z, Deng M (2013a). Observation on therapeutic effect of modified Gancao Xiexin decoction on pseudomembranous enteritis. *Journal of Emergency in Traditional Chinese Medicine* 22: 117–118.
- Zhao Q, Wang S, Liang X (2013b). Gancao Xiexin decoction in the treatment of relapsing ulcerative colitis: Clinical observation and the effects of intestinal microflora and serum interleukin 6, 10. Chinese Archives of Traditional Chinese Medicine 31: 944–946.
- Zhu L, Xu LZ, Zhao S, Shen ZF, Shen H, Zhan LB (2020). Protective effect of baicalin on the regulation of Treg/Th17 balance, gut microbiota and short-chain fatty acids in rats with ulcerative colitis. *Applied Microbiology and Biotechnology* **104**: 5449– 5460. https://doi.org/10.1007/s00253-020-10527-w

Supplementary Materials

TABLE S1

Primer sequences for qRT-PCR assay

Gene	Primer sequences
TNF-a	F: 5'- CAGGCGGTGCCTATGTCTC-3'
	R: 5'-CGATCACCCCGAAGTTCAGTTCAGTAG-3'
IL-1β	F: 5'-GAAATGCCACCTTTTGACAGTG-3'
	R: 5'-TGGATGCTCTCATCAGGACAG-3'
COX-2	F: 5'-ACAATGCTGACTATGGCTAC-3'
	R: 5'-CTGATGCGTGAAGTGCTG-3'
IL-17	F: 5'-GTGTCTCTGATGCTGTTG-3'
	R: 5'-AACGGTTGAGGTAGTCTG-3'
IL-6	F: 5'-TAGTCCTTCCTACCCCAATTTCC-3'
	R: 5'-TTGGTCCTTAGCCACTCCTTC-3'
GAPDH	F: 5'-GAAGGTCGGTGTGAACGGATTTG-3'
	R: 5'-CATGTAGACCATGTAGTTGAGGTCA-3'