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Abstract: Bovine oocytes are one of the indispensable cells in cattle reproduction and have become a research hot spot in

cattle reproduction in recent years. The maturation process of oocytes is mainly regulated by enzymes, hormones,

cytokines, and other molecules. The factors affecting cattle oocyte maturation have been previously studied to clarify

the molecular mechanisms of cattle oocyte maturation. In this review article, phospholipid protein-3-kinase/protein

kinase B, mitogen-activated protein kinase/extracellular signal-regulated kinase, Janus kinase/signal transducer and

activator of transcription, epidermal growth factor receptor/extracellular signal-regulated kinase, and other signaling

pathways related to oocyte maturation are discussed. In addition, the molecular mechanisms of some coding genes

(JY-1, FGF-10, CDC20, etc.) and non-coding genes (miRNA, lncRNA, and circRNA) regulating oocyte maturation

have been reviewed to provide new ideas for high reproductive performance molecular breeding of high-quality cattle.

Introduction

Oocytes are mainly of primary, secondary, and mature types,
which are important for the formation of new mammalian
organisms (Walker and Biase, 2020). In females, oogonia
proliferate and differentiate to form primary oocytes. After
the first meiosis, primary oocytes form secondary oocytes
and polar bodies; these secondary oocytes form oocytes and
second polar bodies after the second meiosis. Finally, both
polar bodies die, and the remaining cells become mature
oocytes (Duncan et al., 2020). However, most oocytes
stagnate in the metaphase of the first meiosis before
entering puberty, and only a few oocytes can resume
meiosis and reach maturity. In the stagnant stage of meiosis,
the chromatin in the germinal vesicle (GV) is regulated at
various levels. Morphologically, the chromosomes lose their
individuality and form a loose chromatin mass. The
decondensed configuration of chromatin then undergoes
profound rearrangements during the final stages of oocyte
growth. Functionally, the discrete stages of chromatin
condensation are characterized by different levels of
transcriptional activity, DNA methylation, and covalent
histone modifications. These changes are crucial to confer

the oocyte with meiotic and developmental competencies
(Luciano et al., 2014). When mammalian oocytes (including
cow oocytes) are removed from follicles, they have the
ability to spontaneously resume meiosis, which is believed to
be the result of the lack of an unidentified follicle inhibitor
in domestic animals (Sirard et al., 2006). The maturation of
oocytes is influenced by the functional activities of
surrounding hematocele or granulation cells. These cells
promote the development and maturation of oocytes by
regulating various hormones, proteins, metabolites, and
regulatory factors (Petro et al., 2012). As the basis of
embryonic engineering, the maturation of oocytes is of great
significance for the development of in vitro fertilization,
transgenesis, embryo cloning, and related biotechnology.
The maturation of cattle oocytes also plays a vital role in
cattle reproduction (Walter et al., 2020; Gennari et al.,
2021). Further understanding of the molecular regulation
mechanism of cattle oocyte maturation can accelerate the
breeding of improved cattle, aid in tapping the reproductive
potential of the most productive female cattle, and provide
new means and methods for cattle breeding with high
reproductive performance. It further enriches the content of
cattle molecular breeding and lays a foundation for
developing cattle developmental biology. Thus, this article
aimed to provide new ideas for improving the high
reproductive performance of high-quality cattle by
elucidating the action mechanism affecting the signaling
pathway of oocyte maturation and molecular mechanisms of
some genes regulating cattle oocyte maturation.
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Maturation of Cattle Oocytes

The development of oocytes starts in the fetal ovary, and the
final growth and maturation occur in adulthood (Hunt and
Hassold, 2008). Cattle oocyte maturation (nuclear
maturation and cytoplasmic maturation) refers to the
process that cattle oocytes acquire the ability to fertilize after
growth and development changes. Cattle excrete secondary
oocytes in the middle of the second meiosis (Pan and Li,
2019). Then the sperm enters the zona pellucida, the
oocytes are activated and release the second polar body, and
the cattle oocytes are fully mature.

