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Abstract: Background: Although the GABAA receptor (GABAAR) has been proposed as the main action site for

sevoflurane, isoflurane, halothane, enflurane, propofol, and benzodiazepines (BZDs), binding of these anesthetics with

high-resolution structures of the GABAAR have been rarely examined by comparative docking analyses. Moreover,

various combinations of ligands on more GABAARs with various subtypes need to be analyzed to understand the

elaborate action mechanism of GABAARs better because some GABAA ligands showed specificity toward the distinct

subtypes of the GABAAR. Methods: We performed in silico docking analysis to compare the binding modes of

sevoflurane, isoflurane, halothane, enflurane, propofol, and BZDs to the GABAAR based on one of the most recently

provided 3D structures. We performed the docking analysis and the affinity-based ranking of the binding sites.

Results: Our docking studies revealed that isoflurane, halothane, and enflurane docked in an extracellular domain

(ECD) on GABAARs, in contrast to sevoflurane. Conclusion: Our results supported a multi-site mechanism for the

allosteric modulation of propofol. Propofol was bound to the pore or favored various subsites in the transmembrane

domain (TMD). Our result confirmed that different chemically related BZD ligands interact via distinct binding

modes rather than by using a common binding mode, as previously suggested.

Introduction

Anesthetics can be classified into three types: general, local,
and regional (Fig. 1). General anesthetics are mostly
halogenated ethers, such as isoflurane, sevoflurane,
desflurane, and enflurane. Inhaled anesthetics diffuse to the
blood and influence the central nervous system by
suppressing nicotinic acetylcholine (nACh) receptors and
inhibiting spinal cord function, subsequently causing
paralysis and immobility (Antognini and Schwartz, 1993;
Rampil et al., 1993; Campagna et al., 2003; Grasshoff et al.,
2005; Hentschke et al., 2005). General anesthetics are known
to target inhibitory or excitatory ion channel receptors by
prolonging the activation of inhibitory channel receptors,
including glycine and γ-aminobutyric acid type A (GABAA)
receptors (GABAARs), and depressing the activity of

excitatory channel receptors, including serotonin, nACh,
and glutamate receptors (Torri, 2010).

Although GABAARs, glycine receptors, nACh receptors,
and type 3 serotonin (5-HT3) receptors are categorized as
pentameric ligand-gated ion channels (pLGICs), general
anesthetics generally conduct chloride ions into cells to
reduce neuronal excitability in GABAA and glycine
receptors but conduct cations in nACh and 5-HT3 receptors
(Smart and Paoletti, 2012; Fourati et al., 2018). Moreover, in
spinal motor neurons, although inhibitory glycine receptors
are always stimulated by the general anesthetics, resulting in
the suppression of both postsynaptic N-methyl-D-aspartate
(NMDA) receptors and α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid receptors, GABAAR responses can
vary among specific channel subtypes or drugs (Cheng and
Kendig, 2000). Accordingly, GABAARs, are differently
modulated by general anesthetics as they are inhibited
rather than potentiated by anesthetics (Howard et al., 2014).
Meanwhile, nACh and 5-HT3 receptors that are
conventionally inhibited are activated by some anesthetics,
such as ethanol (Howard et al., 2014; Fourati et al., 2018).
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This is a complicated but important aspect of the structure-
function relationship of general anesthetics in terms of their
capacity to regulate receptors in contradictory ways.
Clinically relevant concentrations of enflurane and
isoflurane enhanced signaling by GABA and glycine
receptors (Mihic et al., 1997). Two amino acid residues
buried in the transmembrane domains (TMDs) were
recently discovered to be critical for the allosteric
modulation of both the glycine receptors and GABAARs
triggered by enflurane and isoflurane (Mihic et al., 1997).
The GABAAR has also been suggested as a binding target of
propofol (Krasowski et al., 2001; Kuo et al., 2005; Chiara
et al., 2014). The experiment using photolabeling of a
propofol analog suggested that the binding site of propofol
would be located in the β subunit of the GABAAR at the
boundary between the TMDs and the extracellular domain
(ECD) (Yip et al., 2013). The GABAAR is one of the targets
for anesthetics, including volatile and intravenous types, or
neurosteroids and drugs such as benzodiazepines (BZDs)
(Sieghart, 1995; Lobo and Harris, 2008; Zhu et al., 2018).
Some studies have suggested that increased agonist efficacy,
even though the enhanced agonist binds at the orthosteric
GABA binding site, causes propofol and barbiturates to
potentiate the GABAAR responses to partial agonists
(O’Shea et al., 2000; Steinbach and Akk, 2001). Therefore,
the interaction of anesthetic ligands and GABAARs needs to
be determined to explain the anesthetic mechanism. In
humans, the GABAAR has a total of 19 subunits that are
encoded by nineteen different genes: α1–6, β1–3, γ1–3, δ, ε,
θ, π, and ρ1–ρ3. Most physiologically predominant
heteromeric synaptic isoform formats are thought to be
composed of two α1-subunits, two β2-subunits, and one γ2-
subunit (Sigel and Steinmann, 2012). Common synaptic
GABAARs are heteropentamers with an αβγ, 2:2:1
stoichiometry (Alkire et al., 1997; Eckenhoff, 1998; Cheng

