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Abstract: Background: This study was aimed at identifying natural killer (NK) cell-related genes to design a risk

prognosis model for the accurate evaluation of gastric cancer (GC) prognosis. Methods: We obtained NK cell-related

genes from various databases, followed by Cox regression analysis and molecular typing to identify prognostic genes.

Various immune algorithms and enrichment analyses were used to investigate the mutations, immune status, and

pathway variations among different genotypes. The key prognostic genes were assessed using the least absolute

shrinkage and selection operator (Lasso) regression analysis and univariate Cox regression analysis. Thereafter, the

risk score (RS) prognosis model was constructed based on the selected important prognostic genes. A Receiver

Operating Characteristics (ROC) curve was plotted for analyzing the robustness of the model. Subsequently, the

decision and calibration curves were used for assessing the reliability and prediction accuracy of the proposed model.

The ‘pRRophetic’ R software package was utilized for predicting the half-maximal inhibitory concentration (IC50) of

immunotherapy and chemotherapy drugs. Results: We screened 21 prognostic genes and three molecular subtypes

and found that the C1 subtype had the worst prognosis. Further, the pathways promoting tumor proliferation, such as

epithelial-mesenchymal transition were significantly up-regulated. The results also showed that the macrophages in

the M2 stage were significantly infiltrated in the C1 subtype, and there was significant overexpression in the C1

subtype, accompanied by a severe inflammatory reaction. The C1 was highly sensitive to drugs like 5-fluorouracil and

paclitaxel. The ROC, calibration curve, and decision curve showed that the risk model was robust and strongly

reliable. Conclusion: Overall, our proposed NK cell-related RS model can be used as a more accurate prediction index

for GC patients, providing a valuable contribution to personalized medicine.

Introduction

Gastric cancer (GC) is emerging as a major risk factor in
human disease around the world. About 19 million new and
confirmed cases of cancer occur each year around the globe,
resulting in about 10 million death annually. Out of these
cases, 1.08 million cases are GC, which is attributed to the
mortality of approximately 800,000 cases annually (Sung
et al., 2021). The risk factors of GC includincludede
Helicobacter pylori, EB virus, unhealthy eating habits, and
lifestyle (Eusebi et al., 2020, Petryszyn et al., 2020). Despite
recent advancements in GC diagnosis and treatment, its
incidence and mortality rates are still increasing, and the
five-year OS rate remains significantly poor (Allemani et al.,
2018). Such an increased risk of recurrence is caused by

higher proliferation rates and widespread metastasis of GC
cells, which makes treatment more challenging. At present,
the main treatment for GC in the initial stages is to remove
the primary tumor, while chemotherapy is still the main
choice for advanced GC. However, using medications more
frequently or in higher doses has substantial negative side
effects and is also accompanied by significant drug
resistance (Auberger et al., 2020). This has led to the
readjustment of the human immune system, and restoring
its system of killing tumor cells emerging as an option in
research. For example, NK cells can directly bind tumor
cells and kill them.

In the human body, the first-line defense consists of
physical, chemical, and cellular defense systems to prevent
pathogens and transformed cells from invading or spreading
the whole body. NK cells of the Innate Lymphocyte (ILC)
family play a significant role in this defense of eliminating
tumor cells and controlling viral infections. Common NK/T
cell precursors and lymphoid progenitor cells are from
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where NK cells originate from the pluripotent hematopoietic
stem cells in the bone marrow (Raskov et al., 2021). Natural
lymphocytes, which are a component of the innate immune
system, are crucial for immunological monitoring and offer
a subsequent host defense barrier against infectious viral or
malignant cells. NK cells make up 8%–20% of the
circulating lymphocytes in the human body, while they
account for 2%–5% of the spleen and myelolymphocytes in
laboratory inbred mice (Cooper et al., 2001). Compared to
other lymphocytic cells such as T cells, B cells, and natural
killer T cells (NKT), the NK cells do not express clonal B
cell receptors, T cell receptors/CD3ε complex, or other
antigen-specific receptors. Further, the NK cell functions are
not dependent on the antigens, i.e., they often do not
produce immunological memory or long-lasting protective
immunity. Recent research has demonstrated that NK cells
are promising therapeutic targets that can be used for
cancer treatment (Guillerey et al., 2016). However, the
prognostic and immune status evaluation of GC based on
natural killer cell-related genes is still rare.

It is believed that chronic inflammation contributes to
the formation of tumors and is regarded as a major
characteristic of cancer. Cancer-initiating mutations can
trigger such cancer-associated inflammation and accelerate
the growth of tumors by accumulating and activating the
inflammatory cells and inflammation-linked pathways. It is
also well-recognized that both exogenous and endogenous
inflammation can result in an immunosuppressive tumor
microenvironment (TME) that offers an ideal setting for the
growth of tumors. When an inflammatory TME is
developed, inflammatory mediators produced by tumor cells
or stromal cells promote cell growth and extend cell survival
by activating the oncogenes, subsequently inactivating
tumor suppressor genes (Zhao et al., 2021).

Given this background, it is warranted to study the pro-
cancer inflammation and pathways mediated by NK cells in
GC. This work developed a stable molecular subtyping
approach and a stable risk prognosis model through NK
cell-related genes, providing an accurate prediction model
for GC patients and personalized treatment.