Maturation of oocytes nucleus
As the first meiosis progresses half-way, the oocyte stops
dividing, and the chromatin in the nucleus is highly sparse.
In addition, its morphological structure is a vesicular GV. In
the presence of gonadotropins, meiosis resumes, the nuclear
membrane ruptures, ribosomal RNA (rRNA) synthesis
ceases, the nucleolus disappears, the nucleus densifies, and
the germinal vesicle breaks down (GVBD). The first polar
body is expelled and stalls at mid-second meiosis (MII)
(Conti and Franciosi, 2018). Of these, the expulsion of the
first polar body is the most important characteristic of
oocyte nuclear maturation.

Cytoplasmic maturation of oocytes
In oocyte nucleus maturation, the cytoplasm also experiences
maturation changes. Oocyte cytoplasmic maturation refers to
a process in which the oocyte is prepared for fertilization by
dynamic changes in the distribution of organelles (e.g.,
mitochondria and Golgi apparatus). Cytoplasmic maturation
is characterized by molecular and structural changes
involving organelles, cytoskeletal reorganization, messenger
RNA (mRNA), and protein storage, among which
mitochondria changes can be used as a basis of cytoplasmic
maturation (Kurowska et al., 2020). In the cytoplasm of
most immature eggs, mitochondria show a peripheral
distribution with small clusters of mitochondria, which
increases in number during oocyte maturation and migrates
from the cytoplasmic cortex to the cytoplasmic interior to
provide energy for oocyte maturation (Roth, 2018). The
migration of mitochondria to high-energy consumption
regions is crucial for oocyte maturation.

Major Signaling Pathways Related to Cattle Oocyte
Maturation

Similar to other mammals, the maturation of cattle oocytes is
a complex and dynamic process (Wen et al., 2020), and some
genes and signaling pathways are also involved in its
maturation process. To date, several mechanisms related to
the regulations of oocyte maturation in animals have been
elucidated, involving phospholipid protein-3-kinase/protein
kinase B (PI3K/Akt) signaling pathway (Tomek and
Smiljakovic, 2005), mitogen-activated protein kinase/
extracellular signal-regulated kinase (MAPK/ERK) signaling
pathway (Frodin and Gammeltoft, 1999; Conti et al., 2012),

Janus kinase/signal transducer and activator of transcription
(JAK/STAT) signaling pathway (Meng et al., 2015), and
epidermal growth factor receptor/extracellular signal-
regulated kinase (EGFR/ERK) signaling pathway (Richani
and Gilchrist, 2018; Pocar et al., 2020). Genes and proteins
related to oocyte maturation promote or inhibit oocyte
maturation through the regulation of the above signaling
pathways.

The phospholipid protein-3-kinase/protein kinase B signaling
pathway
PI3K/AKT signaling pathway plays a crucial role in cell
proliferation (Wang et al., 2019), apoptosis (Zhang et al.,
2020), DNA repair (Chen et al., 2008), and protein synthesis
(Bibollet-Bahena and Almazan, 2009; Andrade et al., 2017).
In animal reproduction, the PI3K/Akt signaling pathway is
associated with ovarian functions in mice and other
mammals, such as primordial follicle recruitment,
granulation proliferation, voxel lutein survival, and oocyte
maturation (Adhikari and Liu, 2009; Makker et al., 2014).
Activation of the PI3K/AKT signaling pathway requires the
involvement of the SRC homology domain-containing
protein tyrosine phosphatase 2 (SHP2), while a high
expression of PI3K/AKT promotes oocyte maturation
(Vigneron et al., 2004; Zhang et al., 2016). Epidermal
growth factor (EGF) and cell factor can activate SHP2. The
activated SHP2 triggers the PI3K/AKT signaling cascade,
allowing PI3K to produce the second messenger
phosphatidylinositol 3,4,5-triphosphate (PIP3), which binds
to phosphoinositide-dependent dependent kinase-1 (PDK1),
prompting PDK1 to phosphorylate threonine 308 (Thr308)
of Akt protein and causing Akt to be activated at the GVBD
and MI (mid-meiotic) stages of oocytes (Fig. 1). Activated
Akt is activated in the MI phase, stimulating the transition
from MI (mid-meiotic division I) to MII and promoting
oocyte maturation (Tomek and Smiljakovic, 2005).
Phosphatase and tensin homolog deleted on chromosome
ten (PTEN) can convert PIP3 into phosphatidylinositol
diphosphate (PIP2) (McLaughlin et al., 2014), thereby
negatively regulating the PI3K-AKT signaling pathway and
inhibiting oocyte maturation. As the major signaling
pathway affecting oocyte maturation in cattle, the PI3K/
AKT pathway promotes oocyte maturation mainly by
facilitating the transition from oocyte MI to MII. However,
the interaction mechanism between the PI3K/AKT pathway
and other signaling pathways is still unclear.

