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ABSTRACT

Congenital heart disease (CHD), the most prevalent congenital ailment, has seen advancements in the “dual indi-
cator” screening program. This facilitates the early-stage diagnosis and treatment of children with CHD, subse-
quently enhancing their survival rates. While cardiac auscultation offers an objective reflection of cardiac
abnormalities and function, its evaluation is significantly influenced by personal experience and external factors,
rendering it susceptible to misdiagnosis and omission. In recent years, continuous progress in artificial intelli-
gence (AI) has enabled the digital acquisition, storage, and analysis of heart sound signals, paving the way for
intelligent CHD auscultation-assisted diagnostic technology. Although there has been a surge in studies based
on machine learning (ML) within CHD auscultation and diagnostic technology, most remain in the algorithmic
research phase, relying on the implementation of specific datasets that still await verification in the clinical envir-
onment. This paper provides an overview of the current stage of AI-assisted cardiac sounds (CS) auscultation
technology, outlining the applications and limitations of AI auscultation technology in the CHD domain. The
aim is to foster further development and refinement of AI auscultation technology for enhanced applications
in CHD.
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1 Introduction

Congenital heart disease (CHD) is the most prevalent congenital ailment, affecting approximately 0.8%
of live births [1]. Due to significant endeavors and technological strides, mending the heart has become a
viable prospect, resulting in a noteworthy decrease in mortality rates [2]. In recent times, driven by the
continuous progression of the “dual-indicator” screening program [3], early-stage diagnoses and
interventions for children with CHD have become feasible, consequently elevating survival rates and
significantly improving quality of life.

The information age has ushered in widespread adoption of non-invasive detection methods such as
cardiac ultrasound and electrocardiogram, coupled with the integration of artificial intelligence (AI)
technologies, encompassing machine learning (ML), artificial neural networks (ANN), and deep learning
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(DL). This synergy has paved the way for early diagnosis and treatment modalities tailored for children
with CHD. Notably, AI technology breakthroughs have facilitated the digital acquisition, storage, and
analysis of heart sound signals [4], consequently giving rise to intelligent auscultation techniques for
CHD sounds [5,6].

AI auscultation technology predominantly engages in the acquisition of heart sound signals, encompassing
denoising, segmentation, feature extraction, and classification and recognition [5,7,8]. This manuscript
provides a comprehensive overview of the recent evolution of intelligent heart sound auscultation
technology. It meticulously outlines the present status and challenges associated with the application of AI
auscultation-assisted decision-making technology in CHD screening. The goal is to promote the ongoing
advancement and refinement of AI auscultation technology within the field of CHD applications.

2 CS and Auscultation

Cardiac sounds (CS), originating from the rhythmic dance between systole and diastole, manifest as
distinct auditory patterns recorded as phonocardiograms (PCG). PCG are quasi-periodic, and the period
of each cardiac signal is called the cardiac cycle. Depending on the order in which they occur in the
cardiac cycle, CS can be categorized into four segments: the first heart sound (S1), systolic, the second
heart sound (S2) and diastolic (Fig. 1) [9]. Beyond the symphony of S1 and S2, the auditory landscape
may include cardiac murmurs, aberrant echoes arising from the vibrational interplay of ventricular walls,
valves, or blood vessels. These murmurs, characterized by prolonged duration, diverse frequency, and
amplitude variations, accompany CS during systole or diastole [4]. Analyzing raw PCG data provides
valuable insights, serving as an ancillary diagnostic tool that contributes to the predictive assessment of
cardiovascular diseases [4,10].

The anatomical position of the heart valves relative to the chest wall determines the optimal auscultation
position (Fig. 2). Therefore, the stethoscope should be placed in the following positions [11] for auscultation:

-Aortic valve I (1): second intercostal space, right sternal border;

-Pulmonary valve (2): second intercostal space, left sternal border;

-Aortic valve II (3): third intercostal space, left sternal border;

-Tricuspid valve (4): left lower sternal border;

-Mitral valve (5): fifth intercostal space, midclavicular line(cardiac apex).