Materials and Methods

Collection and pre-processing of the data
The analysis of this study was supported by the Sangerbox tool
(http://vip.sangerbox.com/) (Shen et al., 2022). The GDC-API
was used for downloading all the Copy Number Variation
(CNV), RNA-Seq, and mutation data from The Cancer
Genome Atlas-Stomach Adenocarcinoma (TCGA-STAD)
dataset. The expression data of GSE62254 and GSE15459
data were obtained from the Gene Expression Omnibus
(GEO) cohort. In this study, TCGA-STAD was employed as
a training dataset, whereas the GSE62254 and GSE15459
datasets were independent verification sets. All data without
additional clinical and follow-up information, overall
survival (OS) time, or status from the TCGA-STAD dataset
were eliminated, while the data samples with an OS value
≥30 days were retained. The gene symbol was created from
Ensembl. The annotation data for the associated chip

platform was retrieved from the GEO dataset. The probe
was mapped to the gene in accordance with the annotation
data, and the probe that matched several genes was
eliminated. If more than one probe had been found to
match a particular gene, the average value was taken into
account as a measure of gene expression. Subsequently, a
total of 337 primary tumor samples from the TCGA-STAD
dataset were included in the study. The expression data of
GSE62254 and GSE15459 were obtained from the GEO
database. We finally included 300 and 182 GC samples from
GSE62254 and GSE15459, respectively.

Source of natural killer cell-linked genes
We retrieved the NK cell-linked gene information from
immport (https://www.immport.org/shared/home), including
the data on 18 NK_ Cell-associated pathways from the
Molecular Signature Database (MSigDB) (Liberzon et al.,
2015). Furthermore, the NK cell module from the LM22
database (Newman et al., 2015) was also selected. We finally
retained 79 NK cell-related genes for analysis.

Prognostic gene correlation analysis
The expression of NK cell-associated genes was acquired from
the TCGA-STAD expression matrix. The Coxph function of R
with threshold value p < 0.05 was used in univariate Cox
regression analysis. All the NK cell genes significantly linked
to the GC prognosis were obtained.

Molecular subtyping of natural killer cell-linked genes
The consistent matrix was constructed by the
ConsensusClusterPlus R package (Wilkerson and Hayes,
2010) based on the expression data of NK cell-linked genes.
Using the “km” algorithm and “1-Pearson correlation” as
the distance metric, 500 bootstraps were performed, with
each bootstrap step employing 80% of all the GC patients in
the training set. The optimal classification was determined
after estimating the Cumulative Distribution Function
(CDF) value and consistent matrix that determined the
molecular subtype for each sample. The cluster number
ranged between 2 and 10.

Analysis of pathways amongst different subtypes
Next, various molecular subtypes were examined for the
presence of differentially activated pathways. The candidate
gene sets in a Hallmark database were subjected to the Gene
Set Enrichment Analysis (GSEA) (Liberzon et al., 2015). A
significant enrichment value was defined when the False
Discovery Rate (FDR) was <0.05.

Differences in immune infiltration and chemotherapy amongst
various molecular subtypes
The relative abundance of 22 immune cell types was
determined using CIBERSORT (https://cibersort.stanford.
edu/) (Chen et al., 2018). The immune infiltration was
analyzed by ESTIMATE (Yoshihara et al., 2013). In a
previous report, Jiang et al. (2018) employed the Tumor
Immune Dysfunction and Exclusion (TIDE) program
(http://tide.dfci.harvard.edu/) to estimate the expected
clinical impact of immunotherapy in the identified high and
low groups. Further, it was noted when the TIDE score
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increased, the probability of immune escape increased, which
indicated less immunotherapy benefit to patients (Pan et al.,
2018). In addition, seven metagenes clusters related to
inflammation were collected to evaluate the level of
inflammatory activity in different subtypes. In immune
regulation, interferon-gamma (IFN-γ) is an important
cytokine molecule that functions in anti-cancer immunity.
We acquired the GOBP_RESPONSE_ TO_INTERFERON_
GAMMA gene set from the Gene Ontology (GO)
database, and used it for single sample GSEA (ssGSEA)
(Hänzelmann et al., 2013). The immune cytolytic activity
(CYT) score was utilized to reflect the cytotoxicity of
different subtypes. Additionally, the T-cell–inflamed gene
expression profile (GEP) score was used for assessing
various molecular subtypes in relation to cancer
immunotherapy in terms of predictive significance. The
‘pRRophetic’ R software package was employed for
calculating the IC50 value of various drug molecules,
including cisplatin, paclitaxel, docetaxel, and 5-fluorouracil
(Geeleher et al., 2014).