and Kendig, 2000). GABAAR exists as a homopentamer
(Murlidaran et al., 2019; Eckenhoff et al., 2000), and 1:2:2
heteropentamer (Bhattacharya et al., 2000; Vemparala et al.,
2010). Five subunits are assembled around a pivotal pore
and each subunit is composed of an ECD, including ligand
binding sites, and a TMD, including M1–M4 helixes
(Murlidaran et al., 2019).

The three-dimensional (3D) binding characteristics of
ligands within the GABAARs should be identified using
structural data to understand the action mechanism of
general anesthetics. The lack of structural information has
prevented a complete understanding of how anesthetics
modulate the mode of action of GABAergic
neurotransmission (Forman and Miller, 2011; Wei et al.,
2011). Before the crystal structure of the GABAAR was
discovered, other pLGICs with homology to the GABAAR
and resolved 3D structures were used to determine the
binding site of anesthetics (Nury et al., 2011; Chiara et al.,
2014). To specify these molecular characteristics, the
structures of a protein bound to anesthetics require a
resolution of 2 Å (Forman and Miller, 2011). Moreover, to
elucidate the conformational changes, the redundant
structures of the same part need to be determined in several
modes (Forman and Miller, 2011). However,
crystallographic data of mammalian pLGICs with 2 Å
resolution were not available until 2011 (Forman and Miller,
2011). The cryo-electron microscopy (cryo-EM) structure of
the Torpedo acetylcholine receptor muscle subtype
constructed in the resting mode without agonist at 4 Å
resolution was the only available structural data of a
vertebrate (Unwin, 2005). However, this low resolution is
incapable of elucidating the elaborate binding residues of
anesthetics at side chains. The other structures determined
for pentameric ion-channel receptors were the superfamily
of bacterial members and included the TMD without an

FIGURE 1. Structures of the anesthetics used in the docking analysis.
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intracellular domain (Bocquet et al., 2009; Hilf and Dutzler,
2009). Since 2012, various crystal structures of the ligand-
binding domain of cysteine-loop receptor homologs such as
the acetylcholine-binding protein (AChBP), the nAChR, and
bacterial homologs have been solved (Richter et al., 2012).
GABA is suggested to be located between β–α-subunits and
BZDs are located between the α–γ subunits (Sigel and Buhr,
1997).

Furthermore, functional studies using mutagenesis have
suggested the binding sites for GABA/BZD ligands and
many other compounds on GABAARs. However,
information on the physiological GABAAR has been rarely
reported (Whiting et al., 1995; Forman and Miller, 2011;
Olsen, 2015). Recently, many studies have focused on the
structural determination of GABAAR, and the interaction
between GABAAR and anesthetic drugs have been
elucidated. Most GABAARs of the human brain in the
physiological state are heteromers of two α subunits (α1–6),
two β subunits (β1–3), and one γ (γ1–3) or δ subunit, out
of 19 possible types (Sigel and Steinmann, 2012; Dore et al.,
2014). However, further studies are needed to elucidate the
previous results on the specificity of GABAA ligands toward
the distinct subtypes of the GABAAR of α1, α2, α3, α4, α5,
and α6. Classical BZDs, including diazepam and alprazolam,
act specifically on GABAAR subtypes containing α1, α2, α3
or α5, but not α4 or α6 (Tan et al., 2011). Therefore,
various combinations of ligands on more GABAARs with
various subtypes need to be analyzed to understand the
elaborate action mechanism of GABAARs. This explains the
necessity to identify the binding site of anesthetics to
GABAARs using updated and elaborate 3D structural
models with more types of anesthetics. The crystallographic
data of GABAAR structure determined earlier was that of
β3 homopentamer in an agonist-bound state, which
provided the initial guide to explain the physiological
receptor (Miller and Aricescu, 2014). Photoaffinity labeling
to resolve the binding site for propofol in GABAARs was
performed using partially expressed GABAARs consisting of
both β3 homopentamers and α1β3 heteropentamers (Yip
et al., 2013). Recently, the structures of apo- and
neurosteroid-bound GABAAR constructs containing an α
subunit TMDs were characterized and provided (Miller
et al., 2017). Later, high-resolution cryo-EM structures of
the human α1β2γ2 GABAAR were provided and applied to
our analysis. The α1β2γ2 isoform is a predominant form in
the adult brain, and the complex of this isoform with GABA
and flumazenil, the BZD antagonist, has been reported (Zhu
et al., 2018). Because this α1β2γ2 isoform is a physiological
GABAAR, the current high-resolution structural
information finely featured the association of the
heteromeric subunit and the molecular interactions of the
receptor with ligands such as GABA and flumazenil. In the
most up-to-date GABAA construct of β2α1β2α1γ2 form,
five subunits showed a pseudo-symmetrical pattern of
assembly around an integral ion channel (Zhu et al., 2018).
Viewing from the extracellular space, the ring of subunits is
arranged as β2α1β2α1γ2 in a counter-clockwise direction
(Tretter et al., 1997; Baumann et al., 2002; Baur et al., 2006;
Zhu et al., 2018). There were two ECD interfaces in α1–β2
and γ2–β2, but no ligand was bound to these clefts, which

