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The Effect of the Reynolds Number on Lateral Migration of
Nonneutrally-Buoyant Spherical Particles in Poiseuille Flow

S.-C. Hsiao1 and M.S. Ingber2

Abstract: The lateral migration of nonneutrally-
buoyant spherical particles in Poiseuille flow is investi-
gated numerically using the boundary element method.
In particular, the steady, Navier-Stokes equations are
solved using a classical domain integration method treat-
ing the nonlinear terms as pseudo-body forces. The
numerical results for the lateral migration velocity are
compared with experimental data [Jeffrey and Pearson
(1963)]. The numerical results indicate that the lat-
eral migration velocity does not scale linearly with the
Reynolds number. The methodology is extended to in-
clude non-Newtonian power-law fluids. The migration
velocity is significantly affected for particles suspended
in this class of fluids and can actually change direction
for large values of the power-law index.
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1 Introduction

Particles suspended in pressure-driven flows play an im-
portant role in many engineering applications such as
secondary petroleum recovery processes, paper manufac-
turing, chromotography, environmental waste treatment,
and composite material processing. As a result, many
analytical and experimental studies have been performed
to characterize particle behavior in nonlinear shear flows
[Segré and Silberberg (1961); Ho and Leal (1974); Jef-
frey and Pearson (1963); Cox and Hsu (1977); Vasseur
and Cox (1976a); Vasseur and Cox (1976b)]. In addi-
tion, several numerical studies have been performed for
this class of flows based on traditional boundary element
methods both in the zero-Reynolds number limit [Ingber
(1991); Tran-Cong and Phan-Thien (1989); Fang, Mam-
moli, and Ingber (2001)] and at low, but finite, Reynolds
numbers [Li and Ingber (1994)]. Recently, a class of
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meshless methods have been developed which can be
applied to this problem both in the zero-Reynolds num-
ber limit [Tsai, Young, and Cheng (2002)] and at finite
Reynolds number [Lin and Atluri (2001)].

Spheres at low but nonzero Reynolds number experience
a radial force which results in a lateral migration velocity
in cylindrical Poiseuille flow. In fact, in many cases, par-
ticles tend to accumulate in preferential radial locations
within the cylinder which may be a desired result (e.g.,
chromotography) or an undesired result (e.g., composite
materials processing). The lateral migration velocity is
several orders of magnitude smaller than the characteris-
tic Poiseuille mean flow velocity making it is extremely
difficult to obtain accurate quantitative experimental re-
sults. Therefore, it is not surprising that the existing
experimental data which was collected more than two
decades ago show considerable scatter [Ishii and Hasi-
moto (1980)]. Alternatively, numerical experiments for
well-characterized systems can be efficiently performed.
Li and Ingber (1994) investigated the lateral migration of
spherical particles in Poiseuille flow using the boundary
element method. To avoid the domain integration asso-
ciated with the nonlinear convective acceleration term,
a particular solution method similar to the dual reci-
procity method was used. Two cases were considered for
nonneutrally-buoyant spheres in Poiseuille flow, namely,
the case in which the sphere lags the mean flow and the
case in which the sphere leads the mean flow. Although
their results show reasonable agreement with experimen-
tal results, the lateral migration velocity for particles near
the center of the cylinder showed the opposite sign com-
pared to experiment for both the lead and lag cases.

An alternative approach for dealing with the nonlinear
convective acceleration term is the direct domain integra-
tion method which is adopted in this study. In particular,
the lateral migration problem is investigated with partic-
ular attention being paid to the effect of the Reynolds
number on the migration velocity. The extension of the
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BEM methodology using direct domain integration to
non-Newtonian fluids is straight forward since the extra
stress simply becomes an additional term in the domain
integral. Non-Newtonian power-law fluids are also con-
sidered in the current study. The numerical methodology
is presented in Section 2, results are presented in Section
3, and conclusions are presented in Section 4.

2 Numerical formulation for Newtonian and non-
Newtonian fluids

The system under consideration in this study consists of
a nonneutrally-buoyant sphere of radius a suspended in
an incompressible Poiseuille flow at a distance b from
the axis of the cylinder (Fig. 1). It is well known that
the system is characterized by the quasi-steady Navier-
Stokes equations given in tensor form by
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where p is the pressure, η is the dynamic viscosity, u i is
the component of the velocity vector and ρ f is the density
of fluid.
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Figure 1 : A sketch of the problem geometry.

A power-law model [Chhabra (1993)] is adopted in this
study whereby the viscosity, η, is a function of the shear
rate, γ̇, given by

η(γ̇) = Kγ̇n−1 (3)

where K is called the consistency index, 0 < n ≤ 1 is
the power-law index, and γ̇ is the generalized shear rate
defined by

γ̇=
√

2εi jεi j (4)

where εi j is the rate of strain tensor given by

εi j =
1
2

(
∂ui

∂x j
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)
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It is noted that the power-law model reduces to the New-
tonian case by choosing n = 1.