Differential analysis among the molecular typing, enrichment
analysis, and construction of the risk model
The differentially expressed NK cell genes among the subtypes
were selected by the identified molecular subtypes (FDR <
0.05 and |log2FC| >1.5)). Limma software was employed for
assessing the DEGs in the subtypes, i.e., C1 vs. other
subtypes, C2 vs. other subtypes, and C3 vs. other subtypes,
and the DEGs showing significant relation to GC prognosis
were selected (p < 0.05). In addition, the ‘clusterProfiler’ R
software package was employed for analyzing the functional
enrichment of the DEGs in C1 vs. others, C2 vs. others, and
C3 vs. others (Yu et al., 2012). Subsequently, the Lasso
analysis was used for lowering the number of genes.
Stepwise multivariate regression analysis was then carried
out based on the results of the Lasso analysis. The stepwise
regression uses the Akachi Information Criterion (AIC) for
analysis and considers the statistical fitting of a model as
well as the parameter number utilized for the fitting. The
stepAIC technique in the MASS package uses the most
complicated model in Step 1, successively deletes a variable
for decreasing the AIC value, and finally acquires the
prognostic significant genes linked to the NK cell phenotype
(Zhang, 2016). The risk score (RS) of each patient was
assessed using the formula: RS = Σβi × Expi). Here, Expi
refers to a gene expression level associated with the genetic
characteristics of the prognosis of the NK cell phenotypes,
and βi indicates the Cox regression coefficient for the
corresponding gene. Based on the threshold “0”, the patients
were categorized into low-risk and high-risk categories. The
Kaplan Meier (KM) curve was used for plotting the survival
curve for analyzing the patient prognosis, while the log-rank
test was employed for assessing significant differences.
Further, the ‘timeROC’ R software package was utilized to
analyze the ROC of the prognostic classification of the
model (Blanche et al., 2013). The classification efficiency for
the prognostic prediction within 1 year, 2 years, and 3 years
were analyzed.

Results

Molecular subtyping using the natural killer cell-linked genes
The expression matrices of TCGA-STAD were used to extract
the NK-cell-linked expression levels. Univariate Cox
regression analysis of the 27 NK-related genes revealed 21
NK cell genes significantly associated with the GC prognosis
(Fig. 1A, p < 0.05). The relationship among these 21 NK
cell-linked genes was then investigated and interactions
among the 21 NK cells were detected (Fig. 1B). The gene
expression patterns of the 21 NK cells with a significant link
to GC prognosis were then utilized to categorize the patients
using consistent clustering, with the CDF calculating the
ideal number of clusters. When the Cluster number was set
to 3, the CDF Delta area curve revealed that the clustering
findings were mainly robust. We set k = 3 to create three
unique molecular subtypes with significant prognostic
characteristics (Figs. 1C–1E). In general, C3 had the best
prognosis, followed by C2 and C1 (Fig. 1F). Additionally,
the GSE62254 data were subjected to molecular subtyping
using the same procedure, and it was shown that these three
molecular types had significantly different prognoses, which
was similar to the TCGA-STAD analysis (Fig. 1G).

Clinicopathological characteristics among molecular subtypes
We examined the distribution of the clinical features in each
molecular subtype in the TCGA-STAD dataset to analyze
clinical characteristics among the molecular subtypes. It was
found that the number of patients with the N stage of N3 in
the C1 subtype increased significantly, while the number of
patients with the M1 stage in the M stage increased
significantly. In addition, it was found that for the T stage,
among C1 subtypes with poor prognosis, patients with T
stages of T2, T3, and T4 were significantly higher compared
to the C2 and C3 molecular subtypes. As for the
pathological stage, stages II, III, and IV patients in the C1
subtype were significantly higher compared to C2 and C3
molecular subtypes. At the same time, the C1 subtype
included GC patients younger than 60 years of age. More
importantly, no significant difference was noted in the C1,
C2, and C3 subtypes (Fig. 2A). The differences among
different molecular subtypes and clinical information in
GSE62254 data were also compared, and the results were
consistent with the TCGA-STAD analysis outcomes (Fig. 2B).

Gene landscape among different molecular subtypes
We further studied the differences in genomic alterations
among these three molecular subtypes in the TCGA-STAD
dataset. The molecular features of the TCGA-STAD cohort
in this study were obtained from an earlier pan-cancer
publication (Thorsson et al., 2018). We observed that the C3
had the highest TMB, C1 had the highest intratumor
heterogeneity, and C2 had the highest aneuploidy score,
homologous recombination deficiency, purity, and ploidy
(Fig. 3A). In addition, the molecular subtype of GC was
acquired from a previous study, which identified five
molecular subtypes (i.e., genomically stable (GS),
chromosomal instability (CIN), Epstein-Barr virus (EBV),
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microsatellite instability (MSI), and plus tumors with elevated
single nucleotide variants (HM-SNV)) (Liu et al., 2018). These
two molecular subtypes were compared, and it was seen that
the CIN accounted for more in the C1 and C2 subtypes,
while microsatellite instability (MSI) in the C3 subtype was
significantly higher than C1 and C2 subtypes. We also
compared the MSI status variations in the molecular
subtypes. The majority of patients in the C1 and C2
subgroups were Microsatellite stable (MSS) (Figs. 3B–3C).
Furthermore, the discrepancies in gene mutations among
the distinct molecular subtypes were studied. The top
twenty genes with substantial mutations were displayed. The
mutation frequencies of TTN, MUC16, and other genes
varied significantly among the three molecular subtypes
(Fig. 3D).