are considered putative targets for designing novel drugs
(Zhu et al., 2018). According to the crystallographic
model comprising the α1, β2, and γ2-subunits with GABA
and flumazenil, GABA is located in the conventional
neurotransmitter ligand binding site of the pLGIC
superfamily at the two β2α1 interfaces in the ECD (Zhu
et al., 2018). Flumazenil was found to bind at a similar
form of the cleft site at the α1γ2 interface of GABARs in
this model.

We used these current architectures to analyze the
putative binding sites of isoflurane, enflurane, halothane,
and propofol. Docking analysis of these anesthetics was
performed against the entire structure and not merely the
three putative ligand binding sites of recent GABAA
structures. We also used these architectures to analyze the
putative binding sites of various types of BZD. Docking
analysis of the aesthesia was performed against a receptor
construct containing ECD, TMD, and TMD hole. Docking
with volatile anesthetics incurred numerous false positives
because the binding mode determined by docking was
unstable or short-lived (Murlidaran et al., 2019). To reduce
the rate of false positives, a receptor construct containing
ECD, TMD, and TMD hole was used for docking analysis
in this work. Rather than being defined to the existing
ligand binding site, the docking algorithm was set to predict
the probability of the preferable orientation of a ligand
when it was bound to the protein and to rank it by scoring
(Murlidaran and Brannigan, 2018). This approach can
provide locations where multiple occupancies would be
considered and suggest different putative candidates of
binding locations. Recently, it has been suggested that
diazepam binds at the extracellular “canonical” site and also
at sites in the TMD (Iorio et al., 2020). Likewise, many
ligands of volatile anesthetics and BZD drugs were predicted
to bind at the extracellular site and also at sites in the TMD
in this docking study (Bertaccini et al., 2013).

Materials and Methods

The binding sites occupied by each anesthetic ligand under
general clinical concentrations were identified and ranked
by affinity scores, computational analysis was used as
described previously (Murlidaran and Brannigan, 2018).
Briefly, the processing includes two phases: screening or
finding possible candidate binding sites occupied by
anesthetics ligands at clinical concentrations and measuring
and quantifying binding affinities (Murlidaran and
Brannigan, 2018). All atoms contained in proteins, lipids,
salt, anesthetics ligands, and water were considered to be
based on the thorough physics-based Molecular Dynamics
Simulation and Alchemical Free Energy Perturbation
(Murlidaran and Brannigan, 2018).

Model construction
High-resolution cryo-EM structures of the human α1β2γ2
GABAAR, the predominant isoform in the adult brain, co-
crystalized with GABA and the BZD site antagonist
flumazenil (PDB6D6U, Experimental data snapshot,
Method: Electron Experimental data snapshot, Method:
Electron microscopy, Resolution: 3.92 Å, Aggregation State:
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Particle, Reconstruction Method: Single particle, Chain A, C:
341 amino acids (AA) residues, Chain B, D: 358 AA
residues, Chain F, H: 213 AA residues, Chain G, I: 454 AA
residues) (Zhu et al., 2018), were used to carry out
modeling. Initial models were generated depending on the
lowest value of the Modeler objective function and the
“Discrete Optimized Protein Energy” (DOPE) method score,
accordingly, representing the largest percentage of residues
in the most favored region of the Ramachandran plot
(Benkert et al., 2008). The abnormalities were visually
inspected for model candidates. The resulting model was
slightly modified to optimize the molecular bond rotation to
reduce the conflict of side chains and to optimize the
protonation states for the hydrogen bond networks (Emsley
et al., 2010).