Additional CS is typically associated with murmurs, clicks, and snaps [4]. The genesis of cardiac
murmurs holds paramount relevance to cardiovascular ailments [2], such as septal defects, unclosed

Figure 1: Phonocardiogram (PCG) [9]
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ductus arteriosus, pulmonary hypertension, or cardiac valve deficiencies [4,12]. Deciphering murmurs
directly impacts a physician’s diagnostic skills. Most cardiac murmurs correlate intimately with specific
pathologies, and auscultation serves as the linchpin for recognizing and distinguishing these features. The
ability to precisely characterize murmurs can ascertain whether a subject should be referred to a cardiac
specialist [4], enhancing subsequent diagnostic examinations. Cardiac auscultation is a pivotal screening
tool [9]; when used judiciously, it expedites treatment/referral processes, thereby improving patient
prognosis and quality of life [10]. Insufficient auscultation expertise, non-digitized preservation of
auscultation data, and subjective judgment criteria have emerged as pivotal factors hindering primary care
physicians in conducting early CHD screenings [4,9,13].

3 Research Status of AI Auscultation Techniques

AI-assisted detection technology is a swift, efficient, and cost-effective tool [10,14], applicable for the
quantitative analysis of CS signals. By extracting key parameters from the PCG, it aims to yield more
intuitive diagnostic results, facilitating the inference of potential cardiovascular ailments [14]. AI
auscultation technology primarily encompasses denoising, segmentation, feature extraction, and
classification recognition of PCG signals [5,7,8].

Influenced by the external environment, heart sound signals inevitably intertwine with electromagnetic
interference, random noise, respiratory sounds, lung sounds, etc., during the acquisition process [15]. The
diagnostic accuracy of CS diagnosis is directly affected by the quality of the signal and the subsequently
extracted features. Therefore, noise reduction is necessary before signal analysis. Some widely studied
and applied noise reduction methods for CS include discrete wavelet transform (DWT) [15,16], empirical
mode decomposition (EMD) [17], and singular value decomposition (SVD) [15,18]. Noise reduction of
CS signals using a combination of methods can achieve better results and help to improve the signal
quality and detection accuracy. Mondal et al. [15] proposed a CS noise reduction method based on the
combination of DWT and SVD, where the coefficients corresponding to the selected nodes are processed

Figure 2: Schematic representation of the auscultation area in the prethoracic region (image adapted from
[11]); 1 = right second intercostal space; 2 = left second intercostal space; 3 = left third intercostal space;
4 = left fourth/fifth intercostal space; 5 = fifth intercostal space (midclavicular line)
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by SVD in order to achieve the suppression of the noise component in the CS signal. Some interference
signals (lung sounds, environmental sounds, etc.) may have more obvious frequency aliasing with the
signal, which makes the noise reduction method based on the frequency decomposition of the signal
difficult to apply, and greatly affects the extraction of CHD features. To address this, Shah et al. [19]
decomposed the time-frequency spectra of single-channel mixed CS signals into non-negative matrix
factorisation (NMF) parts related to heart or lung sounds. They then reconstructed the signal to obtain the
source signals, achieving noise reduction and CS feature extraction.

Segmentation of CS is a prerequisite for feature extraction in CS classification, aiming to determine the
positional intervals of S1, systole, S2, and diastole in the CS signal. This segmentation is advantageous for
extracting the characteristics of heart murmurs from each CS state separately, thereby utilizing the rich
pathological information within murmurs for CHD analysis and diagnosis. In response to this, numerous
methods for heart sound segmentation have been proposed by experts and scholars [20–22], achieving
commendable segmentation results. However, for some abnormal heart sounds affected by pathological
murmurs and severe noise interference, the structure of the cardiac cycle is irregular, making it
challenging to precisely delineate the cardiac cycle [21]. Segmentation methods lacking temporal
structural information [22–24] often struggle to ensure that different fixed-duration segments of heart
sound or raw heart sound sequences share the same starting point, consequently affecting recognition
performance. Table 1 summarizes some of the recent literature on heart sound segmentation [9,20–23].