Pathway analysis variations among molecular subtypes
We next analyzed differentially activated pathways in the
different molecular subtypes. When compared with
GSE62254, TCGA-STAD was significantly enriched in 31
pathways (Fig. 4A). Generally, the activated pathways
mainly were some epithelial-mesenchymal transition
(EMT)-linked pathways, such as EPITHELIAL_
MESENCHYMAL_TRANSITION, TGF_BETA_SIGNALING
and several immune-related pathways. In addition, pathway
differences among the TCGA-STAD subtypes were also
analyzed. Generally, EMT-associated pathways in C1 patients
were activated. For example, in the C1 subtype, the
EPITHELIAL_MESENCHYMAL_TRANSITION pathway
was significantly activated compared with C2 and C3. In
addition, several immune-linked pathways were also

FIGURE 1. Molecular typing based on the natural killer (NK) cell-linked prognostic genes. (A) Forest map of NK cell-linked genes with a
significant prognosis in The Cancer Genome Atlas-Stomach Adenocarcinoma (TCGA-STAD) dataset; (B) Univariate Cox significant
correlation of NK cell gene expression in TCGA-STAD dataset; (C) CDF curves for TCGA-STAD samples; (D) CDF Delta curves for
TCGA-STAD samples. Delta area curves were plotted using consensus clustering, which showed a relative variation in the area under the
cumulative distribution function (CDF) curve for every category number (k), in comparison to k-1. The X-axis indicates the value of k,
while the Y-axis denotes the relative changes in the CDF-area under the curve (AUC); (E) Cluster heat maps for the samples when k = 3
in TCGA-STAD; (F) KM curves for the OS prognosis of 3 subtypes in the TCGA-STAD dataset; (G) Differences in the prognosis among
the three molecular subtypes in the GSE62254 dataset.
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activated in the C1 subtype, such as INTERFERON_
GAMMA_RESPONSE. Therefore, these subtypes differ in
pathway activation, which may affect the prognosis of
different subtypes (Fig. 4B).

Immune characteristics among molecular subtypes
CIBERSORT software and ESTIMATE software were used to
assess the infiltration of various immune cells to further
analyze the differences in the immunological TME across
various molecular subtypes. Most immunological cell types
had significant differences among subtypes, in which the
infiltration level of macrophages in the M2 phase in C1 was
significantly increased, while macrophages in the M0 phase
in C1 were significantly decreased. More importantly, there
was a slight difference among activated NK cells in
subtypes, but the infiltration of resting NK cells was
significantly decreased (Fig. 5A) in C1 subtypes.
Additionally, the immune score of the C1 subtype was
noticeably higher as it showed a greater immune cell

infiltration (Fig. 5B). Additionally, the same algorithm and
outcomes from the TCGA-STAD were utilized to compare
the infiltration levels of the immune cells using the
GSE62254 data (Figs. 5C–5D). Moreover, the levels of the
inflammatory activity of three molecular subtypes were
calculated. Apart from MHC_I, there were significant
differences among these seven meta-genes clusters,
indicating an immune inflammation caused by the high
degree of immune cell infiltration in the C1 subtype.
Moreover, it also indicated that over-activation of immunity
may promote the development of tumors instead, resulting
in a poor prognosis. This observation was also observed in
the GSE62254 dataset (Figs. 5E–5F).

Immune/chemotherapy treatment differences among molecular
subtypes
Few representative molecules were assessed for Immune
Checkpoint Blockade (ICB) of cancer immunotherapy. The
results indicated that programmed death 1 (PD-1),

FIGURE 2. The differences in clinical characteristics among different molecular types. (A) Clinicopathological characteristics of The Cancer
Genome Atlas-Stomach Adenocarcinoma (TCGA-STAD) molecular subtype; (B) Clinical and pathological characteristics of the GSE62254
molecular subtype; The lower section represents the proportion, whereas the upper region highlights the distribution variations in the two
pairs. -log10 (p-value) was considered statistically significant (chi-square test).
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programmed death ligand 1 (PD-L1), and cytotoxic T
lymphocyte-associated antigen 4 (CTLA4) were significantly
overexpressed in the C3 subtype (Fig. 6A) Further, the
response of IFN-γ was significantly enhanced in C1 and C3
subtypes (Fig. 6B). Simultaneously, a comparison of the

expression differences of INFG gene in the three subtypes
showed that INFG was significantly overexpressed in the C3
subtype (Fig. 6C). In addition, the CYT score reflecting the
cytotoxicity was significantly higher in C1 and C3 molecular
subtypes than in the C2 subtype (Fig. 6D). Additionally, the

FIGURE 3. Genome variations in the molecular subtypes of The Cancer Genome Atlas (TCGA) dataset. (A) Variations in the homologous
recombination defects, fraction altered, number of segments, aneuploidy score, and Tumor Mutation Burden in TCGA molecular subtypes
were compared; (B) Comparison of the three molecular subtypes with all molecular subtypes described in earlier studies; (C) Difference in
three molecular subtypes “MSI status”; (D) Somatic mutations in three molecular subtypes (chi-square test). *p < 0.05; **p < 0.01; ***p <
0.001; ****p < 0.0001.
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T-cell-inflamed GEP score was utilized for predicting the
clinical responses of different molecular subtypes and the
potential to obtain the unique characteristics of
neoantigenicity and T-cell activation, respectively. It was
found that the T-cell-inflamed GEP score was significantly
increased in C1 and C3 subtypes (Fig. 6E). More crucially,
the C1 subtype had a high TIDE score, indicating a higher
risk of immunological escape. Further, C1 was the molecular
subtype with the greatest exclusion and dysfunction scores
(Fig. 6F). We also studied the response of different
molecular subtypes in TCGA-STAD to conventional
chemotherapy agents such as paclitaxel, cisplatin, docetaxel,
and 5-fluorouracil. Paclitaxel and 5-fluorouracil sensitivity
were increased in the C1 subtype (Fig. 6G).