Docking
GABAAR protein was considered as a system existing in a
lipid membrane or water box. One of the prerequisites was
that the force of the field applied to the environment,
including protein, lipids, and water, was compatible with the
parameters for the ligand (Murlidaran and Brannigan,
2018). The simulation was performed between a receptor
and a ligand. The receptor is supposed to be inserted in a
lipid bilayer hydrated with counter-ions, and the anesthetic
ligands are randomly distributed in the water (Murlidaran
and Brannigan, 2018). A grid box was set with the ligand
randomly distributed around the receptor. In a separated
docking try, a particular region of the receptor was set into
a grid box as a binding candidate: whole subunit, TMD,
ECD, and the TMD pore.

The receptor and the ligand in “.pdb” format were
applied to the Autodock tool. The binding modes of the
selected ligands were found by molecular docking
simulation using a command-line prompt. In the model
options, the ligand bonds were allowed to rotate. Multiple
runs of docking were performed, starting from random
conformations of the receptor-ligand complex. The number
of these runs was represented by the value of
‘exhaustiveness,’ which was set at 15 and which depends on
the flexibility of the protein side chains and the ligand. The
parameter ‘nummodes,’ representing the maximum number

of binding poses with multiple individual runs was set at 20
(Murlidaran and Brannigan, 2018). Software AutoDock
Vina (Trott and Olson, 2010) was used as the docking
algorithm. This program suggested a number of candidate
binding modes between protein and ligand. The preferred
orientations of the ligand were ranked by affinity-based
scores (Murlidaran and Brannigan, 2018). A grid box of
dimensions 25 Å × 25 Å × 25 Å was used and set with each
TMD combined with ECD, TMD, ECD, and the TMD pore
domain to be involved within the grid-box. When the
ligands and the protein were prepared, the addition of
missing hydrogens and the pairing of non-polar hydrogen
atoms and computing charges were additionally inspected.
Molecular docking simulations were performed with four
volatile anesthetics ligands (isoflurane, sevoflurane,
halothane, and enflurane), propofol, and nine BZD/BZD
antagonists (flumazenil, diazepam, alprazolam, midazolam,
lormetazepam, nordazepam, oxazepam, temazepam, and
lorazepam). The automated docking was performed, and the
preferred binding modes in a particular region of the
receptor were generated. PyMOL (Schrödinger, New York,
NY) was used as a software to display and explain the
interaction of the receptor-ligand complex after docking
analysis. The binding sites were determined by the
convergence of residues in relation to anesthetic modulation
on a common location in the 3D space under energy
optimizations.

Results

In this study, docking simulations of four volatile anesthetics
ligands (isoflurane, sevoflurane, halothane, enflurane),
propofol, and BZD/BZD antagonists (flumazenil, diazepam,
alprazolam, midazolam, lormetazepam, nordazepam,
oxazepam, temazepam, and lorazepam) were performed
against the combined domain of TMD with ECD, TMD,
ECD domains, and the TMD pore part, as shown in Fig. 2.

Different volatile anesthetics bind to γ-aminobutyric acid type
A receptor with distinct binding modes
In the cut-off of the ninth best docking pose obtained for
anesthetics within the grid box of TMD combined with

FIGURE 2. Structure of the γ-aminobutyric acid type A receptor (GABAAR) used in the docking experiment. Top and side views of the
construction of the GABAAR-Fab fusion complex comprising subunits. α1 in marine blue (chain D), α1 in yellow (chain B), β2 in green
(chain A), β2 in violet (chain C), γ2 in gray (chain E), and Fab in sky blue. (A) Side view of the extracellular and transmembrane domains
of the GABAAR. (B) Front view of the receptor.
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ECD, the sevoflurane binding site was represented at TMD
nine times (Fig. 3A), but the binding sites of isoflurane,
halothane, and enflurane were represented at ECD nine
times and distributed in the similar site at the best docking
mode (Fig. 3B). When the docking was confined to a TMD,
the binding sites of isoflurane, halothane, and enflurane
were represented at the similar α1 domain but did not
coincide with the sevoflurane binding site (Fig. 3C). In the
best docking mode obtained for isoflurane, halothane, and
enflurane (Fig. 3B), the ligand interacts with γ2Pro175 and
γ2Glu178 through hydrophobic interactions (Fig. 3D).
Recently, the binding sites of isoflurane and sevoflurane on
GABAARs were suggested using each photoreactive ligand
analog such as AziISO and AziSEVO, respectively (Woll
et al., 2018). Putative binding sites identified by
photolabeling were located in the TMDs in either subunit
interfaces or in the interface between the ECD and the
TMD (Woll et al., 2018). In agreement with these previous
study results, our results suggested that sevoflurane and
isoflurane did not always share binding sites, which might
be related to an unexpected degree of selectivity.

