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Abstract: Background: Despite progress in therapeutic strategies, treatment failure in hepatocellular carcinoma (HCC)

remains a major challenge, resulting in low survival rates. The presence of bacteria and the host’s immune response to

bacteria can influence the pathogenesis and progression of HCC. We developed a risk model based on bacterial

response-related genes (BRGs) using gene sets from molecular signature databases to identify new markers for

predicting HCC outcomes and categorizing patients into different risk groups. Methods: The data from the Cancer

Genome Atlas (TCGA) portal was retrieved, and differentially expressed BRGs were identified. Uni- and multivariate

Cox regression and least absolute shrinkage and selection operator (LASSO) LASSO analyses were executed to

develop the prognostic risk model. Key contributor to the prognostic model was identified, and the results were tested

by using experimental assays in HCC cell lines. Results: Multivariate analysis demonstrated an independent

prognostic factor of 12-BRG signature in HCC patients. The low-risk group had better overall survival with

significantly lower tumor mutation burden (TMB). The risk scores were negatively correlated with the presence of

tumor-infiltrating immune cells. In an effort to find the key contributor of the 12-BRG signature, we found polo like

kinase1 (PLK1) had the best accuracy with 1-, 3-, and 5-year AUC of 0.72, 0.66, and 0.65, respectively. Both PLK1

inhibitor Volasertib and the knockdown of the PLK1 gene resulted in diminished viability in HCC cell lines. The

combination of PLK1 inhibition with low-dose chemotherapy exhibited an amplified effect of the treatment.

Conclusion: To date, there have been no reports of BRG biomarkers in HCC, and this study represents for the first

time that a 12-BRG signature has the potential to predict the survival of HCC.

Introduction

Hepatocellular carcinoma (HCC) stands as a tough global
health challenge, characterized by its aggressive nature
and dismal prognosis which ranked as the seventh most
prevalent cancer and the fourth major cause of
cancer-related mortality worldwide, primarily arises from

liver cirrhosis triggered by hepatitis viruses and alcohol
consumption [1,2]. Despite advancements in treatments
such as surgery, radiation therapy, immunotherapy, and
targeted therapy [3], the prognosis for HCC patients
remains frustrating owing to its high rates of multiple drug
resistance, metastasis, and recurrence [4,5]. The Barcelona
Clinic Liver Cancer (BCLC) staging system has been used to
categorize risk groups and forecast the HCC patient’s
prognosis [1]; nevertheless, as this system primarily focuses
on clinical factors and does not incorporate the molecular
heterogeneity of the disease, there has been an increasing
desire to investigate potential molecular prognostic markers.

*Address correspondence to: Fatemeh Fallah, dr_fallah@yahoo.com;
Davood Bashash, david_5980@yahoo.com
Received: 08 July 2024; Accepted: 02 October 2024;
Published: 30 December 2024

BIOCELL echT PressScience
2024 48(12): 1781-1804
ARTICLE

Doi: 10.32604/biocell.2024.055848 www.techscience.com/journal/biocell

Copyright © 2024 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.

mailto:dr_fallah@yahoo.com
mailto:david_5980@yahoo.com
https://www.techscience.com/journal/BIOCELL
https://www.techscience.com/
http://dx.doi.org/10.32604/biocell.2024.055848
https://www.techscience.com/doi/10.32604/biocell.2024.055848


Emerging research has shed light on the profound
influence of the tumor microenvironment (TME) on HCC
progression and patient survival. This complex ecosystem,
teeming with diverse cell types and signaling molecules, is
occasionally influenced by the intricate interplay between
cancer cells and the surrounding bacteria. These tiny
microorganisms may play intricate roles in tumorigenesis,
progression, and therapy response within the local
environment [6,7]. There are a substantial number of
research have unveiled the presence of abundant bacteria in
various tumor types such as breast [8], lung [9], ovarian
[10], pancreatic [11], oral [12], and bladder [13] tumors.
This dynamic relationship, involving a complex interplay of
signaling pathways and immune responses, shapes the
tumor’s heterogeneity and ultimately dictates its behavior.

Recently the gut microbiota has garnered interest in the
study of HCC development as there is growing recognition
of the bidirectional communication between the gut and the
liver [14,15]. When the gut experiences injury or
inflammation, it can become permeable, allowing the
migration of microbes to the liver. The movement of
bacteria is facilitated by metabolites and components
associated with the microbiota, causing the activation of a
series of signaling pathways—all of which are pivotal in the
progression of HCC [16]. A general overview of HCC
pathogenesis associated with bacteria is depicted in Fig. 1.
To date, no reports of bacterial response-related biomarkers
in HCC have been documented, and this study represents
for the first time that a 12-BRGs prognostic signature has
the potential to predict the survival of this malignancy and
our findings hold the promise of a novel survival prognostic
model for HCC patients, empowering clinicians to stratify
patients into distinct risk groups, personalize treatment
strategies, and ultimately improve patient outcomes. This
study represents a significant step towards a more
personalized and effective approach to HCC management.

Methods

Data collection
To gather the transcription profiles and clinical data of HCC
patients, we employed the R package “TCGAbiolinks” to
retrieve the data from the Cancer Genome Atlas (TCGA)
portal located at (https://portal.gdc.cancer.gov/) (accessed on
01 October 2024), in which 50 samples classified as normal
and 374 samples were cancerous. Additionally, to validate
the signature, we procured another microarray dataset
(GSE14520) from the renowned Gene Expression Omnibus
(GEO) database, accessible at (https://www.ncbi.nlm.nih.
gov/geo/) (accessed on 01 October 2024). To enrich our
study with an inclusive list of genes associated with bacterial
response, we used the Molecular Signatures Database
(MSigDB) database (https://www.gsea-msigdb.org/gsea/
msigdb/) (accessed on 01 October 2024). By conducting a
meticulous search using the keywords “bacteria &
bacterium”, we obtained a comprehensive compilation of
these genes which can be found in Table S1.

Screening of DEGs
Once we normalized the TCGA dataset, we tried to uncover
the crucial bacterial response-related genes (BRGs) that
played a pivotal role in the progression of HCC. To this
end, we employed the “limma” package [17] to precisely
identify differentially expressed genes (DEGs) among
cancerous and normal samples. Our criteria for significance
were set as genes with |log fold change (FC)| values
exceeding 2 and adjusted p-values below 0.01. By merging
the BRGs extracted from the MSigDB database, we
successfully identified a cohort of differentially expressed
bacterial response-related genes (DE-BRGs) for further
analysis and exploration.

Functional enrichment analyses
To delve deeper into the potential molecular mechanisms
associated with the DE-BRGs, we conducted comprehensive
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analyses. These analyses were
carried out with the aid of the “cluster Profiler” R package
[18] which serves as a powerful tool for investigating
functional associations. We deemed an adjusted p-value
below 0.05 to be indicative of statistical significance,
allowing us to identify meaningful and biologically relevant
enrichments in the GO and KEGG pathways related to the
DE-BRGs.

Constructing a prognostic model according to risk score and
model validation
In this stage, we embarked on a particular process to construct
a prognostic prediction model founded on a risk score. First,
we excluded normal samples and also samples lacking data
on survival, focusing solely on the remaining TCGA-liver
hepatocellular carcinoma (TCGA-LIHC) cohort. To ensure
our model’s robustness, we divided the cohort into training
and testing sets by chance. The training cohort served as
our foundation for identifying prognostic BRGs and
establishing the prognostic risk model. To validate the
prognostic significance, we turned to the testing set. To
identify potential DE-BRGs with prognostic value, we
subjected the screened DE-BRGs to univariate Cox
regression analysis, employing the powerful “survminer”
and “survival” R packages. This analysis allowed us to
pinpoint the genes that hold immense potential in
predicting patient outcomes. To further refine our model
and mitigate overfitting, we employed the cutting-edge
technique of least absolute shrinkage and selection operator
(LASSO) penalized Cox proportional hazards regression.
This technique, implemented using the “glmnet” R package
[19,20], enabled us to select the optimal genes for
constructing the model.