Differential expression analysis among molecular subtypes
In the previous analysis, NK cell genes were identified
through univariate Cox analyses, and three different
molecular subtypes were identified. We next explored the
differential genes among different subtypes. The differential
gene volcano map of C1 vs. other subtypes contained 271
down-regulated genes and 1158 up-regulated genes (Suppl.
Fig. S1A). In the C2 vs. other subtype differential gene
volcano map, 341 down-regulated genes and 89 up-
regulated genes were determined (Suppl. Fig. S1B). In
the C3 vs. others differential gene volcano map, 494

down-regulated genes and 59 up-regulated genes were
noted (Suppl. Fig. S1C).

Furthermore, by analyzing the functional enrichment of
DEGs in C3 vs. others, C1 vs. others, and C2 vs. others, it was
seen that the DEGs of the C1 subtype were significantly
enriched in some signal pathways related to metastasis and
invasion, such as focal adhesion, collagen-containing
extracellular matrix, extracellular matrix, and organization
(Suppl. Fig. S1D). In the C2 subtype, drug metabolism-
cytochrome P450, antimicrobial humoral response, and
other pathways related to drug metabolism and immunity
were enriched (Suppl. Fig. S1E). Further, the cell cycle,
chemokine receptor binding, chromosome segregation, and
other pathways were enriched in the C3 subtype (Suppl.
Fig. S1F).

Determination of key natural killer cell genes
We selected 1565 genes finally by identifying differential genes
among molecular subtypes in the previous analysis. Following
this, a univariate Cox regression analysis was performed to
examine DEGs across various subtypes. We discovered a
total of 448 genes with a larger influence on GC patient
prognosis (p0.05), including 407 risk genes and 41
protective genes (Suppl. Fig. S2A). To reduce the number of
genes in the suggested risk model, the 448 genes with a
significant relation to GC prognosis were further

FIGURE 4. Channel differences in the various datasets and molecular typing. (A) Bubble diagram of the Gene Set Enrichment Analysis (GSEA)
analysis results of C1 vs. C3 subtype in two gastric cancer (GC) datasets; (B) Bubble diagram of GSEA analysis results compared with different
molecular subtypes in The Cancer Genome Atlas-Stomach Adenocarcinoma (TCGA-STAD) dataset.
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compressed using Lasso regression. We first investigated the
modified trajectory of each independent variable. According
to the analysis, the proportion of independent variable
coefficients that decreased to zero increased as the lambda
value increased. The model was developed using 10-fold
cross-validation, and the CI for each lambda value was
explored. The model achieved an ideal level, as indicated in
the figure, when lambda = 0.0697. Therefore, 13 genes were
chosen as target genes for the subsequent step when the
value of lambda was 0.0697 (Suppl. Fig. S2B). Furthermore,
based on the 13 genes obtained in the Lasso analysis results,
stepwise multivariate regression analysis determined five NK
cell-related genes affecting prognosis: MATN3, SERPINE1,
ARHGEF39, VSNL1, and ENTPD2 (Suppl. Figs. S2C–S2D).

Designing and verifying the proposed risk model
Based on the formula described by the RS of these samples, the
RS of NK cell-related signatures for each sample were calculated
and normalized. The results of the RS distribution of patients in
the TCGA-STAD dataset indicated that the RS-high samples
had a poor prognosis (Fig. 7A). Additionally, the classification
effectiveness of the prognosis prediction at 1 year, 2 years,
and 3 years was examined, correspondingly, and the model
showed a higher AUC area (Fig. 7B). Finally, groups with RS
values below 0 were classified as low risk, whereas those with
RS values over 0 were classified as high risk. The KM curve
was then created that demonstrated the highly significant
differences between the RS-high and RS-low groups. Of the
173 samples divided into the RS-high groups and the 164

FIGURE 5. The proportion of immune cell components in two different gastric cancer (GC) datasets. (A) Difference in the scores of 22
immune cells in The Cancer Genome Atlas-Stomach Adenocarcinoma (TCGA-STAD) dataset among the molecular subtypes; (B)
Differences in the ESTIMATE immune infiltration among the molecular subtypes in TCGA-STAD; (C) Differences in the scores of the 22
immune cells in GSE62254 between the molecular subtypes; (D) Differences in the ESTIMATE immune infiltration between the molecular
subtypes in the GSE62254 dataset; (E) Differences in scores of seven inflammatory-related gene clusters among different molecular subtypes in
TCGA-STAD; (F) Differences in scores of seven inflammatory-related gene clusters among different molecular subtypes in GSE62254. ns p >
0.05; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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samples included in the RS-low groups, patients with higher RS
had worse OS in the training dataset (Fig. 7C). We then
confirmed the reliability of the clinical prognostic model of

the NK cell-related gene signature by testing it in the
GSE62254 and GSE15459 datasets. The same formula was
used to determine the RS for patients. Similar findings to