The mitogen-activated protein kinase/extracellular signal-
regulated kinase
MAPK/ERK signaling pathway is a protein signaling cascade
pathway for oocyte maturation in mammals, such as cattle,
sheep, pigs, horses, and mice (Fan and Sun, 2004). Although
spontaneous GVBD of mammalian oocytes does not require
MAPK activity, artificially increased MAPK activity also
accelerates GVBD (Fan and Sun, 2004). In bovine oocytes,
MAPK is activated by the injection of Moloney sarcoma
oncogene (MOS) mRNA, accelerating the resumption of
oocyte meiosis. The activation state of MAPK is determined
by the balance between the upstream mitogen-activated
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extracellular signal-regulated kinase activity, the MAPK
cascade activity, and the phosphatase activity responsible for
the direct dephosphorylation of MAPK (Kumano et al., 2001).

During oocyte maturation, ribosomal S6 protein kinase
(p90RSK) activates MAPK. The activated MAPK binds to
myelin transcription factor 1 protein and inactivates the C-
terminal phosphorylation of MAPK, thereby promoting the
phosphorylation of threonine 14 (Thr14) and tyrosine 15
(Tyr15) of cyclin-dependent kinase-1 (CDK1). It leads to
the activation of the maturation-promoting factor (MPF)
and enables oocytes to resume meiosis and complete the
G2/M phase transformation (Frodin and Gammeltoft, 1999),
promoting the maturation of oocytes.

In the granulosa cells of the preovulatory follicle,
luteinizing hormone (LH) binds to its parietal granulosa cell
receptor LHGC, producing cyclic adenosine monophosphate
(cAMP) and activating protein kinase A (PKA). The
activated PKA triggers the release of the EGF-related
peptides amphiregulin (AREG) and epiregulin (EREG)
release and binds to EGF receptors located on mural
granulosa cells and cumulus cells (Conti et al., 2012),
activating ERK1/2 signaling molecules. High expression of
ERK1/2 induces activation of CCAAT, enhancer-binding
proteins α/β, transcriptional cofactor CITED4, and genes
essential for oocyte maturation, ovulation, and luteinization
and inhibits processes regulated by the follicle-stimulating
hormone (FSH) pathway (e.g., estrogen synthesis, granulosa
cell proliferation, etc.) (Fan et al., 2008; Fan et al., 2010). In
addition, ERK1/2 activated by EGF family paracrine factors
in cumulus cells phosphorylates connexin 37 (CX37), which
reduces the transmission of cAMP and cyclic guanosine
monophosphate (cGMP) molecules between cumulus cells
and oocytes. In oocytes, cAMP inhibits the resumption of
meiosis, and cGMP inhibits phosphodiesterase 3A (PDE3A),
which is responsible for the degradation of cAMP. The
reduction of cAMP and cGMP in oocytes prevents the
inhibition of PKA on CDK1, and the activation of CDK1
allows oocytes to break the GV phase block and enter the
division phase (Su et al., 2002; Sela-Abramovich et al., 2005;
Fan et al., 2011), promoting oocyte growth and maturation.

