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Transient Responsein Cross-Ply Laminated Cylindersand Its Application to
Reconstruction of Elastic Constants

X.Han®23 G.R.Liut?2and G. Y. Li!?

Abstract:  An efficient hybrid numerica method is
presented for investigating transient response of cross-
ply laminated axisymmetric cylinders subjected to an
impact load. In this hybrid numerical method, the lam-
inated cylinder is divided into layered cylindrical ele-
ments in the thickness direction. The Hamilton princi-
ple is used to develop governing equations of the struc-
ture. The displacement response is determined by em-
ploying the Fourier transformations and the modal anal-
ysis. Numerical examples for analyzing transient waves
have been provided in axisymmetric laminated cylindri-
cal structures, both for thin cylindrical shells and thick
cylinders.

A computational inverse technique is also presented for
reconstructing elastic constants of axisymmetric cross-
ply laminated cylindersfrom the surface displacement re-
sponse data, using the present hybrid numerical method
as the forward solver and neural network as the inverse
operator. This technique is utilized to reconstruct the
elastic constants of an axisymmetric laminated cylindri-
cal shell.

keyword:  Composite laminate, circular cylindrical
structure, axisymmetric, material characterization, elas-
tic wave, NDT, neural network.

1 Introduction

Composite cylindrical structures have high strength and
stiffness, low coefficient of thermal expansion and ex-
cellent corrosion resistance. Besides, they also possess
an ease of fabrication, a relative low-cost process and
well-adapted production. In the application of laminated
cylindrical structures to aerospace, nuclear and automo-

1College of Mechanical and Automotive Engineering, Hunan Uni-
versity, Changsha410082 Hunan, PR. China

2Centre for Advanced Computations in Engineering Science
(ACES) Department of Mechanical Engineering, National Univer-
sity of Singapore 10 Kent Ridge Crescent, Singapore 119260

3 Tel/Fax: 65-68744795; Email:acehanxu@nus.edu.sg

bileindustries, analyses of transient wavesin them are of
very importance. Furthermore, the property eval uation of
laminated cylindrical shells has been one of the focuses
of research.

There have been considerable works on wave prop-
agation problems related to composite cylindrical
shells. Chou and Achenbach (1981) provided a three-
dimensiona solution for orthotropic shells. Yuan et
al. (1988) proposed an anaytical method for the in-
vestigation of free harmonic wave propagation in lam-
inated shells. Li et a. (1994) investigated the tran-
sient response of a cylindrical shell of finite length to
transverse impact. Markus and Mead (19953, b) pre-
sented an analytical method for investigating the disper-
sion behavior of wavesin orthotropic laminated cylindri-
cal shells. Because of the absence of a simple general
solution for the shell waves, there are some numerical-
analytical methods are proposed for waves propagating
in composite shells. Nelson et a. (1971) proposed a
numerical-analytical method (NAM) for analyzing waves
in laminated orthotropic cylinders. In the analysis, the
circumferential and axial displacements are represented
by trigonometric functions, while the radia displace-
ment is modeled by finite elements. Rattanwangcharoen
et al. (1994, 1997) attacked the reflection problem of
waves at the free edge of laminated circular cylinders.
Zhuang et al. (1999) gave the construction of elastody-
namic Green's function for laminated anisotropic cylin-
ders. Xi et a. (2000) examined waves scattered by a
crack in fluid-loaded axisymmetric laminated compos-
ite cylinders. Han et al. dealt with transient responses
(2001) of cylindrical shellsmade of functionally gradient
materials, and characteristics of waves (Han et a., 2002)
in a functionally graded cylindrical shell. Verbis et al.
(2002) investigated the elastic wave propagation in fiber
reinforced composite materials with non-uniform distri-
bution of fibers.

Advanced nondestructive methods for material charac-
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Figurel1: A laminated circular cylindrical shell constituted with cross-ply layers.

terization of composite utilize complex relationships be-
tween the structure behaviors and material property.
These relationships are often represented by a known
mathematical model, which definesthe forward problem.
Thusif a set of reasonably accurate experimentally mea-
sured structure behaviors datais available, material prop-
erty of composite may beidentified by solving aninverse
problem properly formulated. In an inverse process, the
efficiency of the forward solver is the important factor
affecting the performance, as it is usually called many
timesin theinverse process.