Propofol
The result of the docking of propofol (Fig. 4A) within the grid
box of TMD combined with ECD shows that propofol was
widely distributed in TMD. The carboxyl group of
ß2Trp237 interacted with propofol via hydrogen bonding

(3.18 Å: weak-middle interaction) in the best docking mode
(Fig. 4B). However, the binding sites of propofol were also
represented in ECD and pore (Fig. 4C). This mode agrees
partially with previous models obtained from GLIC showing
that propofol allosterically favored closed channels (Fourati
et al., 2018) by binding in the pore or favored open
channels via various subsites in the TMD. Our results
support a multi-site mechanism for the allosteric
modulation of propofol. As previously reported, a propofol
molecule was located in the lower ion pore when it was
analyzed within the grid box of the TMD pore (Fig. 4D).
Furthermore, propofol was located with its long axis parallel
to that of the pore, making non-polar interactions with pore
interface residues at Thr256 and Ile270 (Fig. 4D), in
agreement with a previous report (Fourati et al., 2018).

Benzodiazepines
Flumazenil, an imidazobenzodiazepine (i-BZD), is a
competitive BZD antagonist which blocks diazepam
potentiation of the GABA response (Zhu et al., 2018). BZD
derivatives with a phenyl substituent showed a different
binding mode from flumazenil with an imidazole ring
(Masiulis et al., 2019). In the cryo-EM map of the α1β3γ2
GABAAR in complex with diazepam, the BZD-binding site
at the α1+/γ2− interface, and sites in the β3+/α1− TMD
interfaces were observed (Masiulis et al., 2019). In another
cryo-EM map of the human α1β2γ2 GABAAR bound with

FIGURE 3. Binding modes of the inhalation anesthetics on the γ-aminobutyric acid type A receptor (GABAAR). (A) Nine highest-rated
docking poses of sevoflurane on the GABAAR within the grid box of TMD combined with extracellular domain (ECD). The
configurations are represented according to the degree of affinity. (B) The binding sites of isoflurane, halothane, and enflurane. The three
anesthetics are distributed in ECD. (C) The binding sites of isoflurane, halothane, and enflurane in the case of the docking are confined to
a transmembrane domain. (D) The interactions of ligands and the GABAAR in the best docking mode were obtained for isoflurane,
halothane, and enflurane by 2D Ligplot analysis.
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GABA and flumazenil, flumazenil was distributed at a similar
position at the α1γ2 interface (Zhu et al., 2018). Because
crystallography data of the α2β2γ1 heteropentamer have not
yet been proposed, the characterization of the binding mode
of BZD in this specific subtype receptor cavity was difficult.
In this result, the BZD binding sites were comparatively
suggested using computational docking. A strong probability
for flumazenil distribution was observed at analogous
positions suggested for diazepam and flumazenil. In the best
docking pose obtained for flumazenil from our docking
result, the ligand was distributed in the well-known BZD
binding site at the ECD α1+/γ2− interface and interacted
with the side chain amine group of Lys106 through
hydrogen bonding (3.11 Å: weak-middle interaction) (Figs.
5A and 5B). In this work, the probability for flumazenil
distribution was observed at both the ECD α1+/γ2−
interface and the TMD α1/ß2 interface. The result of the

docking of flumazenil in TMD showed that flumazenil
interacted with the hydroxyl group of ß2Thr237 via
hydrogen bonding (3.15 Å: weak-middle) (Fig. 5C).
Flumazenil binding sites with nine highest-ranked affinities
were distributed in both TMDs and ECDs, which supports a
possible multi-site mechanism for allosteric modulation
such as propofol. Different BZDs bound to distinct binding
sites of GABAARs. Diazepam, midazolam, nordazepam,
temazepam, lorazepam, and lormetazepam were widely
distributed at TMD but the best docking sites of alprazolam
and oxazepam were observed at ECD (Fig. 6A). Classical
BZDs, such as diazepam, predominantly exert their action
via GABAARs composed of α1βγ2, α2βγ2, α3βγ2, and
α5βγ2 subunits and are known to bind at the extracellular
α-γ interface (Richter et al., 2012; Sigel, 2002). However, in
the recently solved cryo-EM structure of the α1β3γ2L
receptor in complex with GABA, and although lorazepam