Eventually, by using gene expression levels the risk score
for each HCC patient was measured, and the corresponding
multivariate Cox regression coefficients. The calculation of
the risk score involved a precise formula as follows:

Risk score = (expression of first gene × coefficient of first
gene) + (expression of second gene × coefficient of second
gene) + ... + (expression of last gene × coefficient of last gene).

1782 ATIEH POURBAGHERI-SIGAROODI et al.

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.gsea-msigdb.org/gsea/msigdb/
https://www.gsea-msigdb.org/gsea/msigdb/


To validate the model, 30% of TCGA-LIHC samples and a
separate validation dataset (the GSE14520 dataset) were utilized
as the internal and external test sets, respectively. In addition,
the Kaplan-Meier curves analysis was also performed to
strengthen the predictive capability of the risk signature.

Evaluating the established bacterial response-related signature
To assess the true potential of the established bacterial
response-related signature, our first task was to determine
the optimal cut-off value for the risk score. To accomplish
this, we employed the “surv_cutpoint” function from the
‘Survminer’ package, allowing us to identify the ideal

threshold for risk stratification. To gauge the prognostic
value of the DE-BRG model, we turned to the timeless
technique of Kaplan-Meier analysis. With the help of the
powerful “survminer” and “survival” R packages, we
examined the survival outcomes of patients based on their
risk scores.

To further assess the sensitivity and specificity of our
signature, we employed receiver operating characteristic
(ROC) curve analyses. Specifically, we focused on the 1-, 3-,
and 5-year time points and calculated the area under the
curve (AUC) employing the reliable “survivalROC” R
package [21]. These analyses provided valuable insights into

FIGURE 1. General overview of HCC pathogenesis associated with bacteria. M2 macrophages employ TGF-β to induce the production of
regulatory T cells (Tregs), thereby inhibiting the function of cytotoxic T lymphocytes (CTLs), natural killer (NK) cells, and dendritic cells
(DCs). Furthermore, the interaction between PD-1 on CTLs and PD-L1 on tumor cells can deactivate these immune cells that are vital in
the fight against tumors. Accordingly, cancer-associated fibroblasts (CAFs) contribute to the development of HCC by promoting the
differentiation of tumor-associated neutrophils (TANs) and myeloid-derived suppressor cells (MDSCs), which subsequently suppress the
activity of NK cells. Dysbiosis, an imbalance in the gut microbiota, can disrupt the integrity of the gut barrier and lead to the release of
specific metabolites such as microbe-associated molecular patterns (MAMPs) like LPS (lipopolysaccharide) and bile acid (BA). The
conversion of primary bile acids into secondary bile acids by the gut microbiota can lead to reabsorption in the intestine and conjugation
in the liver, resulting in inflammation, toxicity, and inhibition of apoptosis. Moreover, the binding of MAMPs such as LPS to Toll-like
receptor 4 (TLR4) on hepatocytes can trigger signaling pathways that encourage epithelial-mesenchymal transition (EMT), angiogenesis,
and inflammation (The figure was created using Photoshop CS6).
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the discriminatory power of our risk signature. To ascertain
the independent prognostic significance of the risk score, as
well as the clinicopathological features such as age, sex, and
TNM stage, we conducted both univariate and multivariate
Cox regression analyses. These analyses allowed us to assess
the individual contributions of each factor in predicting
patient outcomes. Additionally, to provide a deeper
understanding of the relationship between the risk signature
and various clinicopathological features, we employed the
Wilcoxon test to explore potential differences in
clinicopathological characteristics among patients stratified
by their risk scores.

Illuminating the role of tumor-infiltrating immune cells (TIICs)
To gain deeper insights into the intricate interplay between
the tumor microenvironment and our bacterial response-
related risk signature, we embarked on an investigation of
tumor-infiltrating immune cells (TIICs). Leveraging the
power of the CIBERSORT method (https://cibersortx.
stanford.edu/) (accessed on 01 October 2024), by using gene
expression profiles, we successfully determined the cellular
composition of intricate tissues. Additionally, using the
CIBERSORT method, we calculated the immune cell
infiltration status for each sample to reveal the presence and
abundance of various immune cell types within the tumor
microenvironment. To explore the association between
immune infiltrating cells and risk scores, we also conducted
the Spearman correlation analysis. By assessing the
correlation between the abundance of different immune cell
types and the calculated risk scores, we aimed to uncover
potential associations and unveil the impact of immune cell
infiltration on the risk signature.

Predicting overall survival (OS) by nomogram construction
The “rms” R library was used to develop a nomogram for
estimating overall survival in HCC patients, including age,
sex, stage, TNM classification, and the prognostic risk score
model. To assess the accuracy of the nomogram, time-
dependent calibration curves were generated to evaluate
its reliability.

Mutation analysis
To obtain comprehensive mutation data, we accessed the
tumor mutation burden (TMB) and Mutation Annotation
Format (MAF) datasets from the esteemed TCGA portal by
using the “maftools” R package [22]; this tool enabled us to
dissect and interpret the genetic alterations present within
the HCC samples. By leveraging various analytical
techniques offered by the “maftools” package, we gained
valuable insights into the mutational profile of HCC,
including the types of mutations, their frequency, and
potential driver mutations.

Identification of key contributors based on the LIHC prognosis
model
LIHC samples of TCGA were divided into low- and high-
expression based on each gene’s optimal cutoff which was
calculated by the ROC curve. To assess the prognostic value
of each gene, the Kaplan-Meier analysis was performed
using “survminer” and “survival” R packages, and to

evaluate their sensitivity and specificity, the ROC curve
analyses of 1-, 3-, and 5-year were used, and the AUC was
calculated using “survivalROC” R package.

Construction of lncRNA-miRNA-mRNA regulatory axis
miRTargetLink (https://ccb-compute.cs.uni-saarland.de/
mirtargetlink2) (accessed on 01 October 2024), and also the
other database “miRTarBase” (https://mirtarbase.cuhk.edu.cn/
~miRTarBase/miRTarBase_2022/php/index.php) (accessed
on 01 October 2024) were applied to explore the miRNA
targets of the PLK1 gene. To investigate the lncRNA targets
of miRNA, we used DIANA-LncBase (https://diana.e-ce.uth.
gr/lncbasev3/interactions/) (accessed on 01 October 2024)
and RNAInter (http://www.rnainter.org/) (accessed on 01
October 2024). We also analyzed the expression and
prognostic values of miRNAs with Student’s t-test and
univariate Cox regression coefficient on the TCGA-LIHC
dataset.