Considerable works have been done in the inverse
identification of the properties of composite materials
((Mignogna, 1990; Mignogna et a., 1991; Chu and
Rokhlin, 1994; Rokhlin and Wang, 1992; Chao et al.,
2001; Skovoroda and Goldstein, 2003; Sheen et .,
2003). Neura network (NN) techniques have also been
applied in solving inverse problems. Examples include
the reconstruction of constitutive properties using depth-
load responses (Huber and Tsakmak, 1999) and using
group velocities, phase velocities or slowness measure-
ments (Sribar, 1994). Recently, a progressive NN ap-
proach (Liu et al., 2001) is suggested to characterize the
material property of functionally graded material plate
using the elastic waves. NN approaches can offer the ad-
vantages of very high efficient inversion operation and
can avoid the need for thousands of times of calling of
forward solvers. The hybrid numerical method (HNM)
(Liu et a., 1991; Liu and Xi, 2001) is one of the most
efficient numerical tools for 2D or 3D transient wave
analysis in composite laminated plates. The efficiency
is achieved by combining the finite element technique
with the numerical Fourier transformation technique as
well asthe model analysistechnique for dealing with the

timeintegration. This paper consiststwoimportant parts.
The first part is to apply the process of HNM for calcu-
lating the transient response of laminated cylinders. In
this method, the laminated cylinder is divided into lay-
ered cylindrical elementsin the thickness direction. The
Hamilton principle is used to develop governing equa
tions of the cylinder. The displacement response is de-
termined by employing the Fourier transformations and
the modal analysis. This hybrid numerical method can
reduce the number of elements, thus it has outstanding
computation efficiency in the transient wave analysis of
laminated cylindrical shellsand pavestheway for inverse
operations. The other part is to suggest a computational
inverse technique for reconstructing elastic constants of
laminated cylinder using the present hybrid numerical
method and the NN model. Numerical examples are pre-
sented to demonstrate the efficiency of the presented for-
ward solver and the computational inverse technique.

2 Hybrid numerical method

Consider alaminated compositecircular cylindrical shell
made of an arbitrary number of linearly elastic shell-like
plies. The thickness, inner radius and outer radius of the
cylinder aredenoted by H, Ry, R, respectively, asshown
in Figure 1. Let x and z denote respectively the axial and
radial coordinates. The cylinder is subjected to a radial
line load of g = qod(x) f(t) uniformly distributed along
the circumferential direction, where § is the Dirac delta
function, and f(t) isafunction of the time. Because the
geometry of the cylinder and the load are independent of
the circumferential direction, the problem is axisymmet-
ric.
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Figure 2 : Annular element subdivisionand the nth isolated annular element.

The stain-displacement relations are given by

e=LU D
wheree = [ ex & & &x ]T is the vector of stains,
U = [uw]Tisthe vector of displacements, u and w are the
displacements in the axial and radial directions, respec-
tively, and L isthe operator matrix
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where 6 = [ 0x Op O; Ox | is the vector of
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C=

whose expressions in terms of engineering constants are
given in detail by Vinson and Sierakowski (1987).

We proceed with the derivation of the HNM formula.
The annular elements are used to model the radia dis-
placement component of the shell, while the axial and
circumferential displacement components are dealt with
analytically. In view of the heterogeneity of the lami-
nated cylindrical shell in the radial direction, an annular
element shown in Figure 2 is used in the subdivision of
the shell so as to achieve high computational precision.
Thethickness and inner radius of the nth element are de-
noted by h,, and ry, respectively. It can be found that the
outer radius of the nth element is equal to r,+h,. The
elastic constantsin each annular el ement are the same.