FIGURE 4. The binding sites of propofol on the γ-aminobutyric acid type A receptor (GABAAR). (A) Nine highest-rated docking poses of
propofol on the GABAAR within the grid box of the transmembrane domain (TMD) pore. (B) The interactions of ligands and the GABAAR in
the best docking mode obtained for propofol within the grid box of the TMD pore. (C) The best docking pose of propofol on the GABAAR in
the case of the docking being confined to a TMD or an ECD or a TMD combined with the ECD or TMD pore. (D) The interactions of propofol
on the GABAAR in the best docking pose within the grid box of a TMD pore (Y01 409 and 407 are cholesterol hemisuccinates. They are co-
crystalized ligands of GABA-AR (PDB: 6D6U)).
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and lormetazepam have a very similar skeleton to diazepam,
they have a 5-phenyl substituent with chloride, in contrast
to nordazepam, temazepam, and oxazepam.

The docking poses of lorazepam and lormetazepam
displayed a high overlap bound state (Fig. 6C). One of the
alprazolam binding poses on the TMD pore was overlapped
with one of the propofol binding poses in an interaction of
Ile232, Leu235, Y01401, and Phe306, as shown in Figs. 4D
and 6D. If the ligands were docked to the ECD, flumazenil,
and isoflurane were bound to the α1γ2side (chains D–E).

Docking parameters and affinity
Affinity scores for the docking simulation and docking scores
for the best pose are shown in Suppl. Table S1 and Table 1.
Polarity-related values of ligands like logP representing
lipophilicity, polar surface area (PSA), and van der Waals-
like isotherm mean spherical approximation (MSA) are
represented in Table 2. The scores determined from
automated docking are merely function outputs and are not
directly meaningful as absolute values (Murlidaran and
Brannigan, 2018). Nevertheless, the relative values can be
used to determine the favorable configuration and binding
mode of the ligand. In the tables, we have suggested the ten
most favorable ligand configurations bound to the receptor
with their scoring functions. Considering the chemical
properties of the ligands, the results indicated that propofol,
with the highest logP value and the lowest PSA value, was
distributed mostly in TMD. Meanwhile, flumazenil, with the
lowest logP value and a larger PSA value than propofol, was
mostly bound to ECD. Because inhalation anesthetics and
propofol are low-solubility molecules, it is likely that these
anesthetics are not prone to be distributed in receptor pores

or intersubunit and intrasubunit spaces. However,
converging evidence and our docking results demonstrated
the binding of anesthetics to the pores or intersubunit and
intrasubunit spaces. In the present study of the best pose,
propofol interacted with residues of Phe77(E), Phe100(D),
Met130(E), Tyr160(D), Val203(D), and Thr207(D) through
hydrophobic interaction and Ser205(D) through hydrogen
bonding. In a previous report, the degree of hydrogen
bonding was not closely connected to the affinity of
general anesthetics to interacting residues (Murlidaran et al.,
2019). Instead, they suggested that affinity was more closely
connected to the number of water molecules in inter-
subunit cavities displaced by sevoflurane or propofol. Our
affinity data obtained for sevoflurane and propofol
determined by docking score exhibited the same trend with
the results of water displacement simulation as a criterion
for affinity. Although propofol is smaller than sevoflurane,
propofol seems to replace more water molecules from any
site because it has a smaller polar surface area than
sevoflurane (Table 2). Propofol is suggested to have a larger
binding affinity than that of sevoflurane (Elgarf et al., 2018).

Discussion

To identify binding sites and understand molecular
mechanisms of anesthetics’ action on GABAARs, docking
analysis has been used by employing structures of bound
proteins and ligands. Since 2007, updated protein
engineering techniques and crystallography analyses have
provided a greatly increased number of solved protein
structures (Venkatakrishnan et al., 2013). Although diverse
pLGICs, including nAChR, GABAAR, glycine receptor, and

FIGURE 5. The binding sites of flumazenil on the γ-aminobutyric acid type A receptor (GABAAR). (A) Nine highest-rated docking poses of
flumazenil on the GABAAR within the grid box of a transmembrane domain (TMD) combined with extracellular domain (ECD). (B) The
interactions of ligands and the GABAAR in the best docking pose for flumazenil. (C) Three highest-rated docking poses of nordazepam,
temazepam, lorazepam, lormetazapam, alprazolam, and midazolam.
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NMDA receptor, are known to bind to a variety of anesthetics,
docking studies to identify binding sites were not performed
in many cases because of limited protein structures (Kim
et al., 2018). Crystal structures of several LGICs have been
recently solved. Crystal structures of a human GABAAR
and a glycine receptor were obtained in 2014 and 2015,
respectively (Miller and Aricescu, 2014; Huang et al., 2015;
Kim et al., 2018). Docking analyses not previously
performed because of unavailable structures are now
possible, especially for those on the GABAAR with a variety
of anesthetics. Crystalized structures of different kinds of
GABAARs in complex with various ligands, including
pharma-cores, drugs, peptides, antibodies, and G-proteins,
have been reported (Sieghart, 1995; Bertaccini et al., 2013;
Fourati et al., 2018; Murlidaran and Brannigan, 2018;
Emsley et al., 2010). However, recent studies have revealed

that when an anesthetic interacts with receptors to a multi-
binding site, the influence on the GABAARs varies
according to distinct subtypes. Therefore, more information
needs to be obtained on the structure of GABAARs bound
to anesthetic ligands.