Cell lines, reagents, WST-1 assay, and siRNA transfection
Huh7 (Japanese Collection of Research Bioresources Cell
Bank (JCRB)) and SNU449 (The American Type Culture
Collection (Manassas, VA, USA)) HCC cell lines were
cultivated in Dulbecco’s Modified Eagle’s Medium (DMEM,
Gibco (Thermo Fisher Scientific), #11965-092, Grand
Island, NY, USA) and Roswell Park Memorial Institute
1640 (RPMI 1640, Corning, #10041CV, Manassas, VA,
USA) medium, respectively, which enriched with antibiotics
(Antibiotic-Antimycotic (Anti-Anti), Gibco (Thermo Fisher
Scientific), #15240062, Grand Island, NY, USA), 10% fetal
bovine serum (Gibco (Thermo Fisher Scientific),
#16140071, Grand Island, NY, USA), and 2 mM l-
glutamine. The cells were grown in a controlled
environment with 5% CO2 at 37°C. Mycoplasma
contamination was detected using MycoAlert® Mycoplasma
Detection Kit (#LT07-318, Lonza, Inc., Houston, TX, USA).
To investigate the effect of PLK1 inhibition on HCC, the
cells were exposed to growing concentrations of a potent
inhibitor of PLK1 (Volasertib) (#A10135, Adooq
Bioscience, Irvine, CA, USA). To assess the inhibitory
effects of Volasertib on the metabolic activity of HCC cell
lines, the HCC cell lines were treated in 96-well plates
(5000 cells/per well). The following day, the cells were
exposed to ascending concentrations of the inhibitor for up
to 48 h. After removing the liquid medium, the cells were
incubated with WST-1 (Sigma-Aldrich, #11644807001,
Darmstadt, Germany) solution (5 μL). The resulting
formazan was dissolved using DMSO, and the absorbance
was measured using an ELISA reader (BioTek Synergy
HTX Multimode Reader, #S1LFA, Winooski, VT, USA).
To confirm the result of PLK1 inhibition, we also
investigated the effect of PLK1 siRNA on Huh7 and
SNU449 cells. The HCC cells were seeded at a density of 1
× 105 cells per well in 6-well plates and transfected with
the siRNAs (PLK1 siRNA, Thermo Fisher Scientific
(Ambion), #4390824, Austin, TX, USA) and AllStars
Negative Control, Qiagen, #1027281, Germantown, MD,
USA) using Lipofectamine RNAiMAX (Thermo Fisher
Scientific, #13778075, Austin, TX, USA) according to the
manufacturer’s instructions.
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Statistical analysis
All statistical analyses were performed using R software
(version 4.2.1; The R Foundation for Statistical Computing,
Vienna, Austria). Additionally, graphical representations
and data analysis were conducted using GraphPad Prism
(version 10.3.1.; GraphPad Software, San Diego, CA, USA).
To visualize the expression patterns of different genes or
variables, we employed the R package “pheatmap” [23] to
create heatmaps, allowing us to identify patterns, clusters,
and trends within our datasets. For the visualization of
differential gene expression, we utilized the “ggplot2”
package in R [24] to generate a volcano plot that is effective
in highlighting genes that display considerable changes in
expression between various groups, with the magnitude of
change represented on the x-axis and the statistical
significance on the y-axis. To analyze the overlap between
different sets of elements or datasets, we utilized the Venn
diagram tool available at the following URL: (https://
bioinformatics.psb.ugent.be/webtools/Venn) (accessed on 01
October 2024). The flowchart of the study is shown in
Fig. 2. All experimental tests were done in triplicate (n = 3).
Statistical significance was calculated using one-way
ANOVA (Dunnett’s multiple comparisons test) using
GraphPad Prism Software 10.3.1.

Results

Characteristics of patients
This study comprised a cohort of 50 normal samples and 374
samples of HCC; seven samples were excluded due to the lack
of survival information. The rest of the HCC samples were
randomly separated into two cohorts: training and testing
sets consisting of 257 and 110 samples, respectively. To
ensure comparability, we analyzed the clinical characteristics
of the samples in both train and test cohorts, as well as the
entire cohort. As detailed in Table S2, there are no

significant differences among the training, testing, and total
cohorts (p > 0.05); suggesting that the distribution of clinical
characteristics, such as age, sex, tumor grade, and other
relevant factors was similar between the training and testing
cohorts. By carefully considering the patients’ characteristics
and confirming the comparability of the training and testing
cohorts, we aimed to minimize potential biases and
confounding factors that could influence our subsequent
findings and interpretations.

Screening of DE-BRGs
To identify DEGs between normal and HCC samples, we
applied a significance threshold of adjusted p-value < 0.01
and | log2 (fold change) | > 2. Through this analysis, we
identified a total of 428 DEGs (Table S3) within the TCGA-
LIHC project dataset. These DEGs exhibited weighty
alterations in expression levels among normal and HCC
samples (Fig. 3A), indicating potential involvement in HCC
development and progression. Next, we integrated a set of
2509 BRGs into our analysis. By comparing the DEGs with
the BRGs, we identified 67 overlapped DE-BRGs (Fig. 3B),
eight of which were overexpressed in HCC samples in
comparison with normal samples, while 59 were
downregulated. The specific genes and their expression
changes can be found in Table S4.

To provide a visual representation of the expression
profiles of the DE-BRGs in normal and tumor samples, we
generated Fig. 3C; this heatmap highlights differences
between normal and tumor samples via illustration of the
expression levels of the DE-BRGs. The distinct expression
patterns observed in the heatmap further support the
potential involvement of these DE-BRGs in the development
and progression of LIHC. Then, by screening and
identifying DE-BRGs, we aimed to uncover specific bacterial
response-related genes that are dysregulated in HCC
samples to provide valuable insights into the interplay
between the host’s bacterial response and HCC pathogenesis.

FIGURE 2. The study’s flowchart.
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Functional enrichment analysis
To gain insights into the functional implications of 67
identified DE-BRGs, we performed functional enrichment
analysis. This analysis allowed us to uncover the biological
processes (BP), molecular functions (MF), components of
cells (CC), and signaling cascades influenced by these DE-
BRGs. For the biological process category, the most
significantly enriched term (adjusted p-value < 0.05) among

the DE-BRGs was “defense response to bacterium”;
suggesting that the host’s immune system may play a crucial
role in response to bacterial infections within the context of
HCC. In terms of molecular function, the enriched term was
“peptidoglycan binding”, indicating potential interactions
between the DE-BRGs and bacterial cell wall components.
Regarding cellular components, the term “blood
microparticle” emerged as the most enriched, further

FIGURE 3. Identification of DE-BRGs between HCC and normal samples. (A) Volcano plot of DEGs. (B) Venn diagram of the mutual genes
between HCC DEGs and BRGs. (C) The heatmap of DE-BRGs expression among normal and cancerous samples.

FIGURE 4. The most significant enriched Gene Ontology (GO) groups for the confirmed DE-BRGs.
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emphasizing on the involvement of circulating blood
components in the host’s response to bacterial stimuli. Fig. 4
and Table 1 provide an overview of the top eight highly
enriched terms for every single one of the 3 ontologies (BP,
MF, and CC). In addition to the functional enrichment
analysis, we conducted a pathway analysis using the KEGG
database. By analyzing the data from the TCGA cohort, we
identified three signaling pathways associated with the DE-
BRGs; the specific pathways and their relevance to LIHC
can be found in Table 2.

Development of prognostic prediction model according to risk
score
To develop a prognostic prediction model, we initially
performed a univariate Cox regression analysis using the
training cohort. This analysis aimed to identify DE-BRGs
that were meaningfully related to overall survival (OS) (p <
0.05). As a result, 21 DE-BRGs demonstrated significant
correlations with OS; detailed information can be found in
Table 3. To further refine the predictive gene set and
minimize overfitting, we utilized LASSO Cox regression
analysis; this analysis helped remove genes with huge
correlations and select the most informative and
independent predictors. Consequently, 12 DE-BRGs were
identified as potential predictors (Fig. 5A,B). Finally, we
employed multivariate Cox regression analysis using the
these DE-BRGs to construct the prognostic prediction
model. The coefficients obtained from the multivariate Cox
regression analysis are presented in Table 4. These
coefficients were then used to calculate the risk score for
every single one of the patients employing the subsequent
equation:

Risk score = (PLK1 exp. × 0.08319) + (NCAPG exp. ×
0.25369) + (VIPR1 exp. × −0.0514) + (SLC22A1 exp. ×
−0.0194) + (LCAT exp. × 0.00526) + (SFN exp. × 0.08608)
+ (FMO3 exp. × −0.057) + (ASS1 exp. × −0.03) + (FGB exp.
× −0.0212) + (ADAMTSL2 exp. × −0.0923) + (CD4 exp. ×
0.1876) + (JCHAIN exp. × −0.042).