The stress tensor and the deviatoric stress tensor for the
power-law fluid can be written as

σi j = −pδi j + τi j

τi j = 2η(γ̇)εi j (6)

Assuming that the non-Newtonian fluid property does not
deviate much from the “base Newtonian” fluid, the stress
tensor can be decomposed into a linear part, τ (N)

i j , and a

nonlinear part, τ(e)
i j . The nonlinear part, τ(e)

i j , is commonly
referred to as the “extra stress”. Hence, the stress tensor
can be written as

σi j = −pδi j +ηNεi j + τ(e)
i j = σ(N)

i j + τ(e)
i j (7)

where
σ(N)

i j = −pδi j +ηN εi j

τ(e)
i j = (η(γ̇)−ηN)εi j (8)

where ηN is a free constant which can be chosen to be
the zero-shear rate viscosity.

The boundary conditions on the lateral surface of the
cylinder are given by the no slip conditions and the
boundary conditions on the top and bottom of the cylin-
der are prescribed by the undisturbed Poiseuille flow ve-
locity. That is, it is assumed that the disturbance caused
by the particle at both ends of cylinder is negligible. It
is possible to prescribe pressure boundary conditions on
the ends of the cylinder but this introduces a hypersingu-
lar integral into the boundary element formulation [Ing-
ber and Li (1991)]. Along the boundary of the particle,
the no-slip boundary condition is given by

ui = uc
i +εi jkωjrk (9)
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where uc
i is the centroidal component of the particle ve-

locity, εi jk is the permutation symbol, ω j is the centroidal
component of the particle angular velocity and r k is the
position vector component from the centroid of the par-
ticle to the boundary.

To complete the problem description, the particle is as-
sumed to be in equilibrium. That is, the only accelera-
tion that is considered in the formulation is the convec-
tive fluid acceleration. The equilibrium equations for the
particle can be written as

∫
Γm

tidΓ−bi = 0 (10)

and ∫
Γm

εi jkr jtkdΓ = 0 (11)

where Γm is the surface of the particle and bi is the com-
ponent of the body force acting on the particle. Phys-
ically, these equations represent the force and moment
balance for the particle. It is interesting to note that the
rate of strain tensor, εi j, is zero on the particle surface as
seen by substituting Eq. 9 into Eq. 5. Therefore the force
and moment balances, Eq. 10 and Eq. 11, respectively,
can be rewritten as∫

Γm

t(N)
i dΓ−bi = 0 (12)

and ∫
Γm

εi jkr jt
(N)
k dΓ = 0 (13)

where t(N)
i is the component of the Newtonian-based trac-

tion associated with σ(N)
i j .

The governing differential equations (Eqs. 1 and 2) can
be converted into a boundary integral equation using
standard techniques [Ladyzhenskaya (1963)]. The cor-
responding boundary integral equation is given by

Cik(x)ui(x)+
∫
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∫
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Ω is a multiply-connected domain consisting of a circular
tube with a spherical exclusion, Γ denotes the boundary
of the domain Ω, δik is the Kronecker-delta function, xi

is the component of the field point x and y i is the com-
ponent of the source point y. The coefficient tensor Cik is
related to the local geometry at the field point and can be
computed using

Cik(x) = −
∫

Γ
q∗i jk(x,y)n j(y)dΓ (15)

The nonlinear convective acceleration and extra stress
terms in Eq. 14 given by f i appear in the domain in-
tegral as a pseudo-body force. It is worth noting that
the pseudo-body force component, f i, can be calculated
at each Gauss point as long as the components of the
velocity and the velocity gradient are known at the fi-
nite element nodes associated with the interior discretiza-
tion. Several methods have been developed over the past
several years to treat domain integrals in boundary el-
ement formulations including dual reciprocity methods
[Partridge and Wrobel (1992); Golberg, Chen, Bowman,
and Power (1998)], multiple reciprocity methods [Nowak
(1989); Power (1994)], and particular solution methods
[Ahmad and Banerjee (1986); Ingber and Phan-Thien
(1992)]. In all of these methods, the domain integral can
either be eliminated by constructing an approximate par-
ticular solution or the domain integral can be converted
into a series of additional boundary integrals. These
methods have been very popular in the boundary element
literature, in part, for aesthetic reasons in that the analysis
depends only on boundary integrals. Recently, however,
Ingber, Mammoli, and Brown (2001) have shown that
evaluating the domain integral in boundary element anal-
yses using classical Gaussian quadrature can be, in many
cases, more efficient than the above mentioned boundary
only methods both in terms of accuracy and CPU require-
ments.