Our docking studies revealed that isoflurane, halothane,
and enflurane docked in a similar way to that observed for
GABAARs by diazepam, except for an absence of interaction
in the same residues in the diazepam binding site on
GABAARs. Furthermore, these three anesthetics were
majorly bound to an ECD of GABAARs, in contrast to
sevoflurane, distributed in the TMD at the nine most highly
ranked affinities. This differentiation in the docking
mechanism might be related to sevoflurane’s different
clinical effects, such as recovery from anesthesia,
preconditioning, liver, and renal toxicity. In clinical practice,

FIGURE 6. The binding sites of BZDs on the γ-aminobutyric acid type A receptor (GABAAR). (A) The best docking pose of benzodiazepines
(BZDs) on the GABAAR. (B) Nine highest-rated docking poses of diazepam on the GABAAR. (C) Three highest-rated docking poses of
lorazepam and lormetazepam on the GABAAR. (D) Three highest-rated docking poses of alprazolam and midazolam on the GABAAR.
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sevoflurane is more frequently used in pediatric patients for
induction of anesthesia than other anesthetics due to its
mild airway irritation (TerRiet et al., 2000). Moreover,
recovery from anesthesia with sevoflurane is more rapid
than with isoflurane (Arain et al., 2005). Although solubility
influences the duration of anesthesia, the approach to
different binding sites with membrane receptors also seems
to affect anesthesia duration because these inhalation
anesthetics have poor aqueous solubility. Within the grid
box of the TMD pore, sevoflurane and propofol were located

in the pore face of ß2. This result agrees with a previous
report showing that all sevoflurane molecules are observed
to be partitioned into membrane or protein sites, especially
to the intrasubunit cavity of both ß subunits (but not α or γ
subunits) in the flooding of ligands rarely soluble in the
aqueous phase (sevoflurane and propofol) (Murlidaran et al.,
2019). In this flooding simulation, amounts of sevoflurane
partitioning into the water fraction, the membrane, and
protein cavities were measured, and a high portion of
molecules was introduced into the cytosolic phase and
spontaneously partitioned into the lipid bilayer and/or
bound to receptor protein cavities (Murlidaran et al., 2019).
In this flooding model, sevoflurane was reported to bind
spontaneously to pore sites and inter-subunit/intra-subunit
sites, in agreement with our docking results. The report
suggests that sevoflurane can penetrate the pore through the
ECD vestibule over 1.3 µs and transfer from the pore to the
α+-β- inter-subunit site (Murlidaran et al., 2019). In our
docking results, interacting residues for sevoflurane on the
GABAAR existed between β2 and γ2 at the best pose (1/9)
or between α1 and β2 (2/9) at the second-best pose.
Contacted residues for propofol on GABAARs were between
α1β2 (1/9) or between β2 and γ2 (3/9). Although inhalation
anesthetics and propofol had low solubility, our results
showed that they were distributed in the pores.

The competition between flumazenil and isoflurane for
the binding site might be related to the clinical role of
flumazenil. Flumazenil is a competitive inhibitor of
isoflurane or sevoflurane. The BZD antagonist flumazenil
can restore the effects of BZD drugs bound to GABARs. It
could also restore the clinical effect of isoflurane (Griffiths
et al., 1984a). In clinical anesthesia, extubation and early
anesthetic recovery are important to decrease morbidity and
incidence of complications (Tvete et al., 2016).