In this formula, “exp.” denotes the expression quantity of
the respective gene. Each gene’s expression level is multiplied
by its corresponding coefficient, and the accumulation of these
products determines the risk score for each patient.

Verification of the prognostic prediction model
To validate the prognostic prediction model, we utilized both
the total and testing sets as internal validation datasets. The

TABLE 1

10 most weighty enriched GO groups for DE-BRGs (Adj. p-value <
0.05)

IDs Description Adj. p-value Count

Biological process

GO:0042742 Defense response to
bacterium

2.87E–14 19

GO:0031638 Zymogen activation 2.49E–06 7

GO:0050830 Defense response to gram-
positive bacterium

3.69E–06 8

GO:0006953 Acute-phase response 6.00E–06 6

GO:0031639 Plasminogen activation 8.89E–06 5

GO:0042730 Fibrinolysis 8.89E–06 5

GO:0019731 Antibacterial humoral
response

1.82E–05 6

GO:0002526 Acute inflammatory
response

2.32E–05 7

GO:0006959 Humoral immune response 2.32E–05 10

GO:0030195 Negative regulation of
blood coagulation

0.00012 5

Cellular component

GO:0072562 Blood microparticle 6.48E–09 10

GO:0009897 External side of plasma
membrane

2.27E–07 13

GO:0031093 Platelet alpha granule
lumen

2.75E–06 6

GO:0034774 Secretory granule lumen 2.75E–06 10

GO:0060205 Cytoplasmic vesicle lumen 2.75E–06 10

GO:0031983 Vesicle lumen 2.75E–06 10

GO:0062023 Collagen-containing
extracellular matrix

3.37E–06 11

GO:0031091 Platelet alpha granule 9.89E–06 6

GO:0071745 IgA immunoglobulin
complex

6.38E–05 3

GO:0035580 Specific granule lumen 0.000745 4

Molecular function

GO:0042834 Peptidoglycan binding 9.75E–05 4

GO:0030169 Low-density lipoprotein
particle binding

0.002495 3

GO:0005201 Extracellular matrix
structural constituent

0.002495 6

GO:0019838 Growth factor binding 0.005331 5

GO:0071813 Lipoprotein particle
binding

0.005331 3

GO:0071814 Protein-lipid complex
binding

0.005331 3

GO:0034987 Immunoglobulin receptor
binding

0.005331 4

GO:0005539 Glycosaminoglycan
binding

0.005331 6

GO:0003823 Antigen binding 0.008822 5

GO:0005520 Insulin-like growth factor
binding

0.048063 2

TABLE 2

Three remarkably enriched pathways for DE-BRGs (Adj. p-value <
0.05)

Fold
enrichment

Pathways Enrichment
FDR

Count

1 24.67099567 Complement and
coagulation cascades

0.000123263 5

2 8.932601881 Coronavirus disease 0.008172276 5

3 37.67933884 Arginine
biosynthesis

0.029013758 2
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HCC patients in all three sets were separated into low- and
high-risk groups according to an optimal cut-off determined
by a specific criterion. To evaluate the predictive capability
of the prognostic model, we examined the survival changes
between the low- and high-risk strata in each cohort
employing Kaplan-Meier curves analysis. The results
showed a noteworthy distinction in OS between the
predicted risk groups in all sets, with high-risk patients
demonstrating poorer outcomes (Fig. 6A–C). To further

assess the precision of the model, time-dependent ROC
curves were generated. The AUC values were calculated for
one-, three-, and five-year survival predictions. In the
training set, the AUC values were 0.770, 0.733, and 0.703,
respectively (Fig. 6D); indicating that the model has the
potential to predict the HCC patient’s survival accurately.
The AUC values of test and total cohort were also
demonstrated in Fig. 6E,F. Additionally, the spread of risk
scores and status of survival was analyzed, revealing that
patients with greater risk scores had a higher likelihood of
encountering unfavorable survival outcomes (Fig. 6G–L).

Of note, to validate the model externally, a separate
validation dataset (the GSE14520 dataset) was utilized; the
Kaplan-Meier curves analysis exhibited a more suitable
outcome for patients in the low-risk group, reinforcing the
predictive capability of the risk signature (Fig. 7). Overall, the
validation outcomes indicate that the prognostic prediction
model based on the bacterial response-related gene signature
shows satisfactory predictive performance in both internal
and external validation datasets, providing promising
potential for predicting the survival of HCC patients.

Assessment of the prognostic prediction model

Relation between the model and clinicopathological
characteristics
To further understand the clinical relevance of the prognostic
prediction model based on the 12-BRG risk score, we
examined the association between the risk score and various
clinicopathological characteristics of HCC patients.

The outcomes of the Wilcoxon rank sum test revealed a
substantial association between the 12-BRG risk score and
advanced clinical stage and T classification (p-value <
0.0001) (Fig. 8); highlighting that patients with higher risk
scores tend to have more advanced disease stages and larger
tumor sizes. The observed relation between the model’s risk
score and clinicopathological characteristics suggests that
the prognostic significance of the model may, at least partly,
be attributed to its correlation with these features.

Independency of the prognostic model
To assess the independent prognostic significance of the risk
score, univariable Cox regression analysis and multivariable

TABLE 3

Results of univariate cox model of 67 DE-BRGs

Coef. HR 95 CI p-value

PLK1 0.4 1.5 (1.20–1.80) 9.50E–06

NCAPG 0.39 1.5 (1.20–1.80) 4.30E–05

KIF4A 0.36 1.4 (1.20–1.70) 7.00E–05

TOP2A 0.29 1.3 (1.20–1.50) 0.00013

VIPR1 −0.37 0.69 (0.55–0.87) 0.0015

SLC22A1 −0.11 0.9 (0.84–0.96) 0.0015

LCAT −0.19 0.83 (0.73–0.93) 0.0019

SFN 0.14 1.1 (1.00–1.30) 0.0024

FMO3 −0.11 0.9 (0.83–0.97) 0.0047

ASS1 −0.18 0.83 (0.73–0.96) 0.01

FGA −0.096 0.91 (0.84–0.98) 0.015

FGB −0.091 0.91 (0.85–0.98) 0.015

ADAMTSL2 −0.14 0.87 (0.77–0.97) 0.015

CD4 −0.22 0.81 (0.68–0.96) 0.016

GSTZ1 −0.19 0.83 (0.71–0.97) 0.016

TTC36 −0.18 0.83 (0.72–0.97) 0.02

PBLD −0.14 0.87 (0.77–0.98) 0.027

JCHAIN −0.12 0.89 (0.80–0.99) 0.032

FGG −0.083 0.92 (0.85–0.99) 0.036

MOGAT2 −0.093 0.91 (0.84–0.99) 0.037

CPEB3 −0.19 0.83 (0.69–0.99) 0.041

Coef.: Coefficient; HR: Hazard ratio; CI: Confidence interval.

