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Abstract: Glutamine metabolism (GM) plays an important role in tumor growth and proliferation. Skin cutaneous

melanoma (SKCM) is a glutamine-dependent cancer. However, the molecular characteristics and action mechanism of

GM on SKCM remain unclear. Therefore, we aimed to explore the effects of GM-related genes on survival,

clinicopathological characteristics, and the tumor microenvironment in SKCM. In this study, 682 SKCM samples were

obtained from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Consensus

clustering was used to classify SKCM samples into distinct subtypes based on 41 GM-related genes. Differences in

survival, immune infiltration, clinical characteristics, and Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathways as well as differentially expressed genes (DEGs) between subgroups were evaluated. A prognostic model was

constructed according to prognostic DEGs. Differential analyses in survival, immune infiltration, tumor

microenvironment (TME), tumor mutation burden (TMB), stemness, and drug sensitivity between risk groups were

conducted. We identified two distinct GM-related subtypes on SKCM and found that GM-related gene alterations

were associated with survival probability, clinical features, biological function, and immune infiltration. Then a risk

model based on six DEGs (IL18, SEMA6A, PAEP, TNFRSF17, AIM2, and CXCL10) was constructed and validated for

predicting overall survival in SKCM patients. The results showed that the risk score was negatively correlated with

CD8+ T cells, activated CD4+ memory T cells, M1 macrophages, and γ δ T cells. The group with a low-risk score was

accompanied by a better survival rate with higher TME scores and lower stemness index. Moreover, the group with

high- and low-risk score had a significant difference with the sensitivity of 75 drugs (p < 0.001). Overall, distinct

subtypes in SKCM patients based on GM-related genes were identified and the risk model was constructed, which

might contribute to prognosis prediction, guide clinical therapy, and develop novel therapeutic strategies.

Introduction

Skin cutaneous melanoma (SKCM) is one of the most
aggressive skin cancers, responsible for >75% of skin cancer-
related deaths worldwide. Incidence rates of this malignancy

have continued to rise annually (Mukunda et al., 2022).
Early-stage SKCM can be managed effectively with timely
surgical intervention, resulting in a 10-year survival
probability of 95% (Song et al., 2022a). Regrettably, the 5-
year survival rate for patients with advanced melanoma is
less than 5% (Zhang et al., 2019). The current primary
methods of treating advanced melanoma in clinical settings
involve immune checkpoint blockade, targeted therapy
using v-raf murine sarcoma viral oncogene homolog B1
(BRAF) and mitogen-activated protein kinase kinase (MEK)
inhibitors, or a combination of these approaches (Jenkins
and Fisher, 2021). Although these therapeutic strategies
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have significantly improved the clinical outcomes of patients
with melanoma, their effectiveness can be hindered by
inherent or acquired resistance that arises from the
inhibitory tumor immune microenvironment and epigenetic
regulators (Rubanov et al., 2022). Given the high fatality
rate and poor treatment response, there is an urgent need to
develop novel prognostic models for prognosis prediction
and new therapeutic targets for clinical intervention.

Metabolic reprogramming is a critical hallmark of
cancer cells, and glutamine serves as a crucial source of
nitrogen that plays a pivotal role in driving tumor growth
(Fasoulakis et al., 2023). Glutamine is intricately linked to
several key aspects of tumor metabolism essential for
promoting tumor proliferation, such as energy production,
the biosynthesis of non-essential amino acids, nucleotides,
fatty acids, and glutathione, as well as the uptake of
essential amino acids (Bott et al., 2019; Feng et al., 2021).
In the absence of this critical nutrient, cancer cells reliant
on glutamine exhibit a heightened susceptibility to
apoptosis (Wise and Thompson, 2010). Considering the
pivotal role of glutamine in tumor growth and
proliferation, targeting glutamine metabolism (GM) has
emerged as a highly promising therapeutic strategy for the
treatment of cancer. For example, glutaminase inhibitor
(CB-839) has been employed in Phase I/II clinical trials as
a cancer therapeutic since 2014, and melanoma patients
could well tolerate CB-839 combined with Nivolumab with
an overall response rate of 19% (Yang et al., 2021). DRP-
104 is a promising anticancer agent that simultaneously
targets multiple metabolic pathways involved in glutamine
and has demonstrated potent anticancer activity in
preclinical trials (Rais et al., 2022). Previous investigations
have substantiated the notion of glutamine addiction in
SKCM, characterized by upregulated expression of genes
involved in glutamate biosynthesis, leading to enhanced
proline generation by tumor cells relative to their normal
counterparts (Ratnikov et al., 2017). In melanoma cells,
glutamine serves as a potent anaplerotic input into the
tricarboxylic acid (TCA) cycle (Chen et al., 2019).
Moreover, Baenke et al. (2016) demonstrated that GM is
indispensable for the proliferation, invasion, and metastasis
of BRAF mutant and BRAF inhibitor-resistant melanoma
cells. Another study has revealed that the aggressive
characteristics induced by glutamine in melanoma cells are
linked to increased expression of HIF1α and Bcl‑2/
adenovirus E1B 19‑kDa protein‑interacting protein 3
(BNIP3) (Vara-Perez et al., 2019). However, the precise
mechanism underlying GM-driven tumorigenesis and
proliferation in SKCM has not yet been fully elucidated.

