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Computational Nano-mechanics and Multi-scale Simulation

Shengping Shen1 and S. N. Atluri1

Abstract: This article provides a review of the com-
putational nanomechanics, from the ab initio methods
to classical molecular dynamics simulations, and multi-
temporal and spatial scale simulations. The recent
improvements and developments are briefly discussed.
Their applications in nanomechanics and nanotubes are
also summarized.

1 Introduction

Due to their potentially remarkable mechanical proper-
ties, nano-structured materials have stimulated a lot of in-
terest in the materials research community in the last few
years. The design and fabrication of these materials are
performed on the nanometer scale, with the ultimate goal
of obtaining highly desirable macroscopic properties. In
particular, materials such as nanotubes, nanoparticle-
reinforced polymers and metals, and nano-layered ma-
terials have shown considerable promise. With the ad-
vances in materials synthesis and device processing ca-
pabilities, the importance of developing and understand-
ing nanoscale engineering devices has dramatically in-
creased over the past decade. Nanotechnology deals with
materials, devices, and their applications at the nano-
scale, where many diverse enabling disciplines and as-
sociated technologies start to merge, because these are
derived from the rather similar properties of the atomic
or molecular level building blocks. The subject of nano-
science/technology is defined as the science and tech-
nology of the direct or indirect manipulation of atoms
and molecules into functional structures, with applica-
tions that were never envisioned before [Srivastava and
Atluri (2002)]. Nano-mechanics deals with mechanics
problems associated with modeling, design, fabrication
and application of three-dimensional structures and sys-
tems with nanometer-scale dimensions. Nanoscale sys-
tems have a number of interesting features which distin-

1 Center for Aerospace Research & Education
University of California at Irvine
5251 California Avenue, #140, Irvine, CA 92612, USA

guish them from micro- and marco-scale systems.

An underlying issue in modeling the macroscopic me-
chanical behavior of nano-materials, based on molecu-
lar structure, is the large difference in temporal and spa-
tial scales. Computational molecular dynamics and con-
tinuum mechanics are on the opposite ends of the tem-
poral and spatial scale spectrum, and consist of highly
developed and reliable modeling methods. Computa-
tional continuum mechanics methods predict the macro-
scopic mechanical behavior of materials idealized as con-
tinuous media, based on known constitutive relation-
ships of the bulk material, while computational molec-
ular dynamic models predict molecular properties based
on known quantum interactions. However, a correspond-
ing model does not exist in the intermediate time and
length scale range, where the disparate length seals as-
sociated with molecular and continuum phenomena, and
disparate time-scales of the molecular and continuum
phenomena, may be present simultaneously. If a hierar-
chical approach is used to model the macroscopic behav-
ior of nano-materials, then a methodology is needed to
link the molecular structure and macroscopic properties.

However, systems with multiple length scales are ubiq-
uitous in science, for example, the sub-micron Micro-
Electro-Mechanical Systems (MEMS), or even Nano-
Electro-Mechanical Systems (NEMS), where the behav-
ior is determined by the interplay between the micron-
scale continuum mechanics and the nanoscale atomistic
processes. The continuum mechanics is governed largely
by the geometry of the device, while the atomistic pro-
cesses are important only in its smallest features. Con-
tinuum analyses are appropriate only for a large enough
system. The nano-scale is the length scale of individ-
ual atoms, i.e. 1-10 nm. At such small length scales,
continuum models are not flexible enough to accommo-
date the individual atomic scale processes. Alternative
to continuum analysis, the atomistic modeling and sim-
ulation calculates, individual atoms explicitly, and fol-
lows them during their dynamic evolution. Even though
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this atomistic method can trace all the details of atomic-
scale processes explicitly, it still has time and length
scale limitations from both small and large directions.
When the length-scale cannot be accessed either by con-
tinuum methods, since it is too small for averaging, or by
the atomistic methods (molecular dynamics or quantum
mechanics), since it is too large for simulations on the
current computers, these two approaches become inade-
quate, which has presented significant challenges to the
scientific community.

The amount of computer resources needed to investigate
a given volume of matter dramatically increases as one
goes from the top down to the bottom, i.e. from the
continuum, through the mesoscopic, the atomistic and
to the quantum methods. Quantum mechanics solves
Schrödinger’s equation for the electrons in the system.
Atomistic methods generally model atoms as spheres
which may be linked together to form molecules. By
assuming point charges on the nuclei of the atoms, elec-
trostatic interactions are included. Mesoscopic methods
are based on local groups of atoms, which generally rep-
resent many atoms with a considerable internal flexibil-
ity. Such groups can also be linked together to repre-
sent molecules. There exist a number of continuum ap-
proaches, such as the finite element method, the bound-
ary element method and the meshless method etc. The
length scales of the typical material system in multi-scale
structures are shown in Fig. 1. Multiscale modeling is
a unifying paradigm to enable the integration of the ba-
sic science and the engineering system. It allows for a
rigorous correlation of different science and engineering
models, representations, languages and metrics.