Table 1: Segmentation methods for acoustic cardiogram signals [9,20–23]

Year Authors Segmentation method Heart sound data source Results

2022 Guo et al.
[20]

Proposed a novel method, C-
LSTM-A (Convolution and
Bidirectional Long-Short Term
Memory neural network with
Attention mechanism), which
combines one-dimensional
convolution with attention
mechanism to accurately
identify high-speed signals

Yunnan fuwai cardiovascular
hospital heart sound dataset
(700 normal signals and
450 pathological signals)/
PhysioNet CinC challenges
dataset

Accuracy 97.00%,
F1 96.8%

2020 Fernando
et al. [21]

Developed a heart sound
segmentation method using a
bidirectional long short-term
memory network (LSTM) with
attention mechanism: focusing
on the signal components of
heart sound states through
attention mechanism, combined
with recurrent neural network
(RNN) to learn features from
irregular heart sounds,
improving segmentation
effectiveness

PhysioNet, M3dicine human
heart sound database (M3-HU),
and M3dicine animal heart
sound database (M3-AN)

Sensitivity 97.20%,
specificity 97.50%,
F1 96.70%

(Continued)
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Before classifying CS, a few representative features from the CS category must be extracted from
segmented signals to replace the high-dimensional original signals [8]. In general, classification models
trained on features are more efficient and accurate than those trained on raw signals. Commonly used
methods for CS feature extraction include DWT [25], short-time fourier transform (STFT) [26], mel-
frequency cepstral coefficient (MFCC) [27,28] and variational mode decomposition (VMD) [29]. After
extracting the features, the classification algorithm classifies the extracted features to achieve the
screening and auxiliary diagnosis of CHD. CS classification problems come in various forms, and the
choice of classification tasks can significantly impact the results [30]. Due to the rapid development of AI
in medicine, ML-based classification algorithms have been widely researched and applied in the field of
CHD intelligent auscultation [26,31].

4 Development and Application of ML in Intelligent Auscultation

Based on the principle of ML algorithms, CS classification algorithms can be divided into two
categories: classification algorithms based on traditional ML and classification algorithms based on DL
[32,33]. We provide a schematic of the principles of these two algorithms, as shown in Fig. 3. Among

Table 1 (continued)

Year Authors Segmentation method Heart sound data source Results

2019 Renna
et al. [22]

Utilized deep convolutional
neural networks (CNN) for
heart sound segmentation:
combined with a sequential
time modeling process to
provide segmentation results
compatible with the sequential
nature of heart sounds; also
incorporated into segmentation
algorithms using HMM and
HSMM as an effective emission
distribution modeling method

PhysioNet CinC challenges
dataset

Sensitivity 93.90%,
positive predictive
value (PPV) 94.00%

2017 Varghees
et al. [23]

Applied Empirical Wavelet
Transform (EWT) and
Instantaneous Phase Waveform
(IPW) to segment heart sound
signals

Physionet, pascal, michigan,
eGeneralMedical, and real-time
PCG signals

Specificity 94.38%,
Pp 97.25%, overall
accuracy (OA)
91.92%

2016 Springer
et al. [9]

Extracted features such as
homomorphic envelope, power
spectral density envelope, etc.,
after preprocessing of heart
sound signals. Utilized logistic
regression hidden semi-Markov
model (LRHSMM) to learn the
above features and segment
S1 and S2 in noisy heart sounds

From massachusetts general
hospital in the united states and
home monitoring of mitral
valve prolapse patients: a total
of 123 cases (38 control group,
37 mitral valve prolapse
patients, 36 benign murmurs,
5 aortic valve diseases, 7 other
heart diseases)

Sensitivity 95.34%,
positive predictive
value (P+) 95.92%,
F1 95.63
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them, traditional ML-based classification algorithms mainly involve manually designing and extracting
effective CS features [31,32], followed by classification using classifiers. Classification algorithms based
on DL refer to the algorithms that, with respect to the waveform map of the CS signals or extracted
features in the time-frequency domain, use deep neural networks (DNN) to automatically extract more
high-level abstract features and achieve classification [33,34].