FIGURE 6. The differences in the immunotherapy response level among various molecular subtypes. (A) Differences in the expression of
immune checkpoint genes between various molecular subtypes; (B) Differences in the “response to interferon-gamma (IFN-gamma)”
between various molecular subtypes; (C) Differences in the expression of the interferon-gamma (INFG) gene in various subtypes; (D)
Differences in the “cytolytic activity” between various subtypes; (E) The difference in the “T cell inflamed GEP score” among different
molecular subtypes; (F) The difference in the Tumor Immune Dysfunction and Exclusion (TIDE) scores among different subtypes; (G)
Box plots for the calculated half maximal inhibitory concentration (IC50) values for different drugs like paclitaxel, cisplatin, docetaxel,
and 5-Fluorouracil in The Cancer Genome Atlas-Stomach Adenocarcinoma (TCGA-STAD) dataset. ns p > 0.05; **p < 0.01; ***p <
0.001; ****p < 0.0001.
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those of the training set were seen in the verification analysis.
While the RS-high had a bad prognosis, the prognosis of the
RS-low was good (Figs. 7D–7G).

Expression of the risk score in different clinicopathological
characteristics
Analysis of the distribution of the RS among the clinical
pathological characteristic groups in the TCGA-STAD
dataset showed that patients with the late-clinical stage
displayed a significantly higher RS than those at the early
clinical stage. In addition, the results showed that patients
younger than 60 years old had higher RS (Suppl. Fig. S3A).

Further, according to the findings, the C1 molecular subtype
had a much greater RS than the C3 molecular subtype,
which had a better prognosis. In addition, the RS-high
group included a majority of the C1 molecular subtypes
(Suppl. Fig. S3B). We next compared the prognostic
differences in the high- and low-risk groups with regard to
different clinical pathological characteristics determined in
the TCGA-STAD dataset. The results revealed that the risk
group also had favorable results in different clinical groups,
implying the reliability of the risk group (Suppl. Fig. S3C).
At the same time, the RS differences among various clinical
attributes in the GSE62254 cohort were also compared. It

FIGURE 7. Construction of the prognostic model by risk genes. (A) The expression of the risk score (RS), overall survival (OS) status, OS
duration, and necroptosis-linked genes in The Cancer Genome Atlas-Stomach Adenocarcinoma (TCGA-STAD) dataset; (B) Receiver
Operating Characteristics (ROC) curves and the area under the curve (AUC) classified by the RS in TCGA-STAD; (C) KM curve
distribution of the RS in TCGA-STAD; (D–E) ROC curves and the KM survival curve of the RS in GSE62254; (F–G) ROC curves and KM
survival curves of RS in the GSE15459 dataset.
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was seen that a higher clinical grade was related to a higher RS.
In addition, the RS variations in the different molecular
subtypes were compared, and the distribution of molecular

subtypes and risk types were determined. The RS model
proposed in this study also showed robust working in the
GSE62254 cohort.

FIGURE 8. Differences in the immune infiltration level among the different risk score (RS) groups. (A) The proportion of immune cell
components in The Cancer Genome Atlas-Stomach Adenocarcinoma (TCGA-STAD) dataset; (B) Correlation analysis between 22 immune
cell components in TCGA-STAD and the RS; (C) The proportion of immune cell molecules assessed using the ESTIMATE tool in TCGA-
STAD; (D) The top 10 pathways with the most significant differences between RS-high and RS-low groups; (E) The correlation analysis
results between the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and the RS where the correlation with RS was greater
than 0.4. ns p > 0.05; **p < 0.01; ****p < 0.0001.
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Immune infiltration/pathway characteristics among risk score
groups
We subsequently analyzed the TME in patients of the
different RS groups. In the low- and high-risk groups in
the TCGA-STAD dataset, the relative abundance of the 22
different immune cells was compared. It was observed that
both the RS groups showed significant differences in the
abundance of immune cells (Fig. 8A). Furthermore, the
relation of these 22 immune cell components with the RS
was analyzed. It was found that the RS was significantly
and negatively associated with the resting NK cells but was
positively related to the M2 macrophages (Fig. 8B). We
used ESTIMATE to assess the immune cell infiltration. The
high-RS group showed a higher immune infiltration
(Fig. 8C) compared to the low-RS group. For assessing the
correlation between the RS and the biological functions of
various samples, the expression profiles in the TCGA-
STAD were selected and analyzed using the ssGSEA. The
results indicated that the RS-high category was significantly
enriched in several EMT-related pathways, including

HALLMERK_TGF_BETA_SIGNALING, HALLMARK_
IL2_STAT5_ SIGNALING, etc. (Fig. 8D). The correlation
between the enrichment score of the functions and RS was
then estimated and the functions with a correlation >0.4
were chosen. We noted that the RS was positively
correlated with cell cycle-linked pathways (Fig. 8E).