Approximating the displacement field within an element
as

U=Nd (5)

where N is the shape function matrix of second order
given by

N = [(1-3z+27%)E 4(z—7)E (27 -2)E] (6)
Here E is a 2 by 2 identity matrix and Z= z/h,, and
d is the displacement amplitude vector at z= 0, z =

0.5h, and z= h,, asfollows:
d=[d" dy di]’ W
Taking variation with respect to U following the Hamil-
ton principle, leads to the following governing ordinary
differential equations of the element (Liu et al., 1991):

q=Md+Kpd 8)

wherethe dot represents the derivative with respect to the
time, and

2

d
Kp=—Azgs A1 +Ao 9

dx
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Thesubscript ‘D’ denotesthat K isadifferential operator
matrix. Matrices M and g are the mass matrix and the
load matrix, respectively. The expressions for matrices
Ai(i=0,1,2)and M are given in the appendix.

As it can be seen from equation (9), the origina partial
differential equationsof the cylinder with three variables
(%,z,t) have simplified to a system of ordinary differen-
tial equationsby the above procedure. Assembling all the
elements, a system of approximate differential equations
for the whole cylinder may be expressed as

Ot = M0 +Kop, o (10)
where

d2
Kot = —Az g5 +An g +Aa (1)

In these equations, the subscript ‘t’ denotes matrices or
vectors for the whole cylinder. The matrices Ay (i =
0, 1, 2), M and the vectorsg;,d;can be obtained by as-
sembling the corresponding matrices and vectors of ad-
jacent elements. The sizes of d; and gtare M x 1, and
the sizes of the matrices M; and Aj; are M x M, where
M =2x (2N+1) and N isthe number of the layer ele-
ment.

The application of the Fourier transformations to equa-
tion (11) leadsto

G = M + K, dy (12)

where dand §; are the Fourier transformations of
d and g, respectively, and K ; isthestiffnessmatrix given

by

Ki = K*Ax +ikAg +Ag (13)

where k isthe wavenumber of the axial direction.

The modal analysisis used to obtain the Fourier transfor-
mation of the displacement vector. Solving the following
eigenval ue equation corresponding to equation (12),

0= [K; — @?M¢]oR (14)
The eigen-frequencies op,(m= 1,2,3...M)and the corre-
sponding right eigenvectors ¢ can be obtained. For a
time-step impact load, the displacement in the Fourier
transformation domain is given following the method
givenby (Liuetal., 1991; Liu and Xi, 2001):

Z Omt R (1— coswmt)

d K,t)
! ®Z2Mn,

(15)
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where om,0R and ok, are the mth eigenfrequency and the
corresponding right and | eft eigenvectors, and
Mm = 0 MOf, (16)
Taking the inverse Fourier transformation, the displace-
ment responsein the space-time domain can be expressed

by

dixt) = — / ™ (k etk (17)
Tt o/ . 3

The integration in equation (17) can be carried out by
using the fast Fourier transform (FFT) techniques.

It should be noted that the present treatment solves the
governing equation as an eigenvalue problem at each
wavenumber with real eigenvalues, numerically integrate
over wavenumbers to get the solution in frequency do-
main. In thistreatment, we cannot get the close solution
in frequency domain. The major aspect of thistreatment
isthat the solution in time domain can be obtained with-
out any singularities over the integration path. Based on
our experience in numerical performance, this trestment
is more efficient for numerical calculation for transient
response in time domain. Furthermore, several numer-
ical techniques (Liu et a., 1997; Liu and Lam, 1996)
have been suggested to further improve the efficiency of
the present treatment in cal culating the displacement re-
sponsein time domain.

The present HNM is different to other treatment as that
solves the governing equation as an eigenvalue problem
at each given frequency, then integrated analytically over
the wavenumbers to get the solution in frequency do-
main. The frequency solution can be anaytically ob-
tained, and this treatment is considered as a more effi-
cient method for analysis of waves in the frequency do-
main. However, in the numerical performance of this
treatment, the eigenvalues are generally complex values,
and the numerical integration over frequenciesto thetime
domain needs to avoid the singularities over the integral
path. For examples of this kind treatment, the authors
are suggestedto refer (Zhuang et al., 1999; Liu and Lam,
1996).

3 Numerical resultsand discussions

In this section, numerical results are presented for tran-
sient response of impact loads in laminated composite
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cylinder. In laminate codes used below, a lamina num-
bering increases from the inner to outer surface; lettersC
and G represent carbon/epoxy and glass/epoxy, respec-
tively; the number following the letters indicates the az-
imuthal angle of the fiber orientation with respect to the
X axis; the subscript s denotes that the multilayered shell
is symmetrically stacked about the middle surface. The
material constants of carbon/epoxy and glass/epoxy are
provided by Takahashi and Chou (1987).