The MAPK/ERK signaling pathway plays a vital role in
promoting follicle development and oocyte growth
maturation (Fig. 2). Although the MAPK/ERK signaling
pathway was studied, its specific mechanism during follicle
development and oocyte maturation in cattle still needs to
be further elucidated.

The Janus kinase/signal transducer and activator of the
transcription signaling pathway
The JAK/STAT3 signaling pathway has three main
components: receptors, JAKs, signaling sensors, and STATs
(Brooks et al., 2014). JAK family is composed of non-
receptor tyrosine protein kinases (TYKs), comprising four
family members, JAK1, JAK2, JAK3, and TYK2. When
cytokines bind to their receptors, JAK tyrosine kinases are
activated and transmit regulatory signals (Hu et al., 2021).
The STAT family consists of STAT1, STAT2, STAT3,
STAT4, STAT5a, STAT5b, and STAT6. In organisms,
STAT3 acts as a signal sensor and an activator of
transcription and is activated into DNA-binding proteins
through tyrosine phosphorylation (Zhong et al., 1994; Hu et
al., 2021).

After participating in cytokine receptors, such as
leukemia inhibitory factor (LIF), members of the JAK family
are phosphorylated, leading to the phosphorylation of
downstream STAT proteins. Phosphorylated STAT protein
promotes cytoplasmic STAT dimerization and translocates
to the nucleus to regulate the transcription of the prolactin
gene (PRL) (Martínez-Alarcóna et al., 2022). PRL promotes
oocyte maturation through its receptor-mediated calcium
regulation mechanism (Meng et al., 2015) (Fig. 3).

The Epidermal growth factor receptor/extracellular signal-
regulated kinase signaling pathway
EGFR (also known as HER1) is a member of the epidermal
growth factor receptor (HER) family, which includes HER1,
HER2, HER3, and HER4, and plays an important regulatory

FIGURE 1. The phospholipid protein-3-
kinase/protein kinase B (PI3K/AKT)
signaling pathway.

FIGURE 2. The role of mitogen-activated protein kinase/
extracellular signal-regulated kinase (MAPK/ERK) signaling
pathway in animal oocyte maturation.
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role in the regulation of cell physiology. EGFR can be activated
by EGF-like peptides (e.g., heparin-binding EGF-like growth
factor, transforming growth factor alpha [TGF-α], AREG,
and EREG) and converted from monomers to dimers.
Stimulation of the EGFR pathway initiates a
phosphorylation cascade that activates ERK1/2. Activating
ERK1/2 can mediate the translocation of aromatic
hydrocarbon receptor (AHR) to the nucleus and form a
heterodimer with the AhR nuclear translocator (ARNT)
when binding to ligands. Then, the AhR/ARNT complex
binds to a specific DNA sequence in the promoter of the
target gene cytochrome P450 family 1 subfamily A member
1 (CYP1A1) and triggers its expression. CYP1A1 affects
oocyte maturation by promoting the resumption of oocyte
meiosis (Pocar et al., 2020) (Fig. 4). In addition, EGFR can
induce the expansion of granulation sugar and hydrops cells
in follicles by transmitting LH signals to oocytes (Richani
and Gilchrist, 2018) and promote the maturation of the
oocyte cytoplasm.