4.1 Traditional ML Intelligent Auscultation
Traditional ML-based classification algorithms involve manually designing effective CS features. This

enables computer systems to access and analyze data effectively, adjusting and enhancing functionalities
based on patterns and experience, without the need for explicit programming. Commonly used
classification algorithms include support vector machine (SVM) [35], decision trees [36], and MFCC [25]
models. Deng et al. [35] utilized DWT to compute the envelope from sub-band coefficients of CS signals.
They extracted autocorrelation features from the envelope, fused these features, resulting in a unified
feature representation with a diffusion mapping, and eventually fed this unified feature into an SVM
classifier to accomplish CS classification. Yaseen et al. [25] suggested using MFCC features combined
with DWT features for CS classification. They compared SVM with the K-nearest neighbors (KNN)
algorithm based on centroid displacement and DNN. The results indicated that SVM achieved optimal
classification performance with an average accuracy of 97.9%.

In the domain of intelligent CHD auscultation-assisted diagnosis, Aziz et al. [32] aimed to achieve a
three-class classification for atrial septal defect, ventricular septal defect, and normal CS. They proposed a
method for extracting MFCC features from CS signals, combined with one-dimensional Local Ternary
Patterns (1D-LTP) features to realize CHD classification. In the training phase, this model employed an
SVM classifier, achieving a final average accuracy of 95.24%. Zhu et al. [37], using a backpropagation
neural network as a classifier, analyzed and extracted features from CHD CS using both MFCC and
Linear Predictive Cepstral Coefficients (LPCC). The final results indicated that MFCC features
(specificity: 93.02%, sensitivity: 88.89%) outperformed LPCC features (specificity: 86.96%, sensitivity:
86.96%).

Traditional ML-based algorithms depend on manually designing effective CS features. Suboptimal
feature selection can result in poor algorithm performance, underscoring the critical importance of proper
feature selection. However, designing and selecting effective CS features for various pathological
conditions in different environments poses exceptional challenges. This difficulty limits the further
optimization of classification algorithms based on traditional ML [32]. With the increasing incidence of
cardiovascular diseases, the volume of CS data to be processed is also on the rise [14]. To handle large
datasets while ensuring classification accuracy, deep learning algorithms have emerged.

Figure 3: Schematic of machine learning (ML) and deep learning (DL)
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4.2 DL Intelligent Auscultation
DL is a collective term for ML techniques that leverage neural networks [34]. It involves constructing a

multi-layered deep neural learning network by layering neural networks more deeply than traditional ML.
This allows machines to autonomously recognize, extract, and express the more intrinsic features hidden
within a database or dataset, thereby enhancing the accuracy and efficiency of classification. In 2006,
Hinton et al. [38] first introduced the concept of DL, leveraging spatial relationships to combine low-level
models into more complex high-level models, significantly improving system training performance. In
recent years, DL algorithms have demonstrated practicality and reliability in various fields such as image
recognition [39], biomedical data analysis [40,41], and signal processing [42]. DL models have been
applied to the classification of CS signals, including DNN, convolutional neural networks (CNN),
recurrent neural networks (RNN), and long short-term memory (LSTM) [10,32,37].

Among various artificial neural network models, CNN models excel in converting raw data into a two-
dimensional matrix format and extracting image feature values, surpassing traditional ANN [43]. Thanks to
operations like convolution and pooling, CNN models can construct deep CNN models by stacking multiple
convolutional and pooling layers, achieving outstanding performance in computer vision tasks (images,
video data, etc.) (Fig. 4) [40–42]. Kui et al. [44] combined log mel-frequency spectral coefficients
(MFSC) with CNN for CS classification, achieving a binary classification accuracy of 93.89% and a
multiclass accuracy of 86.25%. Krishnan et al. [45] used one-dimensional CNN and feedforward neural
networks to classify unsegmented CS, achieving an average accuracy of 85.7%. Li et al. [46] extracted
deep features of CS through denoising autoencoders and utilized one-dimensional CNN as a classifier,
resulting in a classification accuracy of 99%. However, the study extended the original dataset, allowing
segments of the same record to appear in both the training and test sets, leading to higher-than-realistic
classification accuracy, which does not align with the clinical application environment. In research
investigating the impact of different DL models on heart sound classification, Deng et al. [30] utilized
MFCC features combined with first and second-order differential features as network inputs for CS
classification. They compared various network models, and the results indicated that CNN has the
optimal classification accuracy (98.34%).