In the calculations, the follows dimensionl ess parameters
are used:

X=X/H, Tj=0j/cks, W=c&W/qoR,,
U=cEu/qoRe, @ = h/cs

Cgs/Pe, T=r/H, p=p/pc (18)

CS:

where cZ5 and p. stand for the reference material con-
stant and mass density. Here they are equal to the ma-
terial constant cs5 and mass density of the carbon/epoxy.
Two ratios of the inner radius to thickness, R; = H and
R; = 20H areemployed in thefollowing calculations, the
former is viewed as athick circular cylinder, and the lat-
ter isviewed as athin circular cylindrical shell.

The time history of the incident wavelet is given as

sin(2nt /tq)

f(t)—{ ;

wherety isthe time duration of the incident wavelet and
Of = %" In this paper, we set f4 = 2.0. It means that the
wavelet isone cycle of the sine function.

Figures 3 (a) and 3(b) show the time history of the
displacements in the axial and radia direction on the
outer surface of a glass-carbon [C90/G0/G90] s cylin-
drical shell (Ry = 20H) subjected to a radial line load
defined by equation (19) uniformly distributed along
the circumferential direction at x = O, respectively. In
the simulation, each ply is divided into 4 layers. A
comparison of the displacement response between glass
[G90/GO]s and carbon [C90/CO]s laminated cylindrical
shellsis also presented in thisfigure. It can be observed
from Figure 3(b) that the peak value of displacement re-
sponse in the radial direction for the carbon-glass cylin-
drical shell is less than that for the carbon cylindrical
shell aso the glass one. Figures 4(a) and 4(b) show the
time history of the displacementsin the axial and radial

O<t <ty

t<Oandt>tq (19)
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Figure 3 : The time history of the displacement at X =
5on the outer surface of cylindrical shells (R = 20H)
subjected to a radial line load defined by equation (23)
uniformly distributed aong the circumferential direction
ax=0

direction, but for the glass-carbon [C90/G0/G90] s cylin-
der (R, = H). The comparison of the displacement re-
sponse between glass [G90/GO0] s, and carbon [C90/CO] ¢
laminated cylinder is also presented. Same property but
more clear as Figure 3(b) can be observed from Figurer
4(b) that the peak value of displacement response in the
radial for the carbon-glass cylinder is less than that for
the carbon cylindrical shell asothe glassone, From these
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Figure 4 : Same as Figure 3 but for the cylinder (R1 =
2H)

results, it can be concludethat the carbon-glasslaminated
cylindrical shell have better properties for attenuation of
the displacement responsein theradial directioninduced
by the same source of excitation.

To show the characteristics of waves, the so-called x —t
plane (Graff, 1991) isoften used. Dueto the aniosortropy
of the shells, and the presence of boundaries, al kinds of
waves are dispersive vector waves, and coupled to each
other. Therefore there is no pure longitudina wave (P
wave), or shear wave (S wave). Also, it isimpossible
to observe clear wave fronts of these wavesin the x —t

CMC, vol.1, no.1, pp.39-49, 2004

Figure 5 : Displacement in axia direction on the outer
surfacein the z—t plane of the [G0/90] s cylindrical shell
(RiH = 20)

Figure 6 : Same as Figure 5 but for displacement in ra-
dial direction

plane. However, waves having similar properties of P
and S waves can be still observed in the x —t plane. Fig-
ures 5 and 6 show the x—t plane for the displacement re-
sponseu and w on the upper surface of the[ GO/90] s shells
subjected to a radial line load defined by equation (19)
uniformly distributed aong the circumferential direction
at x = 0, respectively. From these two figures, it can
be seen that at different times, different forms of wave
field are observed. The form of the wave field is chang-
ing while waves are propagating, because the waves are
scattered by the boundaries and anisotropy of the shell.
From Figure 5 the wave front of the pseudo-P wave can
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be quite clearly observed, as the displacement response
u is sensitive to the pseudo-P wave. The wave front for
the pseudo-P wave isless obviousin Figure 6, due to the
displacement response w is less sensitive than the dis-
placement response u. The wave front for the pseudo-S
wave is quite obvious.