FIGURE 5. Development of prognostic prediction model. (A) LASSO coefficients of the 21 DE-BRGs. (B) The prognostic risk score model
construction.
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TABLE 4

Results of coefficients and multivariable Cox model of 12 BRGs

Coef. HR HR.95Low HR.95High p-value

PLK1 0.08319 1.08675 0.7239 1.632 0.688

NCAPG 0.25369 1.28878 0.8899 1.866 0.179

VIPR1 −0.05135 0.94995 0.7226 1.249 0.713

SLC22A1 −0.01936 0.98083 0.9007 1.068 0.656

LCAT 0.00526 1.00527 0.8583 1.177 0.948

SFN 0.08608 1.08990 0.9812 1.211 0.108

FMO3 −0.05702 0.94458 0.8499 1.050 0.290

ASS1 −0.03002 0.97043 0.8161 1.154 0.734

FGB −0.02124 0.97898 0.8789 1.090 0.699

ADAMTSL2 −0.09229 0.91184 0.8029 1.036 0.155

CD4 −0.09229 0.82894 0.6575 1.045 0.113

JCHAIN −0.04197 0.95890 0.8453 1.088 0.514

Coef.: Coefficient; HR: Hazard ratio.

FIGURE 6. Assessment of the bacterial response-related signature across total, training, and testing datasets. (A–C) Kaplan-Meier curves
illustrating the differences between high-risk and low-risk groups within the training, testing, and combined datasets. (D–F) ROC curve
analysis to evaluate the performance of the prognostic prediction model in the training, testing, and overall datasets. (G–L) Analysis of risk
score distribution alongside survival status in the training, testing, and overall datasets.
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Cox regression analysis were executed. The results indicated
that advanced clinical stage, T and M stages, and a high-risk
score were associated with unfavorable OS outcomes.
However, the most significant association with OS was
observed for the risk score in the multivariable Cox
regression analysis (HR = 3.378, p = 1.99e–08) (Fig. 9);
suggesting that the risk score derived from the BRG
signature has an independent prognostic value in HCC
patients irrespective of disease stage, age, and TNM stages.
In other words, even after accounting for these traditional
clinicopathological factors, the risk score remains a
significant predictor of patient survival.

Relation between the risk score and TIICs
The relation between the risk score derived from the BRG
signature and TIICs was investigated to gain insights into
the tumor immune microenvironment of HCC patients. The

analysis revealed significant alterations in the proportions of
various immune cell subsets between the high- and low-risk
groups. Specifically, the high-risk group exhibited a
significant decrease in the proportions of resting CD4+

memory T cells (p = 5.504e–05), γδ-T cells (p = 0.0007),
resting dendritic cells (p = 0.0386), M1 macrophages (p =
0.000127), and resting mast cells (p = 0.0001) (Fig. 10A,B).
Furthermore, the Spearman correlation analysis
demonstrated a negative relationship between the risk score
and the proportions of resting CD4+ memory T cells (p =
4.806e–07), γδ-T cells (p = 3.1e–05), M1 macrophages (p =
0.0022), and resting mast cells (p = 0.022); representing that
as the risk score rises, the proportions of these immune cell
subsets tend to decrease. Conversely, some other immune
cell populations, including regulatory T cells (p = 8.03e–06),
T follicular helper cells (p = 5.275e–07), neutrophils (p =
0.00078), and M0 macrophages (p = 2.978e–07) showed a

FIGURE 7. External verification of the bacterial response-related signature in the GSE14520 cohort. (A) Kaplan-Meier analysis depicting the
survival outcomes of high-risk vs. low-risk groups in the GSE14520 cohort. (B) ROC curve analysis to evaluate the efficacy of the prognostic
prediction model within the GSE14520 cohort.

FIGURE 8. The relation between the bacterial response-related risk signature and (A) age; (B) sex; (C) HCC stage; (D) T stage; (E) N stage; and
(F) M stage.
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positive association with the risk scores of HCC patients
(Fig. 10C).

Relation between the risk score and mutational signature
To explore the connection among the risk score and the
mutation profile of HCC patients, we examined the mutation
status for every patient. The top 10 most meaningfully
altered genes for the low- and high-risk groups were
identified and depicted in Fig. 11A,B, respectively.
Additionally, we measured the tumor mutational burden
(TMB) for each sample, showing that TMB was meaningfully
greater in the high-risk group (p < 0.0001) (Fig. 11C). Of
note, this finding suggests that high-risk patients display a
higher number of mutations in their tumor genomes
compared to low-risk patients. Kaplan-Meier was also
estimated to examine the correlation between TMB and OS.
The results showed a significant difference in OS between the
two TMB groups, with high-TMB patients exhibiting poorer
outcomes (p = 0.0081) (Fig. 11D).

Nomogram Construction for predicting survival
Fig. 12A illustrates the OS predictive nomogram, a graphical
tool that integrates various factors including age, sex, TNM
staging, stage, and the prognostic risk score model. This

nomogram serves as a predictive model for estimating OS in
patients diagnosed with HCC. By incorporating multiple
variables, the nomogram provides a comprehensive
assessment of the patient’s prognosis. To validate the precision
and reliability of the nomogram, we examined the calibration
curves for the 1-, 2- and 3-year time points, as demonstrated
in Fig. 12B. The calibration curves compared the predicted
survival probabilities from the nomogram with the actual
observed survival rates. The near alignment between the
predicted and observed outcomes in the calibration curves
indicates the effectiveness of the nomogram in accurately
predicting OS in HCC patients at first-, second-, and third-year.

The AUC of the nomogram ROC curve was 0.796 at the
first-year, demonstrating that it had superior prognostic
performance than prognostic risk score model with the
AUC of 0.761 at the same year (Fig. 12C).

Identification of key contributors based on the LIHC prognosis
prediction model
LIHC samples of TCGA were divided into low- and high-
expression based on each 12 gene’s optimal cutoff which
calculate by the time-dependent ROC. Then, prognostic
value, as well as the accuracy of each of these 12 genes,
were assessed by Kaplan-Meier and time-dependent ROC

FIGURE 9. (A) The univariable Cox regression analysis result in the entire cohort. (B) The multivariable Cox regression analysis result in the
entire cohort.
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curves analysis, respectively. The analysis demonstrated
that there is a weighty difference in OS between
patients with high and low expression of PLK1, ASS1,
SLC22A1, NCAPG, VIPR1, LCAT, SFN, FMO3, FGB,

ADAMTSL2, CD4 and JCHAIN; among which PLK1 had
the best p-value (<0.0001) as well as the best accuracy
with 1-, 3-, and 5-year AUC of 0.72, 0.66, and 0.65,
respectively (Fig. 13).

FIGURE 10. The link among risk score and TIICs. (A) The dissimilarity of TIICs between high- and low-risk groups. (B) Violin plot showing
the dissimilarity of TIICs between high- and low-risk groups by p-value. The significancy is depicted by star. (C) The Spearman correlation test
among risk scores and TIICs (TFH: T follicular Helper; PC: Plasma Cell; Neu: Neutrophil; NK: Natural Killer; Mon: Monocyte; MC: Mast Cell;
MQ: Macrophage; DC: Dendritic Cell).
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FIGURE 11. Analysis of tumor mutational burden (TMB) status in distinct risk groups. (A) Mutation profile of the low-risk group.
(B) Mutation profile of the high-risk group. (C) Correlation analysis examining the relationship between TMB and risk score. (D) Kaplan-
Meier curve analysis for high-TMB and low-TMB groups.