Differences in immunotherapy and chemotherapy among risk
score groups
We found that the T-cell-informed GEP score was
significantly increased in the RS-high group (Fig. 9A).
Simultaneously, the RS-high subtype also showed a
significantly enhanced IFN-γ response (Fig. 9B). The
results indicated no significant differences in the CYT
scores that were used for assessing the cytotoxicity between
the risk groups (Fig. 9C). We then evaluated a few
representative immune checkpoint molecules, and no
differential expression between CTLA4 and PD-L1 in terms
of the risk resistance was found (Fig. 9D). TIDE was used
for assessing the probable clinical effects of immunotherapy

FIGURE 9. Differences in the immunotherapy response level among different RS groups. (A) The differences in “T cell inflamed gene
expression profile (GEP) score” among different molecular subtypes; (B) Differences in “response to interferon-gamma (IFN−γ)” among
different molecular subtypes; (C) The differences in “cytolytic activity” among different molecular subtypes; (D) The differences in the
expression levels of the immune checkpoint genes among various molecular subtypes; (E) The differences in direct Tumor Immune
Dysfunction and Exclusion (TIDE) analysis among different risk groups; (F) Box plots for the calculated half-maximal inhibitory
concentration (IC50) values for traditional chemotherapy drugs like paclitaxel, cisplatin, docetaxel, and 5-fluorouracil in The Cancer
Genome Atlas-Stomach Adenocarcinoma (TCGA-STAD) dataset. ns p > 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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in the defined risk group. It was seen that the RS-high
subtype had a high TIDE score, indicating that the RS-high
subtype was more likely to escape from traditional
immunotherapy. In addition, it was also noted that the RS-
high molecular subtype had the highest exclusion and
dysfunction scores (Fig. 9E). Further, the responses of

different RS groups in the TCGA-STAD cohort were also
analyzed against conventional chemotherapy drugs like
paclitaxel, cisplatin, docetaxel, and 5-fluorouracil. We
found that the RS-low was more sensitive to the
chemotherapy drugs cisplatin and docetaxel on the whole
(Fig. 9F).

FIGURE 10. The risk score (RS) was the best influencing prognostic factor as determined by the decision tree. (A) Patients with complete data
like age, RS, gender, and TNM stages were employed for designing the overall survival (OS) decision tree for optimizing the risk stratification;
(B) Significant variations in the OS values were noted among the four risk subgroups; (C–D) Comparative analysis among different groups;
(E–F) Univariate and multivariate Cox analysis of RS and clinicopathological characteristics; (G) Nomogrammodel; (H) Calibration curves for
the proposed nomogram for the OS duration of 1, 3, and 5 years; (I) Decision curves of the proposed nomogram model. (J) ROC analysis of
nomogram, RS, and clinical features.
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The risk score further improved the prognostic model and
survival prediction in combination with the clinical and
pathological characteristics
The decision tree was constructed according to the clinical
variables, including age, gender, TNM stage, pathological
information, and the RS of patients in TCGA-STAD. We
found that four different risk subgroups could be identified
using the decision tree, among which RiskType was the
most powerful prognostic factor, and the four risk groups
showed significant differences in their OS rates (Figs. 10A–
10B). Patients with RS-low scores were included in the risk
groupings “Lowest,” “Low,” and “Mediate,” which had
poorer prognoses. Additionally, disparities in the
distribution of the molecular subtypes in the different risk
categories were observed, with the molecular subtypes C1
and C2 of the “High” risk subgroup accounting for the
majority of these variances (Figs. 10C–10D). The findings of
the univariate Cox analysis of RS and clinicopathological
characteristics (HR = 1.72, 95% CI: 1.45–2.04) and the
multivariate Cox analysis (HR = 1.72, 95% CI: 1.44–2.05)
revealed that the RS was the most important prognostic
factor (Figs. 10E–10F). A nomogram combining the RS with
other clinicopathological features was developed to quantify
the survival probability and risk assessment of the GC
patients. Again, RS showed the greatest effect on the
survival rate prediction (Fig. 10G). Furthermore, the
calibration curve was plotted. For three calibration points at
1 year, 2 years, and 3 years, the prediction calibration curve
and the standard curve results were comparable, indicating
a strong prediction by the nomogram (Fig. 10H). Further
evaluation of the reliability of the model was reflected by
DCA, and the RS and nomogram had advantages over the
extreme curve that were much greater. When compared to
other clinicopathological variables, the nomogram and the
RS had the highest potential in survival prediction
(Fig. 10I). The ROC analysis showed that the 1-, 2- and
3-year AUC of the nomogram had the highest AUC in the
1-, 2- and 3-year ROC analysis (Fig. 10J).

Discussion

In this study, three molecular subtypes with distinct
prognostic impacts, pathogenic aspects, pathways,
mutational differences, and immunological properties were
identified using NK cell-related genes using consistent
clustering. Subsequently, a signature of 5 genes was
constructed, which was highly robust, unrelated to
clinicopathological traits, and had a consistent prognostic
impact across independent datasets. The RS was integrated
with clinicopathological variables to further enhance the
prognostic model and survival prediction.