A Fortran 90 program devel oped using proposed method
only needs about 25 second in a SGI Origin 2000 com-
puter to calculate a4-layer laminated axisymmetric shell.
This method has outstanding computation efficiency for
the wave analysis of laminated cylinders, thusit is used
for the following inverse procedure.

4 Applications to reconstruction of material con-
stants

4.1 Statement of the problem

Consider an axisymmetric cross-ply laminated cylindri-
cal shell (R; = 20H) with any number of anisotropic lay-
ers in the thickness direction. The incident excitation
waves to the laminated cylindrical shell are assumed to
be a radia line load acting at x = 0 on the upper sur-
face. The line load is defined by equation (19). Only
one receiving point is chosen on the outer surface of the
laminated cylindrical shell. An NN model is used for
the determination of elastic constants of anisotropic lam-
inated shells. The outputs of the NN model are elastic
constants. The displacement componentsin x directions
are selected asthe inputsfor the NN model.

In this paper, the progressive NN procedure (Liu et al.,
2001; Liu and Han, 2003) is employed as the inverse
technique to reconstructing the elastic constants of lam-
inated cylindrical shell. The proposed hybrid numerical
method is employed as the teacher of the NN model. A
brief description of the principle of the progressive NN
procedure is given as follows.

An NN model is trained using initia training data con-
taining a set of assumed elastic constants, which rep-
resents various elastic constants of laminated cylindri-
cal shell, and their corresponding displacement responses
calculated from the HNM. A neural network requires a
large training set to successfully learn and to generalize
the characteristic features from input-output pairs. Con-
sequently, it is essential that the calculation of the for-
ward problem is performed as efficiently as possible to
generate the training data set. The HNM is employed as
the teacher for training the NN model.

45

After theinitial training of the NN model, the determina-
tion of the elastic constants begins by feeding the mea-
sured displacement response data X r, into the NN model.
The outputs of the NN model are the determined elas-
tic constants Y. These determined elastic constants are
then fed into the HNM to produce a set of calculated dis-
placement response data X.. A comparison between the
calculated displacement response X and measured dis-
placement responses X, is made based on a given crite-
rion. If these two sets differ significantly such that the
criterion is not satisfied, then the NN model will be re-
trained on-line using adjusted training samples that con-
tain X; and Y. The retrained NN modéd is then used
to determine the elastic constants again by feeding in
the measured displacement responses X ,. This determi-
nation and on-line retraining procedure is repeated un-
til the difference between the calculated and measured
displacement responses satisfies the given criterion. At
the end of the progression, the final determined elastic
constants are guaranteed to produce the displacement re-
sponses that are very close to the measured ones when
fed into the hybrid numerical method.

4.2 Reconstruction Examples

Consider a simple case that the laminated cylindrical
shell is assumed to be made by the same material, but
with different ply-angles 0° or 90° for different layers.
We somehow know the ply-angles of each layers, we
want to determine the on-principal-axis el astic constants
from the displacement response.

Table 1 : The search range for the elastic constants for
glass/epoxy laminated cylindrical shell

Elastic Actual Search Range
Constants ~ Data (GPa) (GPa)

¢y 42.020 30-54

[ 6.067 4-8

Cyy 13.500 10-18

Cay 7.277 5-9

c 3.410 2-4

Elastic constants of the glass/epoxy [G90/0] s laminated
cylindrical shell are determined. The glass/epoxy mate-
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Table 2 : Reconstructed results of elastic constants of glass/epoxy [0/90] s laminated cylindrical shell

Result (deviation) at progressions

Elastic ~ Original 1 2 3 4

Constants  Value (GPa)

(a) noise free
c, 42.020 41.644(0.9%) 42.936(2.2%)  42.924(2.2%)  42.631(1.5%)
cp, 6.067 6.698(10.4%) 6.658(9.7%) 6.576(8.4%) 6.456(6.4%)
Cy 13.500 14.240(5.4%) 14.123(4.6%) 13.385(0.9%) 13.798(2.2%)
Cyy 7.277 7.868(7.7%) 7.861(8.0%) 7.657(5.2%) 7.469(2.6%)
Css 3.410 3.491(2.4%) 3.543(3.9%) 3.609(5.8%) 3.517(3.1%)