Carbon nanotubes have attracted considerable attention
since they were discovered by Iijima (1991). The extraor-
dinary properties of carbon nanotubes have motivated re-
searchers worldwide to study the fundamentals of this
novel material as well as to explore their applications in
different fields [Ajayan and Zhou (2001)]. Application

10
-9 10

-7 
10

-6
10

-4 1m

nano micro meso macro

Continuum MechanicsMD QM 

Figure 1 : The length scales of the material system

of carbon nanotubes in nanoelectronics, nanocomposite
materials, and NEMS is a typical multi-scale problem,
which also impels the study on the multi-scale model that
directly links the continuum theories to atomistic simu-
lations.

This paper will review the current status of the progresses
and developments in computational nanotechnology and
multiscale simulation. The paper is organized as fol-
lows. Section 2 summarizes the simulation methods from
quantum level to atom level; and the long range interac-
tions are also included. Section 3 focuses on the multi-
scale methods. Section 4 discusses the simulation meth-
ods for nanotubes. Finally, conclusions are made in Sec-
tion 5.

2 Computational Techniques for Nanoscale Simula-
tions

Since the spatial and temporal scales of nanoscale sys-
tems and phenomena have shrunk to the level where
they can be directly addressed with high-fidelity com-
puter simulations and theoretical modeling, computa-
tional nanotechnology [Srivastava and Atluri (2002a, b);
Srivastava, Menon, and Cho (2001)] has become criti-
cally important in nanodevice development [Ajayan and
Zhu (2001)]. ab initio methods are being used exten-
sively, which can determine the electronic and atomic
structures of different materials just from its atomic co-
ordinates. However, the applications of ab initio meth-
ods are limited to very small-scale systems with only a
few hundred atoms. Alternatively, tight-binding molec-
ular dynamics (TBMD) and classical molecular dynam-
ics (MD) offer powerful ways to treat even large-scale
systems. Tight-binding molecular dynamics (TBMD) is
a semi-empirical technique, which is a blend of certain
features from both MD and ab initio methods. Molec-
ular dynamics (MD) refers most commonly to the situ-
ation where the motion of atoms or molecules is treated
in approximated finite difference equations of Newtonian
mechanics. In fact, ab initio and TBMD are the quan-
tum mechanics (QM) schemes. In this section, we sum-
marize the main simulation approaches in computational
nanotechnology.

2.1 Ab initio methods

Quantum mechanics is a means to understand and pre-
dict the interactions between atoms and molecules, and
to model the chemical reactions at that scale. It uses
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models based on the electronic structure. The solution of
the Schrödinger’s equation provides the electronic wave
functions. Other properties are then obtained from these
functions. The ab initio or first-principles method solves
the complex quantum many-body Schrödinger equation
with numerical algorithms [Payne, Teter, Allan, Arias,
and Joannopoulos (1992)]. This method is to regard
many-atom systems as many-body systems composed of
electrons and nuclei, and to treat everything on the ba-
sis of first-principles of quantum mechanics, without in-
troducing any empirical parameters [Ohno, Esfarjani and
Kawazoe (1999)]. The ab initio method provides more
accurate descriptions of quantum mechanical behavior of
materials. However, currently the system sizes are lim-
ited to only about a few hundred atoms. In the general ap-
proach of quantum mechanics, atoms are represented as
a collection of quantum mechanical particles, nuclei and
electrons; the state of a particle is defined by a wave func-
tion ψ, based on the well-known wave-particle duality.
The Schrödinger equation is [Born, and Huang (1954)]

Hψ(ri,RI) = Etotψ(ri,RI) (1)

with the full quantum many-body Hamiltonian operator

H = ∑
I

P2
I

2mI
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ZIZJe2
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where ψ is the energy eigenfunction corresponding to the
energy eigenvalue Etot , which represents the total energy
of the system, RI and ri are the nuclei and electron coor-
dinates, respectively, RIJ = |RI −RJ | and ri j =

∣∣ri − r j
∣∣.

PI and pi are the nuclei and electron momenta, respec-
tively. mI and me are nuclei and electron mass, respec-
tively. e is the electric charge of an electron, and ZIe is
the electric charge of the nuclei of atom I. The Hamil-
tonian operator in equation (2) is composed of five parts.
The first and third terms in equation (2) give the kinetic
energy of the nucleus and electron, respectively; the sec-
ond term gives the nucleus-nucleus Coulomb interaction,
the fourth term gives the electron-electron Coulomb in-
teraction, and the last terms gives the nucleus-electron
Coulomb interaction.