At present, the prediction of tumor prognosis through
the mediation of GM-related genes has become a highly
attractive research domain. In one particular study, a GM-
related risk-score model was constructed with a total of five
genes (ALDH5A1, ASNSD1, CPS1, GMPS, and PPAT). This
model was found to possess an outstanding ability to predict
prognosis in hepatocellular carcinoma patients (Jin et al.,
2022). Liu et al. (2022) studied lung adenocarcinoma
patients, and based on GM-related genes; these patients
were categorized into high- and low-risk groups. The low-
risk group exhibited lower GM levels, higher levels of

immune infiltration, and a significant survival advantage
(Liu et al., 2022). Nevertheless, the prognostic significance of
GM-related regulators in SKCM patients remains uncertain.
In addition, several studies have also demonstrated that GM
exerts an influence on the anti-tumor immune response in
the tumor microenvironment (TME). The activation of
potent anti-tumor immunity can be achieved by using
glutamine utilization inhibitors in combination with
immune checkpoint blockade (Wang et al., 2021b; Byun et
al., 2020; Li et al., 2022). The mechanism of action involves
the promotion of programmed death-ligand 1 (PD-L1)
expression on tumor cells through glutamine utilization
inhibition, thereby preventing immune-killing effects of T
cells. Consequently, GM inhibition in combination with
anti-PD-L1 therapy can significantly enhance the anti-tumor
activity of T cells and impede tumor growth (Hernandez-
Davies et al., 2015). These pieces of evidence indicate that
GM may be a potential therapeutic target in cooperation
with immunotherapy for SKCM. Nevertheless, the effect of
GM on the immune microenvironment in SKCM yet needs
to be fully elucidated.

As such, comprehensive multi-omics investigations into
GM-related genes in SKCM are essential. In this study, 682
SKCM patients were classified into two distinct molecular
subtypes based on the expression level of GM-related genes,
with each subtype exhibiting different molecular functions
and clinical traits. Subsequently, a GM-related risk
predictive model (consisting of six genes) was constructed to
forecast overall survival (OS) and analyzed the differences in
immune infiltration, TME, stemness, and drug sensitivity
between low- and high-risk patients with SKCM.

Materials and Methods

Data collection and preprocessing
The gene expression profiles of 682 SKCM patients were
obtained from The Cancer Genome Atlas (TCGA) (n = 468)
and the Gene Expression Omnibus (GEO) (GSE65904, n =
214). The default value of clinical information was excluded
and the relevant prognostic data of SKCM from TCGA (n =
458) and GEO (n = 210) and 344 clinical data points
(containing age, gender, stage, and TNM stage) of SKCM
from TCGA were acquired (Suppl. Table S1). The somatic
mutation and copy number variation (CNV) data in the
TCGA-SKCM cohort were downloaded from Xena website
of the University of California, Santa Cruz (UCSC). A total
of 41 GM-related genes (Suppl. Table S2) were curated from
previous studies (Ying et al., 2021; Fu et al., 2019), in which
these genes were extracted from Gene Ontology (GO)
initiative. Then, gene expression profiles of TCGA and GEO
datasets were integrated, and the batch effects were
eliminated by employing the “Combat” algorithm (Johnson
et al., 2007).

Mutation analysis
The “maftools” package (Mayakonda et al., 2018) was
employed to analyze the mutation frequency of 41 GM-
related genes and the base changes in SKCM samples from
TCGA. The locations of CNV alterations in 41 GM-related
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genes on 23 chromosomes were drawn using the “RCircos”
package.

Consensus clustering based on glutamine metabolism-related
genes
The incorporated samples were classified into distinct
subtypes according to their expression on 41 GM-related
genes by the K-means method using the “Consensus Cluster
Plus” package. The optimal clustering number was chosen
based on the consensus index and cumulative distribution
function (CDF). The distributions of different GM-related
subtypes were studied by principal component analysis
(PCA) using the “stats” package. For survival analysis,
“survival” and “survminer” packages were applied. The
single-sample gene set enrichment analysis (ssGSEA) and
the gene set variation analysis (GSVA) were conducted via
the “GSEABase” and “GSVA” R packages (Hanzelmann
et al., 2013).

Identification of differentially expressed genes (DEGs) and
functional enrichment analysis
The “limma” package (Wettenhall and Smyth, 2004) was used
to identify DEGs between GM-related subtypes with p-value <
0.05 and |log2FC| > 1. The “clusterProfiler” R package (Yu
et al., 2012) was utilized to perform GO and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analysis to
study the potential functions and pathway knowledge of DEGs.

Consensus clustering based on prognostic DEGs
To detect prognostic DEGs, the “limma” and “survival”
packages were utilized in univariate Cox regression analysis.
Based on the expression of prognostic DEGs, SKCM
samples were divided into three gene clusters by the k-
means method using the “Consensus Cluster Plus” package.
The survival curves of three gene subtypes were plotted
using the “survival” and “survminer” packages.