According to reports, clinicopathological factors such as
tumor volume, clinical stage, lymphatic and vascular
infiltration, and lymph node metastases were all
substantially correlated with NK cell activity in GC
(Takeuchi et al., 2001). Further, significantly less NK cell
infiltration within the tumor was linked to a lower chance of
survival and a faster course of the disease in GC patients
(Li et al., 2016, Peng et al., 2017). Additionally, it was

demonstrated that the frequency of NK cell apoptosis was
correlated with the advancement of GC and was
considerably greater in GC patients (21.3% ± 11.6%) than in
healthy controls (11.2% ± 5.2%; p = 0.0016) (Saito et al.,
2013). In another report, patients with gastric and colorectal
cancer had fewer NK cells in contrast to patients without
liver metastases (10.1% ± 11.6% vs. 16.6% ± 8.9%, p =
0.039) (Gulubova et al., 2009). Further, the NK cell
percentage and NK cell activity in the blood were
significantly higher after gastrectomy (Wang et al., 2013).
Several studies have also uncovered prognostic models for
NK cells in several cancers, including colorectal cancer
(Shembrey et al., 2022), head and neck cancer (Chi et al.,
2022), and lung adenocarcinoma (Song et al., 2022). They
have been effective in predicting prognosis, the immune
microenvironment and immunotherapy. Our study is the
first to use NK cells to construct two molecular subtypes as
well as a 5-gene signature, which was effective in predicting
prognosis, immunotherapy, and the immune
microenvironment in GC.

The five genes, including matn3, serpine1, arhgef39,
vsnl1, and entpd2 were employed to construct a gene
signature for GC. Previous research has shown that
MATN3 is found in matrices produced by cultured
chondrosarcoma cells and is involved in the development
of cartilage and bone (Vincourt et al., 2008). Further,
MATN3 mutations were associated with common bone
diseases and rare dyschondroplasia (Dasa et al., 2019,
Mabuchi et al., 2004). Furthermore, some studies have
demonstrated a marked dysregulation of MATN3 in a
variety of tumors, such as ductal adenocarcinoma of the
pancreas and osteosarcoma (Ding et al., 2020, Yiqi et al.,
2020). SERPINE1 was found to be noticeably overexpressed
in a range of tumor tissues using high-throughput
sequencing technologies (Huang et al., 2021). Additionally,
increased SERPINE1 activity encouraged the spread of GC
(Li et al., 2019), and high SERPINE1 expression may be a
sign of poor prognosis for GC (Chen et al., 2022).
Furthermore, ARHGEF39 expression was elevated and
connected to GC cell proliferation and migration,
according to a study (Wang et al., 2018). Lauren’s
categorization, lymph node metastases, distant metastasis,
TNM stage, and prognosis in GC were all positively linked
with VSNL1 expression (Dai et al., 2020). Notably, the
overexpression of ENTPD2 was an indicator of a poor
prognosis in HCC (Oura et al., 2021). These data implied
that the gene signature constructed using these five genes
had a definite value and feasibility.

Though we applied bioinformatics tools on a large
sample set to find NK-associated subgroups of GC with
substantial prognostic differences and a prediction model,
we must acknowledge limitations in our work. We intended
to lay a larger focus in the future on research that was both
fundamentally experimental and functionally in-depth.
When separating the molecular subtypes, we did not take
into account additional factors. This is because the samples
lacked critical clinical follow-up information, most notably
diagnostic details, such as whether or not the patients had
other health issues.
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Conclusions

We first used NK cell-related genes to reliably group stable
molecular subtypes. These three molecular subgroups
differed in terms of prognosis, clinical features, pathway
characteristics, mutation attributes, and immunological
characteristics. Subsequently, using DEGs analysis among
molecular subtypes and Lasso analysis, five genes associated
with NK cell prognosis were chosen. Furthermore, our RS
model was established in line with NK cell prognosis-related
genes, which had a high prediction accuracy and survival
prediction capacity. It was also robust, irrespective of
clinicopathological characteristics, and had a consistent
prognostic impact across various datasets. Finally, the RS
was integrated with clinicopathological variables to improve
the prognostic model and prediction of survival for GC.
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Supplementary Materials

FIGURE S1.Differential genes and enrichment analysis among different subtypes. (A) Volcano diagram of C1 vs. other differentially expressed
genes (DEGs) in The Cancer Genome Atlas-Stomach Adenocarcinoma (TCGA-STAD) dataset; (B) Volcano diagram of C2 vs. other DEGs in
TCGA-STAD; (C) Volcano diagram of C3 vs. other DEGs in TCGA-STAD; (D) Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) functional enrichment analysis for the C1 vs. other differentially up-regulated genes in TCGA-STAD; (E) GO and KEGG
functional enrichment analysis of C2 vs. other differentially up-regulated genes in TCGA-STAD; (F) GO and KEGG functional enrichment
analysis of C3 vs. other differentially up-regulated genes in TCGA-STAD.
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FIGURE S2. Identifying key risk genes. (A) 448 promising candidates were detected amongst the differentially expressed genes (DEGs); (B)
The trajectory of each independent variable with lambda; (C) CI under lambda; (D) Distribution of Lasso coefficients of the natural killer (NK)
cell-related gene signature.
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FIGURE S3. Differences in clinical characteristics among different risk score (RS) groups. (A) Differences in the risk score (RS) among
different clinicopathological groups in The Cancer Genome Atlas-Stomach Adenocarcinoma (TCGA-STAD); (B) RS differences among
different molecular subtypes and differences between molecular subtypes and RS groups in TCGA-STAD; (C) Kaplan Meier (KM) curves
of RS among different clinicopathological groups and between the low and high-risk groups in the TCGA-STAD dataset.
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