Signaling pathways, such as tumor necrosis factor, Wnt/β-
catenin, TGF-β, and cAMP, are related to the maturation of
cattle oocytes. TGF-β/SMAD signal transduction is caused by
the TGF-β and TβRII trigger, TβRII in turn, recruits and
phosphorylates TβRI. After TβRII is activated, TβRI
phosphorylates R-Smad (Smad 2 or 3), binds it with a
common Smad (Smad 4), forms complexes, that translocate to
the nucleus, where they regulate the transcription of various
target genes together with transcription factors (Hata and
Chen, 2016). FSH and LH can regulate the level of natriuretic
peptide precursor in mural granulosa cells through TGF-β to
regulate the meiotic process of oocytes and affect the
maturation of oocytes (Feng et al., 1988; Yang et al., 2019). In
addition, TGF-β Superfamily members (such as bone
morphogenetic protein 15 [BMP15] and growth and
differentiation factor 9 [GDF9]) or related growth factor
binding proteins (such as (trans,trans)-1-fluoro-2,5-bis(3-
hydroxycarbonyl-4-hydroxy)styrylbenzene or FSB) have been
shown to regulate bovine oocyte maturation (Zhang et al., 2015).

FIGURE 3. The role of Janus kinase/signal
transducer and activator of transcription
(JAK/STAT) signaling pathway in oocytes
maturation.

FIGURE 4. The role of epidermal growth
factor receptor/extracellular signal-
regulated kinase (EGFR/ERK) signaling
pathway in oocytes maturation.
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Molecular Regulation of Coding Genes during Maturation
of Cattle Oocyte

The maturation of oocytes depends on the regulation of many
factors. In addition to the environment, oocyte maturation is
regulated by many genes (JY-1, FGF-10, CDC20, etc.). Studies
suggest that oocyte-expressed JY-1 is required for at least two
important aspects of oocyte maturation: nuclear maturation
and cumulus expansion (Lee et al., 2014). Pocar et al. (2004)
found that CYP1A1 promotes oocyte maturation by
activating the AHR signaling pathway and proved the
physiological role of AHR in meiotic recovery. Yang et al.
(2021) analyzed the porcine GV and MII oocytes by single-
cell RNA sequencing (RNA-seq) technology and found 1807
(602 up-regulated and 1205 down-regulated) differential
mRNAs, which are mostly enriched in biological and signal
pathways related to the meiosis of oocytes.

The 19 coding genes reviewed in the table below regulate
oocyte maturation in cattle by up-regulating or down-
regulating the expression of genes in related signaling

pathways (Table 1). These studies provide a theoretical basis
for further exploring and revealing the basic laws of cattle
reproduction. However, in the process of oocyte maturation,
there are many differentially expressed genes. Further
studies are needed to explore how some genes play roles
through key genes and related signaling pathways.

Regulation of Non-Coding Genes on Cattle Oocyte
Maturation

Non-coding genes achieve their biological functions through
interactions with their target genes (Bhatt and Ferrell, 1999).
Studies have shown that microRNA (miRNA) (Uhde et al.,
2017), long non-coding RNA (lncRNA) (Li et al., 2021), and
circular RNA (circRNA) (Fu et al., 2018) have regulatory
effects on the maturation of cattle oocytes.

Regulation of miRNA on the maturation of cattle oocytes
MiRNAs are a class of regulatory RNAs, which are short-
stranded non-coding RNAs of 21–25 nucleotides in length

TABLE 1

Genes related to oocyte maturation

Gene
name

Mechanism of action Change in
expression

Reference

JY-1 JY-1 protein affects bovine oocyte maturation. Up Lee et al. (2014)

FGF10 Oocyte maturation acts as an upstream regulator of BMP15 expression. Up Zhang et al. (2010)

CDC20 Down-regulation leads to a decrease in the emission of the first polar body during oocyte
maturation.

Down Yang et al. (2014)

PTPN11 The coding protein SHP2 is activated by growth factors and is highly involved in oocyte
maturation.

Up Idrees et al. (2019)

H1FOO Overexpression of the H1FOO gene promotes oocyte maturation. Up Yun et al. (2015)

PANX1 Increases the cAMP level and delay oocyte maturation by inhibiting PANX1. Up Dye et al. (2020)

FGF2 FGF2 promotes meiotic recovery. Up Barros et al. (2019)

LIF LIF promotes oocyte maturation by inducing miR-21 through STAT3. Up Vendrell-Flotats et
al. (2020)

SIRT2 Inhibition of SIRT2 can lead to meiotic arrest, thus inhibiting oocyte nuclear and
cytoplasmic maturation.