The establishment and assessment of the prognostic model
We classified 668 samples into the training and test groups
randomly and equally using the “caret” package. Then by
employing the “glmnet” R package, the least absolute
shrinkage and selection operator (LASSO) regression
analysis was performed to minimize the risk of over-fitting.
Multivariate Cox regression analysis was applied to
construct the risk score in the training group based on
prognostic DEGs. The risk score of the training group was
calculated by the following formula: risk score = sum
(expression of each gene × corresponding coefficient). The
survival analysis was conducted by the “survival” and
“survminer” R packages. The receiver operating
characteristic (ROC) analysis was performed using the
“timeROC” R package. We used the public database GEPIA
(http://gepia.cancer-pku.cn/) (Tang et al., 2017) to validate
the expression differences of signature genes between
normal tissues and SKCM tissues and estimate signature
genes’ effect on OS in SKCM. The nomogram was
constructed by the “regplot” package based on clinical
characteristics and the risk score in the TCGA SKCM
cohort. Calibration plots were established to assess the

accuracy of the nomogram in predicting the 1-, 3-, and 5-
year OS probability by using the “rms” R package.

Evaluation of immune infiltration, tumor microenvironment,
stemness, and drug sensitivity
By using the CIBERSORT algorithm (Newman et al., 2015),
we obtained the scores of 22 human immune cell subsets of
every SKCM sample. By utilizing the ESTIMATE algorithm,
we estimated the immune, stromal, and ESTIMATE scores
of each SKCM sample (Yoshihara et al., 2013). The tumor
mutation burden (TMB) score of each SKCM patient was
calculated based on the mutation annotation format
generated by using the somatic mutation data from TCGA
via the “maftools” package. The stemness index of every
SKCM sample was extracted from the file, including the
stemness index of pan-cancer from the UCSC Xena website.
The “pRRophetic” package was applied to calculate the
semi-inhibitory concentration values of multiple drugs for
SKCM patients.

Statistical analysis
Data were statistically analyzed with the R software (version
4.1.3). Unless otherwise specified (p < 0.001 in drug
sensitivity analysis), the statistical significance was set as p <
0.05. The differences in clinical traits and survival probability
in different groups were compared using the Chi-square test.
The Kruskal-Wallis test was applied in the differential
comparison of immune infiltration between two GM-related
clusters and of risk scores in different GM-related subtypes
and gene subtypes. The differential expression of GM-related
genes in three gene clusters was analyzed by the Wilcoxon
test, which was also used to compare GM-related gene
expression, TME score, and drug sensitivity between high-
and low-risk groups. The correlation analyses were carried
out by Spearman’s correlation.

Results

A workflow of this study has been shown in Fig. 1.

Genetic mutation and copy number variations of glutamine
metabolism-related genes in skin cutaneous melanoma
Firstly, we investigated the mutation of 41 GM-related genes
in the TCGA-SKCM cohort. As depicted in Fig. 2a, 182 of
467 samples (approximately 38.97%) in the TCGA-SKCM
cohort harbored mutations in GM-related regulators.
Among these, SLC38A1 and SLC6A14 exhibited the highest
mutation frequency (5%), followed by HAL, GAD1, TAT,
and SLC6A19 (4%), while four GM-related genes (NAGS,
SLC7A5, MTHFS, and PRODH) were devoid of mutations.
Missense mutation and C > T constituted the most
prevalent variation type and single nucleotide variation
category, respectively. The CNV alteration locations in GM-
related genes on chromosomes are depicted in Fig. 2b.
Further analysis of the CNV alteration frequency in 41 GM-
related genes revealed extensive duplications of CNV in
SLC6A19, ALDH5A1, GLUL, MTHFS, SLC1A3, and
PRODH, while the decrease in CNV was predominant in
GCLM, ALDH4A1, and SLC7A5 (Fig. 2c).
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Determination of glutamine metabolism-related subtypes in
skin cutaneous melanoma
To further investigate the expression characteristics of GM-
related genes in SKCM, K-means cluster analysis was
employed to stratify 682 SKCM patients in the merged
cohort into distinct subtypes based on the expression of 41
GM-related genes. When the clustering variable (k)
equaled 2, clustering stability was optimal (Fig. 3a, Suppl.
Fig. S1). Consequently, 682 patients with SKCM were
classified into subtypes A (n = 340) and B (n = 342) based
on the expression of 41 GM-related genes. The
classification ability of GM-related subtypes was validated
by PCA (Fig. 3b). Then, the investigation into differences
between the two subtypes followed. A significant difference
in OS was observed between the two subtypes of patients
with SKCM. Subtype B exhibited a higher survival
probability compared to subtype A (p < 0.001) (Fig. 3c).
The results of ssGSEA for assessing the infiltration level of
immune cells in different GM-related clusters suggested
that, in comparison to subtype A, infiltration levels of a
majority of immune cells in subtype B were significantly
higher (p < 0.01) (Fig. 3d). In the TCGA SKCM cohort,
the gene expression profiles and clinical parameters
between the two GM-associated clusters were analyzed. As
demonstrated in Fig. 3e, the T stage (p < 0.001), tumor