TABLE 2

Molecular Weight and polarity-related values of ligands, LogP: lipophilicity, PSA (polar surface area), and van der Waals-like isotherm
MSA (mean spherical approximation)

Name Mw LogP PSA (2D) MSA (3D) van der waals

Nordazepam 270.72 3.21 94.37 417.76

Oxazepam 286.72 2.92 61.69 345.80

Temazepam 300.74 2.79 55.54 428.92

Lormetazepam 335.18 3.39 65.63 435.69

Lorazepam 321.16 3.53 104.02 426.63

Diazepam 284.74 3.08 32.67 440.67

Flumazenil 303.29 1.39 110.50 511.65

Midazolam 325.77 3.97 30.18 401.46

Alprazolam 308.77 3.02 43.07 395.11

Propofol 178.275 4.16 23.01 405.10

Sevoflurane 200.06 2.27 252.30 308.58

Enflurane 184.49 2.80 233.46 299.85

Isoflurane 184.49 2.84 245.97 272.08

Halothane 197.38 2.12 144.79 272.08

TABLE 1

Docking scores for the best pose

Entry Ligand Docking score1

1 Sevoflurane −5.6

2 Propofol −6.1

3 Isoflurane −5.6

4 Enflurane −5.6

5 Halothane −4.4

6 Flumazenil −7.5

7 Diazepam −7.4

8 Oxazepam −8.7

9 Temazepam −8.3

10 Lorazepam −7.6

11 Lormetazepam −7.8

12 Nordazepam −7.2

13 Alprazolam −8.6

14 Midazolam −8.3
Note: 1The best affinity.
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BZD pharmacophore models based on SAR data have
predicted a lipophilic pharmacophoric feature to be an
essential part of BZDs (Rikke et al., 2013).

Considering that diazepam had a similar molecular
weight, oxazepam showing the lowest docking score, might
have the best affinity to the receptor at the best docking
mode. At the best docking mode, flumazenil and oxazepam
are bound to ECD, while diazepam is bound to TMD. These
differences are related to lipophilicity in that flumazenil and
oxazepam are less lipophilic than diazepam. In clinical
reports, diazepam is considered to be less additive to
dependency than oxazepam (Griffiths et al., 1984b). Further,
diazepam is more rapidly absorbed, followed by a fast
distribution phase (distribution half-life of about 1 h) with a
half-life of 20–200 h, whereas oxazepam is absorbed more
slowly, with a half-life of 4–15 h (Tvete et al., 2016).
Classified in terms of BZD elimination half-life, diazepam is
a long-acting BZD, whereas alprazolam, oxazepam,
lorazepam, and temazepam are short to intermediate-acting
BZDs (Fox et al., 2011). However, the clinical difference
between diazepam and oxazepam is likely due to these
pharmacokinetic differences and also the binding site and
mode to the receptor. These differences suggest that relative
potency is another way to characterize BZDs. Initially used
BZDs were defined as having low to medium potency.
However, alprazolam, lorazepam, and clonazepam were
categorized as high-potency BZDs (Griffin et al., 2013). Of
three BZD receptor agonists, namely diazepam, midazolam,
and lorazepam, commonly used in anesthesia in clinical
treatment, midazolam is the most lipid-soluble (Griffin
et al., 2013). This agrees with our result that midazolam has
the highest logP value among BZD agonists. It is distributed
mainly in TMD. However, overall, our results are in line
with a previous report proposing at least two different
“common” binding modes rather than a single one for
BZDs in general (Elgarf et al., 2018). Not all BZDs bind
with the same type of BZD receptor or with equivalent
binding affinity to the same receptor (Griffin et al., 2013).

Conclusion

Each anesthetic interacts with receptors to a multi-binding
site, and its influence on the GABAARs varies according to
the distinct subtypes. This necessitates a better
understanding of the structure of GABAARs bound to
anesthetic ligands. Our study results for the computational
docking of volatile anesthetics such as isoflurane,
sevoflurane, halothane, and enflurane into GABAARs
suggested that sevoflurane binds with a mode that is distinct
from that of isoflurane, halothane, and enflurane.
Comparing the inhalation anesthetics, sevoflurane was
mostly distributed in TMD, whereas isoflurane, enflurane,
and halothane were bound to ECD.

In the best docking pose acquired for isoflurane,
halothane, and enflurane, the ligand molecule binds to
γ2Pro175 through the N terminal amine group and binds
to γ2Glu178 through the side carboxyl group, conforming to
the previously known experimental information. Because
inhalation anesthetics and propofol are low solubility
molecules, these anesthetics are unlikely to be distributed in

receptor pores or intersubunit and intrasubunit spaces.
However, converging evidence and our docking results
demonstrated the binding of anesthetics to the pores or
intersubunit and intrasubunit spaces. In the best docking
pose obtained for flumazenil from our docking result, the
ligand was observed in a well-known BZD binding site at
both the ECD α1+/γ2− interface and the TMD α1/ß2
interface. From our docking result, diazepam was mostly
distributed in TMD. The docking results of these ligands
showed a broad diversity of high-score poses. Overall, our
results reveal at least two different “common” binding
modes, rather than a single one, for BZDs in general.
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