In the current formulation, classical Gaussian integra-
tion is used to evaluate the domain integral containing
the nonlinear pseudo-body force terms. More specifi-
cally, the domain Ω is discretized into 10-node tetrahe-
dral finite elements and the boundary of the domain Γ is
discretized into superparametric quadrilateral boundary
elements. In particular, the geometry is approximated
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with biquadratic shape functions while the components
of traction and velocity are approximated as constants
within the boundary elements.

An incremental iteration scheme is used to evaluate the
interior convective accelerations contained in the func-
tion fi. Initially, for the first Reynolds number considered
(Re = 5), the interior velocity and velocity gradient com-
ponents are assumed to be zero. That is, the Stokes prob-
lem is solved. Then the boundary integral equation (BIE)
(Eq. 14) is used to determine the interior velocity compo-
nents and the derivative of the boundary integral equation
(DBIE) is used to determine the interior velocity gradient
terms. The interior domain integral is now evaluated with
the updated convective acceleration terms and the bound-
ary element analysis is again performed to determine the
boundary unknowns. With the updated boundary data,
the interior convective acceleration terms are evaluated
using the BIE and DBIE. This process is repeated until
the unknown data (centroidal linear and angular veloc-
ity components and boundary tractions) converge. The
convergence criterion is given by

|dnew−dold|
dold

< 5×10−5 (16)

where d is the vector comprised of the unknown data.
Over-relaxation is used to accelerate the convergence of
the iteration. Typically, convergent solutions were ob-
tained within 20 iterations. Finally, in the incremental
scheme, when going to the next higher Reynolds number,
the converged solution for the previous Reynolds number
is used initially to evaluate the domain integral contain-
ing the convective acceleration terms.

3 Results

Two cases are considered in this study for nonneutrally
buoyant particles suspended in Poiseuille flow of a New-
tonian fluid. The first case consists of either a heavy par-
ticle in an upflow or a buoyant particle in a downflow
for which the particle lags the mean flow. The second
case consists of either a heavy particle in a downflow
or a buoyant particle in an upflow for which the parti-
cle leads the mean flow. The main focus of this study
is on the relationship between lateral migration velocity,
Ul, the Reynolds number, Re, and the eccentric position
of the sphere, b. In addition, the case in which the par-
ticle leads the mean flow is considered for a power-law
fluid.

3.1 Newtonian suspending fluid

The dimensionless parameters characterizing this prob-
lem are defined as

Re =
ρ fUmD

µ
; Re f =

ρ fU∞a

µ
;

k =
2a
D

; r =
2b
D

(17)

where Re is the tube Reynolds number, ρ f is the fluid
density, Um is the mean velocity of the undisturbed
Poiseuille flow, k is the ratio of the particle to cylinder
diameter, Ref is the particle free fall Reynolds number,
and U∞ is the sedimentation velocity of the sphere in an
unbounded quiescent fluid. The sedimentation velocity
is given by

U∞ =
2a2(ρs−ρ f )g

9µ
(18)

in which ρs is the density of spherical particle and g is
the gravitational constant.

The diameter of the tube D and the length L are taken
to be 10 and 15, respectively in all of the following nu-
merical results. After a series of convergence tests were
performed, a discretization containing 224 boundary ele-
ments for the cylinder and 96 boundary elements for the
sphere was used to generate the numerical results. In or-
der to compare to the experimental results of Jeffrey and
Pearson (1963), the parameter k is chosen to be k = 0.09
and U∞/Um = 0.14391. Note that the parameter U∞/Um

is essentially a measure of the density difference between
the sphere and the suspending fluid.

Results for the lateral migration velocity Ul as a func-
tion of the dimensionless eccentric position, r, are plotted
in Fig. 2 for the case where the particle leads the mean
flow and in Fig. 3 for the case where the particle lags the
mean flow. The lateral velocity is made dimensionless
by dividing by UmRe to match the results of Jeffrey and
Pearson (1963). Jeffrey and Pearson measured the tube
Reynolds number to be Re ≈ 22.7 in their experiments. It
is seen in Fig. 2, for the case where the particle leads the
mean flow, that the present numerical results for the lat-
eral migration velocity are in satisfactory agreement with
the experimental results. In particular, the numerical re-
sults are below the experimental results for r < 0.65 and
are above the experimental results for r > 0.65. How-
ever, it should be noted that Jeffrey and Pearson did not
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discuss, to any extent, experimental errors, and, in fact,
state that “the results cannot be more than indicative of
the quantitative nature of the general particle migration.”
Experimental measurements are difficult because the lat-
eral migration velocity is several orders of magnitude less
than the mean flow velocity, and hence, experimental er-
rors may have been fairly large. Similar agreement be-
tween the current numerical results and experiment can
be seen in Fig. 3 for the case where the particle lags the
mean flow. Here, the numerical results are above (in ab-
solute value) the experimental results for r < 0.5 and are
below the experimental results for r > 0.55.
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Figure 2 : The normalized lateral migration velocity as a
function of the eccentric position r for the case in which
the sphere leads the mean flow with U∞/Um=0.14391.