stage (p < 0.01), and age (p < 0.01) differed markedly
between the two GM-related clusters. GSVA enrichment
analysis to evaluate the enrichment of KEGG pathways in
different GM-related subtypes revealed significant
enrichment of subtype A in pathways of neurodegenerative
diseases (Huntington’s disease, Alzheimer’s disease, and
Parkinson’s disease), nucleotide metabolism (pyrimidine
metabolism), transcription (aminoacyl-tRNA biosynthesis
and RNA polymerase), energy metabolism (oxidative
phosphorylation), carbohydrate metabolism (glyoxylate
and dicarboxylate metabolism), and glycan biosynthesis
(glycosylphosphatidylinositol (GPI)-anchor biosynthesis),
whereas subtype B exhibited enrichment in pathways
related to signal transduction (transforming growth factor-
beta signaling pathway and the Janus kinase/signal
transducer and activator of transcription signaling
pathway), immune system (complement and coagulation
cascades, nucleotide oligomerization domain-like receptor
signaling pathway, hematopoietic cell lineage, leukocyte
transendothelial migration, natural killer cell-mediated
cytotoxicity), signaling molecules and interaction (cell
adhesion molecules, and cytokine-cytokine receptor
interaction), infectious diseases (leishmania infection),
and immune diseases (systemic lupus erythematosus)
(p < 0.05) (Fig. 3f). These findings demonstrate that

FIGURE 1. The workflow chart of
the study.
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GM-related genes classified SKCM patients into two distinct
subtypes with differing OS, clinical features, biological
functions, and immune status.

Screening of differentially expressed genes and identification of
gene subtypes
To investigate the potential biological functions of different
GM molecular subtypes, 368 DEGs were first identified based
on the two GM-related subtypes in the combined datasets
(|log2FC| > 1, p < 0.001). Subsequently, GO and KEGG
pathway enrichment were analyzed to elucidate the biological
behavior of DEGs. The 368 DEGs were associated with

immunity (T cell activation, mononuclear cell differentiation,
and regulation of T cell activation), external side of the
plasma membrane, cytokine−cytokine receptor interaction,
and so on (Figs. 4a and 4b). Thus, we hypothesized that GM
might exert an essential role in the regulation of immunity
and cytokine−cytokine receptor interaction in SKCM. To
determine the prognostic value of the 368 DEGs, univariate
Cox regression analysis was performed, identifying 292 genes
correlated with OS (p < 0.05) for subsequent analysis.
Among these, 261 genes were associated with low risk
(hazard ratio (HR) < 1), while 31 genes were related to high
risk (HR > 1). To validate the regulation mechanism above, a

FIGURE 2. Genetic mutation of glutamine metabolism (GM)-related genes in skin cutaneous melanoma (SKCM). (a) The waterfall plot
exhibited mutation frequency of 41 GM-related genes in 467 SKCM patients from The Cancer Genome Atlas (TCGA) cohort. (b) The
location of copy number variation (CNV) alteration of GM-related genes on 23 chromosomes. (c) CNV frequency of GM-related
regulators in 468 SKCM samples from TCGA database.
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consensus clustering analysis was conducted employing these
292 genes. The unsupervised clustering method stratified 682
SKCM patients in the merged cohorts into three genomic
subtypes: gene subtype A (n = 254), B (n = 166), and C (n =
262) (Fig. 4c, Suppl. Fig. S2). The three gene subtypes
exhibited a significant difference in OS, with subtype B
having the highest survival probability and subtype C the
lowest (p < 0.001) (Fig. 4d). Additionally, the expression of
30 GM-related genes differed significantly between subtypes
A, B, and C (p < 0.05), in accordance with the expected
results of the GM patterns (Fig. 4e). The heatmap depicted
the differences in gene expression and clinical characteristics
among the three gene clusters. T stage (p < 0.001), tumor
stage (p < 0.001), age (p < 0.01), and GM-related cluster (p <
0.001) were diversely distributed among the three gene
subtypes (Fig. 4f). These findings demonstrated markedly
distinct OS, clinical characteristics, and GM-related gene
expressions of the three molecular subtypes.

Construction and validation of the prognostic risk score
A risk score was established to assess the prognostic prediction
role of prognostic DEGs in SKCM. First, 668 SKCM patients

with complete survival information were randomly and
equally divided into training and testing groups. Utilizing
LASSO and multivariate Cox analysis for the 292 prognostic
DEGs, six OS-associated genes (IL18, TNFRSF17, SEMA6A,
AIM2, CXCL10, PAEP) were identified to construct the risk
score in the training group according to the following
formula: risk score = (0.304 × IL18 expression) + (−0.217 ×
TNFRSF17 expression) + (0.139 × SEMA6A expression) +
(−0.114 × AIM2 expression) + (−0.102 × CXCL10
expression) + (0.069 × PAEP expression). Subsequently, 668
SKCM cases were classified into low-risk (n = 347) and
high-risk (n = 321) subgroups based on the median cutoff
value calculated using the above-mentioned formula. The
LASSO analysis results, including the coefficient and partial
likelihood deviance on the prognostic genes, are presented
in Suppl. Fig. S3. To more intuitively display the
distribution of SKCM patients in different groups (two GM-
related clusters, three gene clusters, and two risk-score
groups), a Sankey diagram was constructed, as depicted in
Fig. 5a. Based on Kaplan-Meier curves, it was determined
that SKCM patients with low-risk scores had a distinct
survival advantage over those with high-risk scores (p <