FIGURE 12. The predictive significance of the nomogram. (A) Nomogram predicting the OS of HCC patients. (B) Nomogram calibration plot.
x-axis shows the nomogram-predicted survival, and the observed survival is exhibited on the y-axis. (C) ROC curves of the predictive efficiency
of model risk score and nomogram.
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Construction of the lncRNA-miRNA-mRNA regulatory axis
Based on our results showing that PLK1 had the best p-value
and accuracy, we then constructed a lncRNA-miRNA-mRNA
regulatory axis to further elucidate the probable molecular
mechanism of this molecule. According to the results
predicted by miRTargetLink, and miRTarBase 19 miRNAs

were identified as the potential miRNA targets of PLK1
(Fig. 14A). Among these miRNAs, hsa-miR-10b, hsa-miR-
92a-1, hsa-miR-877, and hsa-miR-1301 were up-regulated in
LIHC tissues vs. normal liver tissues. On the other hand,
has-let-7b, has-mir-100, has-mir-874, and has-mir-16-1
were down-regulated in LIHC tissues vs. normal liver tissues

FIGURE 13. The Kaplan-Meier and ROC curves of 12-BRGs between high- and low-expression category.
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(Fig. 14B). Univariate Cox regression coefficient showed that
among these eight different-expressed miRNAs, only has-
mir-100 has prognostic value (p-value = 0.000891)
(Fig. 14C). Of note, the OS in the patients with high
expression of this miR was higher than those with lower
expression (p-value < 0.0001) (Fig. 14D). To explore the
upstream lncRNA targets of hsa-miR-100, we submitted
hsa-miR-100 to DIANA-LncBase and RNAInter whose
results suggested DLEU1 as the lncRNA target of this
miRNA (Fig. 14E). We also found that DLEU1 not only was
up-regulated in LIHC tissues vs. liver tissues (p-value =
0.0006) (Fig. 14F), but also its expression was superior in
high-risk group (p-value = 0.0029) (Fig. 14G).

Validating PLK1 inhibition and combination therapy via
siRNA knockdown
Number of pre-clinical surveys have stated that high
expression of PLK1 is responsible for HCC development
[25,26]. Given this and based on the findings obtained from
our analyses, it was tempting to investigate the effect of
volasertib, a PLK1 inhibitor, on HCC cell lines. Of note,
treatment of Huh7 and SNU449 cells with volasertib
resulted in a concentration-dependent decrease in metabolic
activity of the both cell lines (Fig. 15A,B). Next, and to
confirm the specificity of volasertib, the effects of PLK1
inhibition were further evaluated upon the knockdown of
the PLK1 gene using PLK1 siRNA (siPLK1). As expected,

FIGURE 14. Construction of lncRNA-miRNA-mRNA regulatory. (A) The result of miRTarget and miRTarBase identified 19 miRNAs as the
potential miRNA targets of PLK1. (B) The expression of eight miRNAs with the significance difference in their transcriptional activity in HCC
tissues vs. normal liver tissues. (C) The univariable COX regression analysis of eight miRNAs. (D) The relationship between miR-100-5p
expression and OS of HCC patients. (E) The result of DIANA and RNAInter suggested DLEU1 as the lncRNA target of miR-100-5p.
(F) The expression of DLEU1 in HCC tissues vs. normal liver tissues. (G) DLEU1 expression in high- and low-risk groups.
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our results showed that knockdown of the PLK1 gene has
resulted in a mildly reduction in HCC cell viability; further
supporting our results regarding the pro-survival role of
PLK1 in HCC cells. As a supplementary investigation, we
also aimed to evaluate whether PLK1 inhibition can boost
the efficacy of traditional chemotherapy in a combined
modality strategy. Noteworthy, combining siPLK1 with
cisplatin as well as its combination with sorafenib both
demonstrated a superior cytotoxicity as compared to either
agent alone (Fig. 15C). Notably, both cisplatin and sorafenib
were used at low concentrations, signifying that the
combination with siPLK1 had a pronounced impact on
reducing cell viability even at lower doses. Taken together,
these results highlight the potential of PLK1 inhibition as a

therapeutic strategy, either alone or in combination with
chemotherapy drugs, for targeting HCC cells.

Discussion

In the past decade, the attention of many scientists who study
in the field of cancer turned toward microbiome as it became
evident that the living microorganisms of the body play a
serious role both in cancer initiation or prevention.
Publication of a remarkable amount of research with direct
attention to the relationship between cancer development
and human microbiome has set the stage to widen cancer
research interest, particularly in human malignancies with
gastrointestinal origin [27]. Noteworthy, the interest in the

FIGURE 15. (A) Metabolic activity of Huh7 and SNU449 cell lines upon treatment with volasertib. (B) Comparison of the IC50 values for
Huh7 and SNU449 cell lines treated with volasertib. (C) Cell viability analysis of Huh7 and SNU449 cell lines treated with siPLK1 alone and in
combination with cisplatin or sorafenib. Values are reported as the mean ± standard deviation (S.D.) derived from three distinct experiments.
Statistical significance is indicated as: * for p < 0.05, ** for p < 0.01, *** for p < 0.001, and **** for p < 0.0001.
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contributory role of bacteria in HCC has emerged from the
recent disclosures indicating a bidirectional communication
between the gut and the liver [28,29]. In cases where the gut
becomes leaky as a result of injury or inflammation, it can
lead to the migration of microbial flora to the liver. Of note,
this translocation is mediated by metabolites and
constituents associated with the microbiota, which in turn,
triggers the activation of a cascade of signaling pathways
that play a crucial role in the development of HCC [16].
Taken altogether, although previous studies have highlighted
the contributory roles of bacteria in HCC [30–32], it is early
to hazard a conjecture for the mechanisms through which
they may either trigger or affect HCC prognosis.

As far we are aware, to date, there have been no reports of
bacterial response-related biomarkers in HCC, and this study
represents for the first time that a 12-BRGs prognostic
signature has the potential to predict the survival of this
malignancy. Our signature consists of 12 DE-BRGs: PLK1,
NCAPG, VIPR1, SLC22A1, LCAT, SFN, FMO3, ASS1, FGB,
ADAMTSL2, CD4, and JCHAIN—among which PLK1,

NCAPG, and SFN were up-regulated while the remaining
genes were downregulated. In order to present a thorough
overview, we have summarized the information about the
components of this model and their functions in HCC and
other types of cancer into Table 5. Additionally, Fig. 16A–H
visualizes the interplay among certain contributors to our
prognostic model in HCC through a schematic representation.

The findings from our study indicated that this signature
has a moderate level of accuracy in predicting the OS of HCC
patients, as evidenced by the results of KM and ROC curve
analysis. Importantly, the results of both univariate and
multivariate Cox proportional regression analysis
demonstrate that this signature independently serves as a
prognostic factor for predicting OS. Notably, it has the
ability to predict survival outcomes across various patient
groups, including different sex (male and female), age
groups (<65 or >65 years old), different tumor stages (T1,
T2, T3, or T4), lymph node involvement (N0 or N1
staging), and distant metastasis (M0 or M1 staging). In
simpler terms, even after taking into account these

TABLE 5

The details of 12 DE-BRGs that are included in the model

Complete name Function Description The role of DE-BRGs included in the
model in HCC

PLK1 Polo Like Kinase 1 Cell cycle
regulation

. Raised expression of PLK1 happens in
so many cancers like Breast [33],
Prostate, Colorectal [34], and Gastric
cancers [35], so it has been suggested as
a novel diagnostic marker for numerous
tumors

. PLK1 overexpression is associated with
early development of HCC and
predicts a poor prognosis in HCC
patients [36]

. PLK1 inhibits MTORC1, therefore
contributes to autophagy and
consequently results in tumor cell
survival [37]

. PLK1 inhibition could cause cancer cells
death by interfering with several stages
of mitosis [38]

. The expression of PLK1 mRNA serves
as a new independent prognostic
marker for patients with NSCLC [39]

. PLK1 is involved in key mitotic
processes, including centrosome
maturation, spindle assembly,
chromosome segregation, and
cytokinesis [40]. The overexpression of
PLK1 in HCC can dysregulate these
mitotic processes, leading to
chromosomal abnormalities and
aneuploidy, which are hallmarks of
cancer cells [41].