The dimensionless lateral velocity used by Jeffrey and
Pearson as shown in Figs. 2 and 3 masks the dependence
of the lateral migration velocity on the Reynolds number.
In order to view this dependence more clearly, the lateral
migration velocity is plotted against eccentric position
in Figs. 4 and 5 for the cases in which the sphere leads
and lags the mean velocity, respectively. The following
observations can be made for both cases. At small ec-
centric positions, the absolute value of the lateral migra-
tion velocity decreases with Reynolds number whereas,
at large eccentric positions, the absolute value of the lat-
eral migration velocity increases with Reynolds number.
At intermediate eccentric positions, the absolute value of
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Figure 3 : The normalized lateral migration velocity as a
function of the eccentric position r for the case in which
the sphere lags the mean flow with U∞/Um=0.14391.

the migration velocity first increases then decreases with
Reynolds number.

3.2 Power-law susupending fluid

To show the extension of the general methodology to
a non-Newtonian fluid, a sphere suspended in tubular
pressure-driven flow of a power-law fluid is considered.
In particular, the case in which the particle leads the fluid
velocity is considered for power-law indices in the range
0.4 ≤ n ≤ 0.9. Again, it is assumed that the velocity dis-
turbance at both ends of cylinder caused by the particle
is negligible. The exact solution for the pressure-driven
flow of a power-law fluid in a cylinder can be easily ob-
tained by integrating radial momentum equation. The
only non-zero velocity is a function of r and can be ex-
pressed as

u(r) =
n

n+1

(
2
K

) 1
n
(
−dp

dz

) 1
n
(

D
2

) n+1
n (

1− r
n+1

n

)
(19)

or equivalently expressed in terms of average velocity Um

as

u(r) =
3n+1
n+1

Um

(
1− r

n+1
n

)
(20)
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Figure 4 : The lateral migration velocity as a function of
the eccentric position r for the case in which the sphere
leads the mean flow with |U∞|/Um=0.14391.

The corresponding pressure gradient is given by

−dp
dz

=
(

3n+1
n+1

)n

Un
m

(
K
2

)(
D
2

)−1−n

(21)

Note that for fixed ”r” and ”Um”, the undisturbed velocity
is only function of n which can be seen from Eqn. 20.

The initial position of the particle, consistency index, and
Reynolds number are chosen as r = 0.7, K = 5, and Re =
5. In order to compare the non-Newtonian results with
the Newtonian results, k = 0.09 and U∞/Um = 0.14391.
The lateral migration velocity as a function of the power-
law index is shown in Fig. 6. The effect of reducing the
power-law index from 1 (Newtonian case) is to reduce
the lateral migration velocity. In fact, the direction of
the migration velocity is seen to reverse as the power-law
index is reduced below approximately 0.7.

4 Conclusions

The lateral migration of a rigid spherical particle in cylin-
drical Poiseuille flow is reexamined using the boundary
element method with classical domain integration. The
current numerical results are in good agreement with the
experimental results of Jeffrey and Person (1963). Partic-
ular attention is paid to the effect of the Reynolds number
on the migration velocity. Dimensional analysis indicates
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Figure 5 : The lateral migration velocity as a function of
the eccentric position r for the case in which the sphere
lags the mean flow with |U∞|/Um=0.14391.

that the lateral velocity of the sphere, Ul, can be written
as a function of the following parameters

Ul

Um
= f

(
Re,k, r,

U∞

Um

)
(22)

The parameter U∞/Um can be thought of as a measure of
the density difference between the fluid and the particle.
Brenner (1966) identified five separtate flow regimes for
this problem based on the magnitude of U∞/Um. For all 5
of these flow regimes, Brenner postulated that the the lat-
eral migration velocity of the sphere should scale linearly
with the tube Reynolds number, Re. The current results
are best correlated to Brenner’s case (iii) characterized
by (2a/D)2 <<|U∞ | /Um << 1. These results contradict
Brenner’s conjecture in that the lateral migration velocity
does not scale linearly with the tube Reynolds number.

Preliminary results were also obtained for the lateral mi-
gration of a spherical particle suspended in pressure-
driven flow of a power-law fluid. The non-Newtonian
behavior of the fluid was seen to greatly affect the mi-
gration velocity to the point where the direction of the
migration can be reversed.
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