FIGURE 3. Skin cutaneous melanoma (SKCM) subgroups associated with glutamine-metabolism (GM)-related regulators and their
clinicopathological characteristics. (a) Consensus clustering matrix when k = 2 in the integrated cohorts. (b) Principal component analysis
displaying the distribution of transcriptomes between two clusters. (c) Kaplan−Meier plot showed a survival difference between subtypes A
and B. (d) Comparison of immune infiltration between two subtypes. (e) The heatmap of clinical parameters and GM-related genes’ expression
in two clusters in The Cancer Genome Atlas (TCGA) cohort. (f) Gene set Variation Analysis (GSVA) of Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways enriched in two subtypes. Red indicates high enrichment, and blue indicates low enrichment. p < 0.05 was
regarded as a significant difference. * indicated p < 0.05, ** indicated p < 0.01, *** indicated p < 0.001.
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0.001) (Fig. 5b, Suppl. Fig. S4A, Suppl. Fig. S5A). Moreover, as
the risk score increased, the rate of mortality of patients also
increased, and survival time decreased (Figs. 5c and 5d,
Suppl. Fig. S4B, Suppl. Fig. S5B). The area under the ROC
curve was 0.677, 0.684, and 0.690 at 1-, 3-, and 5-year,
respectively, indicating that this prognostic model exhibited
good performance in predicting the prognosis of SKCM
patients (Fig. 5e, Suppl. Fig. S4C, Suppl. Fig. S5C). To
further confirm the prognostic prediction role of signature
genes, we used a public database GEPIA for external
validation. As illustrated in Suppl. Fig. S6, the mRNA
expression levels of AIM2, CXCL10, and SEMA6A in tumors
were significantly higher than those in normal tissues (p <
0.01), while the expression of IL18 was markedly decreased
in tumors compared with normal tissues (p < 0.01). The

impact of these genes on SKCM prognosis was confirmed
by GEPIA. SKCM patients with high expression of AIM2,
CXCL10, IL18, and TNFRSF17 had higher survival rates
than those with low expression of these genes, while high
expression of PAEP and SEMA6A predicted poor prognosis
(Suppl. Fig. S7).

The heatmap revealed the differential expression of six
prognosis-associated genes between high- and low-risk
groups (Fig. 5f, Suppl. Fig. S4D, Suppl. Fig. S5D). T stage
and stage were verified significantly different between
high- and low-risk groups (p < 0.01) (Fig. 5f).
Additionally, significant differences were also observed in
risk scores between both GM-related subtypes (p < 0.001)
and the three gene subtypes (p < 0.001) (Figs. 5g and 5h).
For GM-related subtypes, the risk score of subtype A was

FIGURE 4. Identification of glutamine-metabolism (GM)-related gene subtypes based on 368 differentially expressed genes (DEGs) from
different molecular subtypes. GO (a) and KEGG (b) analyses of DEGs in the merged cohorts, respectively. BP: biological process, CC:
cellular component, MF: molecular function. (c) Consensus clustering matrix when k = 3 in the integrated cohorts. (d) Differences in
survival probability among different gene clusters are presented by the Kaplan-Meier plot. (e) Differential analysis of GM-related genes’
expression in three gene subtypes. (f) The heatmap visualizing the gene profiles, clinical information, and GM-related clusters in three
gene clusters in The Cancer Genome Atlas (TCGA) cohort. p < 0.05 indicated a statistical difference. * indicated p < 0.05, ** indicated p <
0.01, *** indicated p < 0.001.
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higher than that of subtype B. Regarding gene subtypes, the
risk score of subtype B was the lowest, while that of subtype
C was the highest. Ultimately, there were 25 GM-related
DEGs between the high- and low-risk groups (p < 0.05)
(Fig. 5i). The results above indicated that the risk score
had the potential to predict SKCM patients’ prognosis and
was significantly related to GM-related gene expression in

SKCM. Furthermore, to apply the risk score in the clinical
prediction of OS of SKCM patients more conveniently, a
nomogram for the quantitative estimation of survival
outcomes in SKCM patients within the TCGA cohort,
considering risk score, age, T stage, and N stage (Fig. 5j).
The calibration curve for survival prediction substantiated
the predictive accuracy of the nomogram (Suppl. Fig. S8).