Up Xu et al. (2019)

Ghrelin It acts on AKT1 and ERK1/2 phosphorylated oocytes and accelerates oocyte maturation. Up Chouzouris et al.
(2017)

CX37 and
CX43

Promote cellular communication between hematocele and oocyte. Up Sabry et al. (2021)

PLK4 PLK4 knockout inhibits cytoplasmic maturation in oocytes. Up Liang et al. (2016)

APLN The maturation of the bovine oocyte nucleus was prevented by inhibiting progesterone
secretion.

Down Roche J (2017)

CYP1A1 CYP1A1 promotes oocyte maturation by activating the AHR signaling pathway. Up Pocar et al. (2004)

RMVGR RMVGR silencing severely reduces oocyte development and egg maturation. Down Hussein et al.
(2019)

AURKA Phosphorylation of CPEB promotes the separation of oocyte chromosomes, maintains
metaphase-II, and forms the first polar body.

Up Uzbekova et al.
(2008)

PGE2 Oocyte maturation is delayed by inhibiting PGE2 synthesis. Down Marei et al. (2014)

MEL Melatonin synthesis significantly promoted oocyte maturation. Up Tian et al. (2014)

EGF Oocyte maturation is promoted by receptor EGFR. Up Jamnongjit et al.
(2005)
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(Turchinovich et al., 2011). In mammalian cells, the seed
region of miRNAs can bind complementarily to sequences
on the three prime untranslated regions (3′UTR) of target
genes, inhibiting the expression and translation of target
genes (Turchinovich et al., 2011). MiRNA levels change
during oocyte maturation and ovarian follicle development
in cattle, implying that miRNAs may have a regulatory role
(Uhde et al., 2017; Salas-Huetos et al., 2019).

In the physiological process of oocyte growth and
maturation, multiple miRNAs act on PI3K/Akt, JAK/STAT,
and ERK/MAPK signaling pathways to promote or inhibit
cattle oocyte maturation by binding to target genes, such as
WEE1 homolog (Schizosaccharomyces cerevisiae) (WEE1A),
MYC proto-oncogene (MYC), SMAD family member 5
(SMAD5), SMAD2, and BMP type II receptor (BMPR2),
respectively (Table 2).

Regulation of lncRNA on the maturation of cattle oocytes
LncRNAs are non-coding RNAs over 200 nucleotides in
length that regulate post-transcriptional base editing and
translational control of mRNAs and exhibit significant
biological roles by affecting the potential regulatory
functions of proximity genes (Choi et al., 2019). LncRNAs
can participate in post-transcriptional gene regulation
through processes, such as RNA maturation, transport,
protein synthesis, and silencing of transcribed genes through
chromosomal regulation (Whitehead et al., 2009; Geisler
and Coller, 2013). However, the molecular mechanism of
lncRNA regulation of ovarian oocyte maturation in cattle
has been less studied. Li et al. (2021) have identified 1761
differentially expressed lncRNAs by RNA sequencing of
bovine GV and mature MII oocytes and found that the
above lncRNAs may participate in the maturation of cattle
oocytes from GV to MII by regulating key signal pathways.
Particularly, lncRNA MSTRG17927, which is significantly
decreased in MII stage oocytes, is involved in oocyte
maturation through PI3K signaling (Wang et al., 2020). In
addition, MSTRG19140 is involved in cattle oocyte meiotic

resumption, progesterone-mediated oocyte maturation, and
cell cycle regulation (Li et al., 2021). Notably, the
MSTRG.283534.2, MSTRG.222844.7, MSTRG.77987.3,
MSTRG.123289.5, and MSTRG.18894 are associated with
the oocyte maturation of sheep (Shabbir et al., 2021).

To summarize, the function of lncRNA in livestock
oocyte maturation has been partially studied, but the
functional study in cattle oocytes has just started. Further
exploration of lncRNA expression in cattle oocytes and the
mechanism of action on oocyte maturation are the urgent
problems to be solved in the present study.