5 Current Status of Intelligent Auscultation Technology in CHD

5.1 Automated Screening and Diagnosis
Intelligent cardiac auscultation technology enables the efficient automated analysis and identification of

anomalies in cardiac audio signals, such as murmurs and arrhythmias, providing supplementary diagnostic
information for physicians. This aids doctors in conducting timely, precise, and efficient screening and

Figure 4: Schematic diagram of deep convolutional neural network (CNN)
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diagnosis of CHD and facilitates prompt intervention when necessary. Xiao et al. [47] curated a pediatric CS
dataset comprising 528 high-quality recordings from 137 subjects, including newborns and children,
annotated by medical professionals. They employed two lightweight CNN models to develop a DL-based
computer-aided diagnosis system for CHD. In a similar vein, Xu et al. [48] established a pediatric-CHD-
CS database encompassing 941 CS signals. Utilizing classifiers based on Random Forest and Adboost,
they achieved accurate classification of CHD. The outcomes demonstrated a sensitivity, specificity, and
F1 score of 0.946, 0.961, and 0.953, respectively, indicating the effectiveness of this approach in CHD
classification.

5.2 Remote Monitoring and Comprehensive Management
Intelligent cardiac auscultation devices, integrated with internet technology, facilitate the remote

transmission and monitoring of cardiac audio signals. This capability proves highly advantageous for
patients requiring long-term cardiac health monitoring, enabling real-time observation and recording of
changes in cardiac audio signals to promptly detect and address any anomalies. Simultaneously, given the
evolving demographic landscape, the concepts of prevention, control, and treatment for CHD need to
extend into adulthood. It is imperative to implement tertiary prevention and comprehensive lifecycle
management for individuals with CHD. In this regard, Chowdhury et al. [49] proposed a prototype model
of an intelligent digital stethoscope system designed to monitor patients’ CS and diagnose any
abnormalities in real-time. The system captures patients’ CS and wirelessly transmits them to a personal
computer, visualizing the CS and achieving a binary classification of normal and abnormal CS. The
accuracy of the optimized integrated algorithm, following adjustments, reached 97% for abnormal CS and
88% for normal CS.

5.3 Medical Education and Training
The intelligent cardiac auscultation technology proves instrumental in medical education and training,

aiding medical students and practitioners in comprehending the intricacies of cardiac audio signals and
diagnostic methodologies. While echocardiography currently stands as the primary modality for
diagnosing CHD, cardiac auscultation remains a pivotal approach for both screening and diagnosis.
Nevertheless, auscultation heavily relies on the subjective expertise of physicians, leading to substantial
variations in diagnoses among different medical professionals. The absence of senior cardiac specialists in
primary healthcare units, coupled with the inadequacy of auscultation skills among young interns [50],
hinders the widespread adoption and application of auscultation screening for CHD. Through intelligent
auscultation devices and related teaching software, medical students and doctors can engage in virtual
auscultation and simulated diagnosis, enhancing their auscultation skills and diagnostic abilities.
Therefore, the development of computer-aided auscultation algorithms and systems is an effective
approach for CHD screening and diagnosis, and can also be utilized for retrospective teaching and
clinical education [48].

6 Challenges and Issues in Intelligent Auscultation for CHD

6.1 Preprocessing of CS
During the data collection process, CS signals inevitably encounter interference from environmental

noise, equipment artifacts, and other physiological organ noises. To mitigate these disturbances, currently
prevalent methods for CS denoising include approaches based on Discrete Wavelet Transform (DWT)
[15,16] and Empirical Mode Decomposition (EMD) [17]. Given the stochastic, non-stationary, and
chaotic nature of interference noise in real-world collection environments, precise differentiation between
CS signals and noise proves challenging for both DWT and EMD. The acquisition of an accurate
adaptive threshold function becomes particularly elusive. Solely relying on spatial transformations and
linear filtering struggles to entirely segregate noise from CS, leading to potential distortions in the CS. In
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the majority of existing CS classification methods, segmenting CS serves as the fundamental step for feature
extraction and classification. Researchers commonly adopt fixed or unfixed durations of raw CS sequences as
study subjects [33,35,51], employing segmenting approaches lacking temporal structural information.
Inevitably, this results in varying time shifts, mismatches with the cardiac cycle structure, and consequent
impacts on recognition performance.