. PLK1 overexpression results in
degradation of the transcription
repression factors SUZ12 and ZNF198,
both related to the lncRNA HOTAIR
which cause HCC cell proliferation [42].

. Overactivation of PLK1 leads to PTEN
inhibition and PI3K overactivation
resulting in HCC growth [43].

NCAPG Non-SMC
condensin I
complex subunit G

Condensation
of
chromosomes
during
mitosis and
meiosis

. By inhibiting PTEN and consequently
overactivation of PI3K/AKT cascade,
NCAPG results in progression of
HCC [44]

. NCAPG regulates cell proliferation, and
apoptosis in OSCC via the GSK-3β/β-
catenin signaling [45]

. It induces lung adenocarcinoma cell
stemness via aerobic glycolysis [46]

. It affects overall survival in HCC, BC,
GC, Glioma, PC, CC, and OC [47]

. Up-regulation of NCAPG leads to
activation of PI3K/AKT cascade
causing elevated NFκB, VEGF, and
FOXO4 which consequently result in
apoptosis inhibition, cell proliferation,
and angiogenesis [48].

(Continued)
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Table 5 (continued)

Complete name Function Description The role of DE-BRGs included in the
model in HCC

VIPR1 Vasoactive
Intestinal Peptide
Receptor 1

Exocrine and
endocrine
secretion,
and water and
ion flux in
lung and
intestinal
epithelia

. It suppresses HCC progression by
regulating arginine and pyrimidine
metabolism [49]

. VIPR1 is a potential biomarker for
PC [50]

. The downregulation of VIPR1 leads to a
decrease in ASS1, which subsequently
increases the phosphorylation of
carbamoyl-phosphate synthetase 2,
aspartate transcarbamoylase, and
dihydroorotase (CAD) in a manner
dependent on the mTOR/p70S6K
signaling pathway, ultimately
contributing to HCC proliferation and
metastasis [49].

SLC22A1 Solute carrier
family 22
member1

Polyspecific
organic cation
transporter

. Downregulation of SLC22A1 may affect
the response of HCC to Sorafenib [51]

. SLC22A1 downregulation is correlated
with tumor progression and low
patient survival in ChC [52]

. The alternative splicing of SLC22A1
pre-mRNA is augmented in HCC [53]

. Hypermethylation of the SLC22A1
promotor region and its
downregulation is linked to drug
resistance in HCC [54].

LCAT Lecithin-
cholesterol
acyltransferase

Reverse
cholesterol
transport
pathway

. LCAT, as a common plasma protein
biomarker, is highly expressed in
aggressive human BC [55]

. Levels of cholesterol esters and serum
LCAT activity reduce in liver diseases
like HCC [56]

. Dyslipidemia caused by low expression
of LCAT rises the risk of HCC [57].

SFN Stratifin Checkpoint
protein of the
cell cycle

. SFN promotes the progression of lung
cancer by facilitating the formation of
the Vps34-BECN1-TRAF6 complex,
which induces autophagy [58]

. Reduced expression of SFN could serve
as an independent prognostic indicator
of poor survival in patients with ESCC
[59]

. SFN promotes the progression of HCC
by regulating the Wnt/β-catenin
signaling pathway [60]

. It is linked to tumor grade and poor
prognosis in HCC and encourages the
proliferation of HCC cells [61]

. SFN activates the Wnt/β-catenin
pathway by preventing GSK-3β
activation which leads to HCC cell
proliferation [60].

FMO3 Flavin Containing
Dimethylaniline
Monoxygenase 3

Essential
hepatic
enzyme

. Activity of FMO family may reduce the
risk of cancer’s development [62]

. Low expression of FMO3 may associate
with poor HCC-specific prognosis [63]

. FMO3 increases apoptosis and decrease
cell viability in liver-derived cancer cell
lines when ectopically re-expressed [63].

ASS1 Argininosuccinate
Synthase 1

Urea cycle
enzyme

. The reduction of ASS1 promotes cancer
cell proliferation by providing more
aspartate for pyrimidine synthesis
through the enzyme complex CAD [64]

. Through the activation of the
PERK/eIF2α/ATF4/CHOP axis, ASS1
prevents tumor progression in
HCC [65]

. Down-regulation of VIPR1 and
consequently ASS1 down-regulation,
increase carbamoyl-phosphate
synthetase 2, aspartate
transcarbamylase, and dihydroorotase
(CAD) phosphorylation in an mTOR/
p70S6K signaling dependent manner,
which all in all result in HCC
proliferation and metastasis [49].

(Continued)
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traditional clinicopathological factors, the risk score derived
from this signature remains a significant predictor of patient
survival.

Recently, there have been a growing disclosure
highlighting the significant impact of the crosstalk between
cancer cells and TME on the progression of cancer [76].
This intricate interplay has been found to stimulate cell
proliferation, enhance cell survival, and promote the
migration and evasiveness of cancer cells [77]. Concerning
HCC, the TME presents a particular challenge for effective
therapies as it is intricately involved in metastasis and the
development of treatment resistance [78]. However,
researchers are actively exploring new avenues of immune-
based therapies that specifically target the TME in this
malignancy [79,80]. With that in mind, our findings
revealed that a higher risk score was associated with a
decreased infiltration of specific immune cell subsets that
play a crucial role in immune surveillance and anti-tumor
responses; these subsets include CD4+ memory T cells, γδ-T
cells, resting mast cells, and M1 macrophages. CD4+

memory T cells possess the capacity to recognize specific

antigens, activate other immune cells, regulate immune
responses, and provide long-term immune surveillance,
thereby aiding in the control and elimination of cancer cells
[81,82]. Similarly, M1 macrophages are essential
components of the immune system, exhibiting potent anti-
tumor properties; they can engulf and destroy cancer cells,
yield pro-inflammatory cytokines, and stimulate other
immune cells [82]. Indeed, decreased proportion of M1
macrophages in high-risk HCC patients may impair host’s
immune system to effectively eliminate cancer cells. In line
with our findings, Huang et al. reported that the high-risk
group was primarily enriched in M0 macrophages, Tregs,
and follicular helper T cells (Tfh), while the low-risk group
exhibited a higher abundance of M1 macrophages and
resting mast cells [83].

TMB has been suggested to be associated with the
prognosis of various cancers [84–86]. Mutational signatures
represent distinct patterns of genetic alterations that result
from both internal and external factors contributing to the
development of tumors; these signatures serve as unique
indicators of the mutational processes occurring during

Table 5 (continued)

Complete name Function Description The role of DE-BRGs included in the
model in HCC

FGB Fibrinogen Beta
Chain

Blood
coagulation

. The associations between FGB and
HCC recurrence are still
controversial [66]

. Downregulation of FGB is thought to
contribute to the increased risk of
thrombosis and coagulopathy often
seen in HCC patients. Fibrinogen plays
a crucial role in platelet aggregation,
fibrin clot formation, and the
maintenance of hemostasis [67].

ADAMTSL2 ADAMTS Like 2 Microfibril
assembly
inhibition

. Low expression level of ADAMTSL2
was predictive of worse prognosis in
HCC [68]

. Tumor growth and metastasis are the
consensuses of down-regulated
ADAMTSL2 which exerts its effect
through extracellular matrix (ECM)
remodeling and overactivation of
transforming growth factor-beta
(TGF-β) [68].

CD4 Clusters of
differentiation 4

Immune
response

. Changes in lipid metabolism due
to NAFLD encourage the depletion of
hepatic CD4+ T cells, thereby
promoting the development of
HCC [69]

. CD4 stimulates anti-tumor immune
responses in all cancers [70]

. The CD4 gene encodes a
transmembrane glycoprotein that plays
a crucial role in the function of T helper
cells, which are essential for the adaptive
immune response [71]. Moreover, HCC
risk is elevated in those with higher HIV
RNA levels or lower CD4 cell [72].