Regulation of circRNA on the maturation of cattle oocytes
In recent years, circRNA has attracted attention as a new
member of the non-coding RNA family. CircRNA is a new
endogenous non-coding RNA, which can regulate gene
expression and various biological processes by acting as a
miRNA sponge (Xie et al., 2020). Hu et al. (2018) found
that circRNAs might regulate ovarian follicle development
in ewes by binding miRNAs that regulate the expression of
target genes. For example, circ0008219 can regulate follicle
growth in ewes by regulating miR-34c-5p, miR-483, and
miR-1468-3p to prevent follicular occlusion from leading to
granulocyte apoptosis (Hu et al., 2018). Cao et al. (2019)
screened 7067 and 637 circRNAs in cumulus cells and
oocytes, respectively, through in-depth sequencing and
bioinformatics analysis, and found that some circRNA host
genes were significantly enriched in various signal pathways
related to cumulus cell function and oocyte maturation. Fu
et al. (2018) constructed four complementary DNA (cDNA)
libraries of bovine cumulus cells, identified 1706 circRNAs,
and screened out differential circRNA expression. Through
functional annotation and enrichment analysis of host
genes, differential circRNA participated in biological
processes, such as movement, reproduction, biological
adhesion, growth, and so on.

CircARMC4 is an up-regulated circRNA in porcine
oocytes required for meiotic maturation and early

TABLE 2

Mechanism of miRNAs on cattle oocyte maturation

MiRNA name Target gene Action mechanism References

miR-21 BMPR2 and
PTX3

Inhibit the oocyte cytoplasmic maturation by down-regulating BMPR2 and PTX3
genes.

Zeinab et al.
(2021)

miR106a WEE1A Inhibit the expression of WEE1A in oocytes and promote the maturation of bovine
oocytes.

Miles et al.
(2012)

miR-130b SMAD5 and
MSK1

It can promote the maturation of oocytes by regulating the proliferation and
metabolic activity of surrounding cells.

Sinha et al.
(2017)

miR-494 and
miR-20a

PTEN Promote oocyte maturation by decreasing the expression of PTEN. Andrade et al.
(2017)

Let-7 MYC Inhibit the activity of MYC in oocytes and promote the maturation of oocytes. Zeinab et al.
(2021)

miR-375 ADAMTS1
and PGR

Inhibit oocyte maturation by inhibiting the expression of DAMS1 or PGR. Zhang et al.
(2019)

miR-155 SMAD2 Reduce oocyte maturation by inhibiting the expression of SMAD2. Dehghan et al.
(2020)
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embryonic development. Inhibition of circARMC4 expression
significantly reduced the expulsion of the first polar body of
porcine oocytes, leading to a significant decrease in the
maturation rate of porcine oocytes, which is the first
demonstration of the regulatory role of circRNA on oocyte
maturation (Cao et al., 2019). CircRNAs may also regulate
oocyte growth and maturation by regulating signaling
pathways related to oocyte maturation, but their specific
mechanisms of action are not yet clear. In conclusion,
circRNA in the maturation of animal oocytes was
preliminarily studied. However, studies on the maturation of
cattle oocytes should be explored in the future.

Conclusions

As an indispensable cell in cattle reproduction, the rapid
maturation of cattle oocytes is conducive to breeding high-
quality cattle with high reproductive performance. In recent
years, in-depth research on the signaling pathways,
functional genes, and molecular markers affecting and
regulating oocyte maturation in cattle has been conducted.
However, the research on the application of lncRNA and
circRNA in the maturation of cattle oocytes is in its initial
stage. Furthermore, the molecular regulatory network
participation remains to be clarified. Therefore, it is still
necessary to excavate more genes related to cattle oocyte
maturation in the future and clarify its mechanism through
gene function research technology to provide new ideas for
the molecular breeding of high reproductive performance of
high-quality cattle.
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