6.2 CS Data and Datasets
A fundamental step in developing a computer-aided decision system for cardiovascular disease

screening through cardiac auscultation involves the collection of extensive annotated CS datasets [4].
These datasets should accurately represent and characterize the murmurs and anomalies of different
cardiovascular disease patients. The detection of CS signals poses significant challenges due to the
inherent characteristics of CS and the influence of environmental noise [4]. On one hand, the stochastic
and variable nature of CHD symptoms results in the complexity and diversity of signal manifestations.
On the other hand, CS signals are relatively weak, and the collection process of raw signals is susceptible
to various noises and disturbances, thereby reducing the accuracy of relevant parameter extraction and
increasing diagnostic uncertainty. The majority of CHD patients are minors, exhibiting significant
differences in heart rate, body size, and cooperation levels [48]. Consequently, CS classification
algorithms designed for adults cannot be directly applied to CHD screening and treatment. Challenges
such as limited data volume, incomplete labels, and a lack of standardized recognition criteria have
persistently impeded the improvement and testing of intelligent cardiac auscultation algorithms for CHD.
The robustness and generalizability of these algorithms in clinical screening applications still require
thoughtful consideration [52,53].

6.3 CS Algorithms and Classification Models
The predominant origin of the existing CS dataset from adults [4] results in a concentration of current

algorithms and classification models on the screening and diagnosis of cardiac valve and major vascular
diseases in adults. Differences in pediatric disease types, heart rate, and CS features mean that existing
cardiac sound segmentation algorithms and classification models cannot be directly applied to pediatric
CHD auxiliary auscultation decision systems [48]. Classification models based on compressed DL
algorithms are more accurate compared to models based on traditional algorithms [47], and future
research should focus on optimizing DL model structures, reducing feature parameter quantities, and
improving model generalization performance. Despite DL models optimizing parameters through error
backpropagation, their diagnostic results in clinical applications lack clear interpretability regarding the
correlation or causation between output diagnoses and input data [48]. Therefore, seeking interpretability
in models is also a significant challenge for current DL technology to achieve clinical application.

6.4 CS-Decision Systems and Clinical Applications
The CS-decision system requires an elevated level of robustness [52] in practical applications to ensure

steadfast performance across diverse environments and conditions. Considering the susceptibility of cardiac
sound data to surrounding noise interference [15], algorithms need to effectively counteract these disruptions
to ensure reliability in practical clinical applications. The clinical application of the cardiac sound decision
system faces issues related to practical operation and acceptance. System developers need to consider the
system’s integrative nature, user-friendliness, and the training requirements for healthcare personnel to
ensure its effectiveness in real medical scenarios. The development and clinical application of cardiac
sound decision systems involve collaboration across multiple disciplines, including medicine,
engineering, computer science, requiring close cooperation between clinical physicians, researchers, and
engineers to promote the broader service of CHD cardiac auscultation-assisted diagnostic systems in the
medical field [14].
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7 Conclusions

With the rapid evolution of AI, the realization of intelligent auscultation-assisted diagnostic technology
for cardiovascular diseases has become achievable. In recent years, intelligent auscultation techniques based
on ML models have made progress in the field of CHD. However, their validation in clinical settings is yet to
be completed. Existing issues with practicality, consistency, and interpretability, coupled with a lack of
mature commercial products, hamper their validation and dissemination in clinical CHD screening.
Consequently, it is imperative for relevant medical institutions to convene experts for the collaborative
formulation of a consensus and standardized procedure for auscultatory screening of congenital heart
diseases. Building upon this foundation, the establishment of a comprehensively annotated pediatric CHD
auscultation database is essential. Simultaneously, research institutions should dedicate efforts to further
advance and enhance auscultation algorithms while ensuring the interpretability of the classification
models. This endeavor aims to elevate the precision and diagnostic efficiency of healthcare professionals
in the screening of congenital heart disease, providing comprehensive support for the lifecycle
management of CHD-afflicted children. Simultaneously, the widespread application of this technology
has the potential to expedite the establishment of dedicated networks for the screening, diagnosis, and
monitoring of CHD.
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