JCHAIN Joining Chain of
Multimeric IgA
and IgM

Linker of
monomer
units of
either IgM or
IgA

. J-chain can be used as an NSCLC
marker based on decreased expression
of this gene [73]

. JCHAIN (IGJ) is a predictive biomarker
for response to sorafenib treatment in
HCC [74]. Also, the J chain plays a key
role in the polymerization of
immunoglobulins, which is necessary
for their efficient transport across
mucosal surfaces and activation of the
complement system [75].

Note: NSCLC: Non-Small Cell Lung Cancer; NAFLD: Non-Alcoholic Fatty Liver Disease; OSCC: Oral Squamous Cell Carcinoma; CC: Colon Cancer;
OC: Ovarian Cancer; HCC: Hepatocellular Carcinoma; ESCC: Esophageal Squamous Cell Carcinoma; BC: Breast Cancer; PC: Prostate Cancer; ChC:
Cholangiocellular Carcinoma; GC: Gastric Cancer; STAT: Signal Transducer and Activator of Transcription; PI3K: Phosphoinositide 3-Kinases; Akt:
Protein Kinase B; PTEN: Phosphatase and Tensin Homolog; FOXO4: Forkhead Box Protein O4; GSK-3β: Glycogen Synthase Kinase-3 Beta; mTOR:
Mammalian Target of Rapamycin; VEGF: Vascular Endothelial Growth Factor; NFκB: Nuclear Factor Kappa B.
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tumorigenesis [87]. Although numerous lines of evidence
highlighted cancer patients with high TMB have a poorer
prognosis in comparison with those with low TMB [88,89],
ongoing research is currently being conducted to more
accurately describe the contributory significance of TMB in
different cancer types. To be detailed, the correlation between
TMB status and cancer prognosis has been studied in various
types of cancer cell; however, in several cases, there are
contradictory results. In a study performed by Wu et al.,
while HCC was classified as the TMB-worse group where
patients with high TMB had a poorer prognosis in contrast

to those with low TMB, elevated TMB was a prognostic
indicator that showed a statistically significant association
with diminished mortality in some other cancers such as
bladder urothelial carcinoma, kidney renal clear cell
carcinoma, and stomach adenocarcinoma [85]. Of note, and
in harmony with the results of Wu et al, we observed that
TMB was meaningfully greater in the high-risk group;
further indicating that increased mutational processes
occurring during HCC tumorigenesis is associated with poor
prognosis and serves—at least partly—as a prognostic
indicator of increased mortality. Moreover, Cai et al.

FIGURE 16. Schematic representation illustrating the possible role of model components in HCC. (A) PLK1 overexpression on one hand,
results in degradation of the transcription repression factors SUZ12 and ZNF198, both related to the lncRNA HOTAIR, on the other
hand, leads to PTEN inhibition and PI3K overactivation which hand in hand cause HCC cell proliferation. (B) Up-regulation of NCAPG
touches the biological actions of HCC via the PI3K/AKT cascade. (C) Dyslipidemia caused by low expression of LCAT rises the risk of
HCC. (D) Accumulation of a toxic metabolite, trimethylamine, due to the down-regulation of FMO3 could increase the risk of HCC
development. (E) hypermethylation of the SLC22A1 promoter region and its downregulation is linked to decreased drug uptake in the
tumor. (F) Down-regulation of VIPR1 and consequently ASS1 down-regulation, increase carbamoyl-phosphate synthetase 2, aspartate
transcarbamylase, and dihydroorotase (CAD) phosphorylation in an mTOR/p70S6K signaling dependent manner, which all in all result in
HCC proliferation and metastasis. (G) SFN activates the Wnt/β-catenin pathway by preventing glycogen synthase kinase-3 beta (GSK-3β)
activation which leads to HCC cell proliferation. (H) Tumor growth and metastasis are the consensuses of down-regulated ADAMTSL2
which exerts its effect through extracellular matrix (ECM) remodeling and overactivation of transforming growth factor-beta (TGF- β). (I)
Abnormal expression of DLEU1 may result in miR-100-5p downregulation which leads to PLK1 overexpression and subsequently HCC
cell survival and progression (The figure was created using photoshop CS6).
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demonstrated that higher TMB was positively associated with
the recurrence risk of HCC after radical hepatectomy [90].

Of note, among our genes signature, PLK1 exhibited the
most significant role. PLK1 has been previously associated
with the progression of several cancers such as triple
negative breast cancer (TNBC) [91], anaplastic thyroid
carcinoma (ATC) [92], non-small cell lung cancer (NSCLC)
[93], and acute myeloid leukemia (AML) [94]. Of note, it
has been reported that PLK1 is overexpressed in HCC [95].
In agreement, our experimental results showed that
inhibition of PLK1, either with a potent PLK1 inhibitor
Volasertib or specific PLK1 siRNA, could diminish HCC cell
viability in a concentration-dependent manner. Of note,
PLK1 inhibition in combination with chemotherapy led to
superior cytotoxicity, further highlighting the potential of
targeting this molecule as an adjunct therapy to improve the
outcomes of traditional chemotherapy approaches.

Next, it was tempting to shed more light on the
molecular mechanisms by which PLK1 may contribute to
HCC survival. Given this, we explored the regulatory
network associated with PLK1 and identified miR-100-5p as
a potential miRNA to be involved in the regulation of PLK1
expression in HCC. In agreement, Liao et al. showed that
abnormal decreased in hsa-miR-100-5p leads to excessively
high PLK1 expression, associated with poor prognosis for
HCC patients [96]. Apart from miR-100-5p, we also
discovered that DLEU1 lncRNA probably serve as a key
molecule participating important roles in the regulatory
network associated with PLK1 in HCC. Consistently, it has
been reported that suppressing DLEU1 could inhibit HCC
cell growth, colony formation and disrupt cell cycle
progression [97]. To sum up with, these findings suggest the
“DLEU1/hsa-miR-100-5p/PLK1” regulatory network as a
feasible putative target in HCC patients. Increased PLK1
expression, alongside the downregulation of miR-100-5p
and the upregulation of DLEU1, may play a role in HCC
development and progression. For a concise visual
representation, the probable regulatory network involving
PLK1, miR-100-5p, and DLEU1 is depicted in Fig. 16I.

In conclusion, as far we are aware, to date, there have
been no reports of bacterial response-related biomarkers in
HCC, and this is the first time that a novel 12-BRGs
prognostic signature has been developed and verified for
assessing the prognosis of HCC patients. Our model
demonstrates effective prognostic capabilities when utilized
either independently or in conjunction with other clinical
factors. We hope that this signature could offer valuable
assistance not only for better stratification of HCC patients
but also can pave the way for more effective treatment
strategies in the high-risk patients. Nevertheless, it is
important to note that this study was retrospective in
nature, and additional prospective trials is necessary to
validate our findings.

Highlights

This study investigates the role of bacterial response-related
genes (BRGs) as potential predictive biomarkers for
hepatocellular carcinoma (HCC) prognosis, a topic that has
seen limited exploration despite increasing evidence of

bacterial significance in HCC development. We present a
novel 12-BRG prognostic signature capable of accurately
predicting survival outcomes in HCC patients. Additionally,
we identify the “DLEU1/hsa-miR-100-5p/PLK1” regulatory
network as a probable target for therapeutic intervention.
Our findings demonstrate that inhibiting PLK1, either alone
or in combination with other strategies, effectively reduces
HCC cell viability. This research aims to enhance patient
stratification and advance personalized medicine for high-
risk HCC patients through more effective treatment
approaches.
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