(b) noise-added
¢ 42.020 43.544(3.6%) 42.620(1.4%)  42.622(1.4%)  42.530(1.2%)
ch, 6.067 6.998(15.3%) 6.607(8.9%) 6.594(8.7%) 6.402(5.5%)
Cyy 13.500 13.876(2.8%) 14.022(3.9%)  13.322(1.3%) 13.873(2.8%)
Ca3 7.277 7.987(9.8%) 8.026(10.3%)  7.61(4.6%) 7.765(6.7%)
Css 3.410 3.392(-0.5%) 3.512(3.0%)  3.562(4.5%) 3.575(4.8%)

rial is the transversely isotropic material; there are only
five on-principal-axis elastic constants as listed in the
2" column in Table 1. Hence there are five param-
eters, named as Cy1,C10, Cp2, Co3 and Css need to be de-
termined. The search range for the five parameters is
set between —30% and +30% off from the actual val-
ues as shown in Table 1. Both the noise free and noise-
contaminated displacement response is used for the re-
construction of the elastic constants. The Gauss noiseis
directly added to the computer-generated displacements.
A vector of pseudo-random number is generated from a
Gauss distribution with mean a and standard deviation b.
The mean a is set to zero, and the standard deviation b

Ns
is 0.01x [1/ng 3. (u™?]%°, where u™ is the computer-
i=1

generated displacement reading at the ith sample point,
Nns isthe number of sample.

Table 2 summarizes the reconstructed results of the elas-
tic constants. Theresultsfor four progressionsare listed.
It can be found that the result at the first progression
is not accurate as the maximum deviation is high, and
the displacement responses corresponding to these recon-
structed el astic constantsare quite different from thesim-
ulated ones using the actual values of elastic constants.
A retraining for NN model is required. A new sample
is created from the 1% determined result and the corre-
sponding displacement responses cal cul ated from the hy-
brid numerical method. The new sample is added into
the original sample pool to replace the sample with large

distance norm (Liu et a., 2001). The retraining pro-
cess is repeated until the displacement responses corre-
sponding to the reconstructed elastic constants are suffi-
ciently close to the simulated measurements. The results
at stages of progressivetraining arealso listedin Table 2.
It can be seen from Table 2 that the accuracy of the de-
termined results increase as the progression number in-
creases, and the determined result is very accurate after 4
progressions. The maximum deviation of the sixth pro-
gression elastic constantsis as low as 6%. It can be also
found that, the determined result remains stable regard-
less the presence of the noise, and the required number of
progressionisnot changed, even when the noiseisadded.

This section mainly addressed the computational method
of the material constant reconstruction using elastic
waves and neural networks. The practical application
of the presented NN procedure relies on the tests of real
structures, and the NN procedure should be validated us-
ing practical experimental results. However, it should be
noted that it is often very difficult to train an NN model
for complex relationship between material property and
the dynamic responsesto be valid in awide range of pa-
rameters and for more parameters.

5 Conclusions

In this paper, a HNM is presented for analyzing the
transient response of cross-ply axisymmetric laminated
shellsexcited by aradial lineimpact load. In thismethod,
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the laminated cylindrical shell is divided into layered
cylindrical elements in the thickness direction. The
Hamilton principle is used to develop governing equa
tions of the laminated cylindrical shell. The displace-
ment response is determined by employing the Fourier
transformations and the modal analysis. The solutionin
time domain can be obtained without any singularities
over the integration path. This method has outstanding
computation efficiency in the transient wave analysis of
laminated cylindrical shellsand pavestheway for inverse
operations.

A computational inverse technique is presented for re-
construction of elastic constants of laminated cylindrical
shellsusing the hybrid numerical method. It can befound
that this computational inverse technique could provide
an accurate prediction of the elastic constants of lami-
nated cylindrical shells from the displacement response
data measured on the surface. The present HNM can be
used as a forward solver in an inverse process for ma-
terial constant reconstruction of axisymmetric laminated
cylindrical shells.
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