FIGURE 5. Construction and validation of the risk model in the merged datasets. (a) Sankey diagram of cluster distributions, distinct risk
scores, and survival outcomes. (b) Survival analysis between high- and low-score groups. (c–d) The risk score distribution and survival
status in the merged datasets displayed by ranked dot and scatter plots, respectively. (e) Receiver operating characteristic curves showed
the predictive efficiency of the risk score in the prediction of 1-, 3-, and 5-year survival. (f) Heatmap exhibited six prognostic gene
expression profiles and clinical features’ differences between high- and low-risk groups. (g and h) Differences in risk scores between two
glutamine metabolism (GM)-related subtypes and three gene subtypes, respectively. (i) Differential analysis of GM-related gene expression
level between high- and low-score groups. (j) The nomogram constructed according to age, risk score, T and N stage for predicting the 1-,
3-, and 5-year overall survival (OS) of patients with SKCM. p < 0.05 was regarded as a significant difference. * indicated p < 0.05, ** indicated p
< 0.01, *** indicated p < 0.001.
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Evaluation of immune infiltrating, tumor microenvironment,
and tumor mutation burden
The connection between risk score and immune cell
infiltration was explored using the CIBERSORT algorithm,
and Spearman correlation analysis was conducted. The
findings revealed that the risk score was inversely correlated
with the scores of γ δ T cells (p < 0.001), CD8+ T cells (p <
0.001), activated CD4+ memory T cells (p < 0.001), plasma
cells (p < 0.001), M1 macrophages (p < 0.001), and memory
B cells (p < 0.001), while positively correlated with the
scores of activated dendritic cells (p < 0.05), M0 and M2
macrophages (p < 0.001), monocytes (p < 0.05), and resting
NK cells (p < 0.05) (Fig. 6a). The relationships between the
six genes in the constructed model and immune cells were
evaluated, as depicted in Fig. 6b, demonstrating the
association of these six genes with most immune cells (p <
0.05). TME differential analysis indicated that, compared
with the low-risk group, the high-risk group exhibited lower
stromal, immune, and ESTIMATscores (p < 0.001) (Fig. 6c).
Next, the distribution alterations of the somatic mutations
between high- and low-risk groups in the TCGA-SKCM
cohort were explored. As shown in Figs. 7a and 7b, 86.7%
and 95.34% of TCGA SKCM samples exhibited gene

mutations in the high- and low-risk groups, respectively.
The top ten genes with the highest mutation rates were
TTN, MUC16, BRAF, DNAH5, PCLO, LRP1B, ADGRV1,
RP1, CSMD1, and DNAH7. Accumulating evidence suggests
that TMB may predict the efficacy of immunotherapy in
multiple solid tumors as a biomarker (Strickler et al., 2021).
Consequently, the correlation analysis of risk score with
TMB and differential analysis of TMB between high- and
low-risk groups were conducted. However, Spearman
correlation analysis revealed no evident correlation between
the risk score and TMB score through (p = 0.077) (Fig. 7c).
Additionally, the TMB scores between the two risk groups
did not exhibit a notable difference (p = 0.059) (Fig. 7d).

Assessment of stemness and drug sensitivity
Genes associated with stemness play a crucial role in tumor
proliferation and cancer recurrence (Ouyang et al., 2021). As
a result, the correlation between risk score and stemness
index was evaluated. The risk score exhibited a positive
correlation with the stemness index (R = 0.24, p < 0.001)
(Fig. 8a). The impact of risk score on predicting the
sensitivity of SKCM to various drugs was investigated by
conducting a drug sensitivity analysis to compare differences

FIGURE 6. Correlation evaluation of tumor microenvironment (TME) with a risk score. (a) Relationships between risk score and immune
infiltration by correlation analyses. (b) Correlation analysis revealed the association between the abundance of immune cells and six genes
involved in the risk score. (c) Differences in TME characteristics (stromal, immune, and ESTIMATE score) between two risk groups. p <
0.05 was regarded as a significant difference. * indicated p < 0.05, ** indicated p < 0.01, *** indicated p < 0.001.
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in the sensitivity of specific drugs between high- and low-risk
groups. As illustrated in Fig. 8b–8l and Suppl. Fig. S9, the
low-risk group demonstrated heightened sensitivity to 50
drugs (ABT.263, ABT.888, AICAR, AP.24534, ATRA,
AZD.2281, AZD6482, AZD7762, AZD8055, BAY.61.3606, BI.
D1870, Bleomycin, Bortezomib, Bosutinib, BX.795,
Camptothecin, CGP.60474, CI.1040, Cisplatin, Cyclopamine,
DMOG, GDC.0449, GDC0941, Gefitinib, Gemcitabine, IPA.3,
JNK.Inhibitor.VIII, Lenalidomide, Metformin, Methotrexate,
Mitomycin.C, MK.2206, Nilotinib, NVP.BEZ235, PAC.1,
PF.02341066, Rapamycin, Roscovitine, SB.216763, SL.0101.1,
Sunitinib, Temsirolimus, Vinblastine, Vorinostat, VX.702,
X681640, XMD8.85, Z.LLNle. CHO, PD.173074, and
ZM.447439) while the high-risk group exhibited increased
sensitivity to 25 drugs (Bexarotene, BI.2536, Bicalutamide,
BMS.754807, Bryostatin.1, CHIR.99021, Elesclomol, FH535,
GNF.2, GSK.650394, GW.441756, Imatinib, KIN001.135,
LFM.A13, MG.132, NSC.87877, OSI.906, PD.0325901,

PF.562271, PF.4708671, PHA.665752, QS11, RDEA119,
Thapsigargin, FTI.277) (p < 0.001).

Discussion

In this study, 682 SKCM patients were categorized into two
distinct molecular subtypes based on 41 GM-associated
genes. There were differences in survival, gene expression
characteristics, clinical features, immune infiltration, and
biological function between the two subtypes. In addition,
we screened out 368 DEGs between the two subtypes, based
on which a prognostic model consisting of six genes was
constructed by LASSO and multivariate Cox analysis. This
prognostic model possessed a good predictive ability for the
prognosis of SKCM patients. Moreover, we found that
clinical features, GM-related gene expression, immune
infiltration, TME score, stemness index, and drug sensitivity
were significantly different between high- and low-risk

FIGURE 7. Assessment of the correlation between tumor mutation burden (TMB) and risk score. (a and b) The waterfall plot of somatic
mutation characteristics in high- and low-risk groups, respectively. (c) Correlation analysis between risk score and TMB score. (d) The
difference in TMB score between high- and low-risk groups. p < 0.05 was regarded as a significant difference.
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groups. This research contributes to enhancing the
understanding of SKCM progression driven by GM, assists
in guiding clinical therapeutic regimens, and facilitates the
development of original therapeutic methods.

In the Warburg effect, tumor cells undergo glycolysis to
generate lactic acid, even in the presence of sufficient oxygen
(Samec et al., 2023). Therefore, to maintain normal
mitochondrial oxidative phosphorylation function, some
tumor cells, including melanoma cells, rely more heavily on
glutamine to fuel the TCA cycle (Filipp et al., 2012). The
process involves the entry of glutamine into the cytoplasm
via amino acid transporters and then its converted to
glutamate by glutaminase (GLS), which is then transformed
by glutamate dehydrogenase to α-ketoglutarate, a fuel for
TCA cycle metabolites (Ratnikov et al., 2017). Additionally,
glutamine serves as the nitrogen source for the synthesis of
purines, pyrimidines, and non-essential amino acids (Yoo et
al., 2020). We carried out GSVA enrichment analysis to
study the differences in biological behavior between two
molecular subtypes. GSVA result indicated that subtype A
was enriched in metabolism-related pathways, including
nucleotide metabolism (pyrimidine metabolism), energy
metabolism (oxidative phosphorylation), and carbohydrate
metabolism (glyoxylate and dicarboxylate metabolism),
which may be associated with a higher level of GM in
subtype A in contrast with that in subtype B. GO and

KEGG enrichment analyses of 368 DEGs revealed their
involvement in immune regulation, specifically T cell
activation and lymphocyte differentiation. GM plays a
crucial role in the differentiation and function of T cells
(Ma et al., 2022). For instance, GLS1 deficiency can increase
the expression of the transcription factor T-bet, thereby
promoting differentiation and effector capacity of CD4+ Th1
and CD8+ T cells while also suppressing Th17
differentiation by suppressing mammalian target of
rapamycin complex 1 and interleukin (IL)-2 signal
transduction pathways (Ma et al., 2022). Moreover, the
activation of Teff cells, which is dependent on c-MYC, is
affected by glutamine uptake through SLC7A5 (Loftus et al.,
2018).

Compared to a single gene, a multi-gene signature
predicts prognosis in tumor patients more convincingly and
accurately (Huang et al., 2021; Zhan et al., 2021). Moreover,
the expression level of a single gene may be affected by
multiple factors, which may lead to unreliable prognostic
prediction results of a single gene as an independent
prognostic factor (Huang et al., 2021). Furthermore,
previous studies have demonstrated the ability of multiple
genes to effectively predict outcomes in melanoma patients
(Xu et al., 2022; Liu et al., 2023). Consequently, our study
then screened six OS-associated genes (IL-18, SEMA6A,
PAEP, TNFRSF17, AIM2, and CXCL10) to establish risk

FIGURE 8. Stemness analysis and drug sensitivity analysis in distinct risk groups. (a) Spearman correlation analysis of the risk score and
stemness index. (b–l) Sensitivity analysis of 11 different drugs in high- and low-risk groups. p < 0.05 was regarded as statistically significant.
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score. IL-18, as a member of the IL-1 superfamily cytokine, is
capable of regulating both innate and adaptive immune
responses (Lebel-Binay et al., 2000). Studies have confirmed
that expression of IL-18 mRNA is significantly higher in
normal tissues compared to melanoma tissues. In addition,
high expression of IL-18 has been associated with better
prognosis in melanoma patients, which might be due to the
infiltration of CD8+ T and NK cells (Gil and Kim, 2019).
SEMA6A is a protein involved in multiple cellular processes,
such as vascular development and angiogenesis, and plays a
crucial role in cell proliferation and cancer development (Ji
et al., 2023). A recent study showed a correlation of
SEMA6A expression with BRAF mutation, and its high
expression was associated with shorter progression-free
survival in BRAF-mut melanoma patients treated with
BRAF/MEK inhibition (Loria et al., 2022). Another study
demonstrated a negative correlation between SEMA6A
expression, and survival prognosis in SKCM (Lv et al.,
2022). PAEP, a secreted glycoprotein of the lipocalin
superfamily with a molecular weight of 28 kDa, was found
highly expressed in thick primary and metastatic melanoma
samples. Overexpression of PAEP was shown to promote
melanoma proliferation and migration (Ren et al., 2010).
Furthermore, the PAEP protein secreted from melanoma
cells can inhibit the proliferation and function of T
lymphocytes, which might contribute to immune tolerance
in melanoma (Ren et al., 2015). TNFRSF17, a plasma
membrane antigen expressed universally, plays a role in
regulating cell survival, proliferation, and apoptosis (Song et
al., 2022b). Zhang et al. (2021) reported a significant
upregulation of TNFRSF17 in metastatic melanoma, with
high levels of TNFRSF17 being associated with poor
prognosis in this patient population. The findings in this
study were inconsistent with the previously reported
relationship between TNFRSF17 and melanoma, suggesting
the need for further investigation. The AIM2 gene was first
identified as being lost in melanoma. Its ability to recognize
double-stranded DNA released by cells under stress and
induce pyroptosis via inflammasome formation has been
established (Man et al., 2016). In agreement with our
findings, AIM2 has been shown to act as a protective factor
in melanoma (Niu et al., 2022). However, Keitaro Fukuda et
al. suggested that AIM2 expression in dendritic cells within
melanoma is associated with poor prognosis as it played an
immunosuppressive role on melanoma microenvironment.
In melanoma, vaccination with AIM2-deficient DCs
enhanced the efficacy of immunotherapy by type I
interferon signaling, producing CXCL10 to recruit CD8+ T
cells and restricting IL-18 and IL-1β to inhibit regulatory T
cells (Fukuda et al., 2021). Therefore, the role of AIM2 in
melanoma is controversial and may be related to complex
expression regulation. CXCL10 plays a dual role in
promoting the occurrence and development of melanoma,
and is dependent on the paracrine and autocrine patterns of
the CXCL10/CXCR3 axis. The paracrine and autocrine
modes of action are associated with anti-tumorigenic and
pro-tumorigenic activities, respectively (Bagheri et al., 2020).

In comparison with the high-risk group, the low-risk
group exhibited a higher degree of immune activation and
immune scores. This study indicated a negative correlation

between the risk score and the scores of γ δ T cells, CD8+ T
cells, and M1 macrophages (p < 0.001). The γ δ T cells
possess the ability to elicit both innate and adaptive
immunity and are integral to present antigens and
implement cytotoxic effects on tumor cells in a major
histocompatibility complex-I-unrestricted manner (Wang et
al., 2021a; Lafont et al., 2014). Studies by Girard et al.
(2019) have established a strong correlation between the
infiltration of high proportions of γ δ T cells in circulating
and tumor cells with better clinical outcomes in melanoma
patients. CD8+ T cells, on the other hand, are well-known
for their role in anti-tumor immunity. M1 macrophages aid
in promoting anti-tumor immunity by secreting IL-12,
tumor necrosis factor (TNF)-α, and inducible nitric oxide
synthase (iNOS), triggering and attracting Th1 and effector
cells, and promoting the normalization of tumor blood
vessels (Jarosz-Biej et al., 2018). Notably, the high-risk
group exhibited a significantly higher stemness index than
the low-risk group, which is a well-established indicator of
poor prognosis in cancer patients (Malta et al., 2018). In
conclusion, the favorable prognosis observed in the low-risk
group may be attributed to a higher degree of immune
infiltration and lower stemness index.

The drug sensitivity analysis revealed that SKCM
patients with a high-risk score demonstrated greater
sensitivity to a range of signal pathway inhibitors, including
serine/threonine-protein kinase (PLK1) inhibitor (BI.2536),
insulin-like growth factor1 receptor (IGF1R)/IR inhibitor
(BMS.754807), Wnt/β-catenin signaling inhibitor (FH535),
serum and glucocorticoid-induced protein kinase (SGK)
inhibitor (GSK.650394), growth factor receptor inhibitor
(GW.441756), proteasome inhibitor (MG.132), SRC
homology region 2–containing protein tyrosine phosphatase
2 (SHP2) inhibitor (NSC.87877), MEK inhibitor
(PD.0325901), cell-cycle inhibitor (Bryostatin.1),
endoplasmic reticulum (ER) stress inducer (Thapsigargin),
and oxidative stress inducer (Elesclomol), compared to
patients in the low-risk score group. Notably, combination
therapy with BMS.754807 and dabrafenib and trametinib
was particularly effective in inhibiting the proliferation of
BRAF-mutant melanoma (Patel et al., 2021). Additionally,
regardless of BRAF mutation, MEK inhibitor PD.0325901
effectively suppressed melanoma growth (Ciuffreda et al.,
2009). Elesclomol, as an oxidative stress inducer, inhibited
oxidative phosphorylation (OXPHOS) and mitochondrial
respiration, thus producing a cytotoxic effect on melanoma.
This finding suggested that targeting OXPHOS could be an
effective therapeutic strategy for advanced melanoma (Barbi
de Moura et al., 2012). The drug sensitivity analysis
provides new insights into the clinical treatment of
melanoma. Moreover, the risk score could be an effective
gene signature for predicting the therapeutic response of
SKCM patients to targeted treatment.

In conclusion, this study identified that GM-related
subtypes in SKCM that are associated with survival, clinical
characteristics, and immune infiltration. In this study, a risk
model was also developed to predict the prognosis of SKCM
patients and estimate immune infiltration, which could
benefit clinical treatment. These findings have contributed
to a better understanding of the role of GM in assessing the
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prognosis and immune status in SKCM. However, this study
is not without certain limitations. First, this was a
retrospective study, reliant on public databases for data
collection. Further prospective cohort studies and in vivo or
in vitro studies are necessitated to verify the results
presented in this paper. In addition, although six OS-
associated genes alone have been shown to affect melanoma
survival, the interactions, and relationships of six genes on
the biological behavior of melanoma remain to be further
investigated. Finally, considering the genetic heterogeneity
among different ethnicities and regions, more data should
be added, especially from the Chinese population, to analyze
the difference in prognosis prediction of GM in melanoma
patients from different regions.
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