After solving for the energy Etot , the interatomic poten-
tial of the system can be obtained. Then, the interactions
FI , between atoms can be derived from

FI = − ∂V
∂RI

(3)

where V is the atomic interaction potential. Since the
kinetic energy of the nucleus is independent of its posi-
tion, V can be replaced by Etot in equation (3). Hence,
as long as Etot is determined, the interactions FI can be
obtained according to equation (3). The dynamic motion
for the atomic positions is still governed by Newtonian
or Hamiltonian mechanics, i.e.

mIR̈I = FI = − ∂V
∂RI

(4)

Equations (4) are approximated as finite-difference equa-
tions with discrete time step ∆t. Due to the small
scale involved, explicit integration algorithms such as the
standard Gear’s fifth-order predictor-corrector or Verlet’s
leapfrog methods [Verlet (1967), Berendsen, van Gun-
steren (1986)], which will be described in detail in sec-
tion 2.3, are commonly used to ensure high order accu-
racy.

In using the ab initio method, effective and applicable as-
sumptions are necessary. The most commonly used ap-
proximation is the Born-Oppenheimer adiabatic approx-
imation [Ohno, Esfarjani, and Kawazoe (1999)], which
assumes that the electrons are always in a steady state,
derived from their averaged motion, since their positions
change rapidly compared to the nuclear motion. Hence,
the motion of the electrons can be considered separately
from the motion of the nuclei, as if the nuclei were sta-
tionary. Using this approximation, one can reduce the
full quantum many-body problem to a quantum many-
electron problem:

Hel (RI)ψ(ri) = Eelψ(ri) (5)

where Eel is the ground state energy of a many-electron
system and can be regarded as the atomic interaction po-
tential, and

H = ∑
I

P2
I

2mI
+Hel (RI) (6)

It is very difficult to solve the eigen equation (5) exactly,
and approximate methods have been developed. The
most commonly used approaches are the Hartree-Fock
approximation [Fock (1930), Hartree (1928)] and the
density functional theory [Hohenberg and Kohn, 1964].

A detailed description and survey of the Hartree-Fock
approximation can be found in Clementi (2000) and
Ohno, Esfarjani and Kawazoe (1999). Here, we omit
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the details. The Hartree-Fock approximation is usually
used to describe electron-electron interaction effects. In
the Hartree-Fock approximation, the ground state of the
Hamiltonian H is obtained by means of the variational
principle with a normalized set of wave functions. Actu-
ally, the methodology seeks the solution by minimizing
the expected value of H with a trial function, similar to
the Ritz method. Many ab initio simulations used the
Hatree-Fock approximation, which translates a ployelec-
tronic problem into a single electronic problem. Then,
the Hartree-Fock equation can be written as

HHFψi (r) = εiψi (r) (7)

which is derived from the variational principle [Ohno,
Esfarjani and Kawazoe (1999)], where HHF is the
Hartree-Fock operator, which consists of the one-
electron Hamiltonian, the Hartree operator (or Coulomb
term), and the Fock operator (or exchange term). ψi is
the molecular orbit, and εi is the orbital energy of the
electron in this orbital. The molecular orbit is assumed
to be the linear combination of atomic orbits (LAO), as

ψi = ∑
α

ci
αφα (8)

where φα is the αth atomic orbital and ci
α is the coeffi-

cient. Adopting the closed shell model, the Hartree-Fock
equation can be conveniently written as a matrix form

FC = SCE (9)

The above equation is called Roothaan-Hall equation.
The Fock matrix F can be written as [Leach (1996)]
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where the first term is the core energy, the second term is
energy arising from the Coulomb and exchange interac-
tion. It is noted that in this equation, the atomic units are
used. P is the charge density matrix and can be written
as

Pγκ = 2
N/2
∑
i=1

ci
γc

i
κ (11)

(αβ |γκ)and (αγ|βκ ) are two-electron integrals that may
involve up to four different basis functions (φα , φβ,φγ,φκ),
which may in turn be located at four different centers.
Vαβ is the influence of external fields, S is the overlap
integrals matrix with

Sαβ =
∫

dvφαφβ (12)

C is the coefficient matrix, and E is the orbital energy
diagonal matrix. The Hartree-Fock approximation does
not include correlation effects. It is more tractable for a
system of a small number of atoms and becomes more
complex for crystals. A better approximation, the local-
density approximation (LDA), gives ground-state prop-
erties almost perfectly and more efficiently. As an alter-
native to the Hartree-Fock approximation, the LDA re-
places the electron-electron interactions by some effec-
tive potential acting on the electrons. The LDA is an
approximating method, and cannot be applied to excited
states and highly correlated systems.

The density functional theory [Hohenberg and Kohn,
1964] has a rigorous mathematical foundation, provided
by two important works [Hohenberg and Kohn (1964),
Kohn and Sham (1965)]. Hohenberg and Kohn (1964)
have developed a theorem: the ground state energy (Eel)
of a many-electron system is a function of total electron
density, ρ(r), rather than the full electron wave function,
Ψ(ri), Eel(Ψ(ri))≡ Eel(ρ(r)). The Hamiltonian operator
Hand Schrödinger equation are given by

H (RI) = ∑
i

p2
i

2me
+∑

i, j

e2

ri j
−∑

I,i

ZIe2

|RI − ri| +∑
I,J

ZIZJe2

RIJ
(13)

H (RI)ψ(ri) = Eelψ(ri) (14)

The density functional theory (DFT) is derived from the
fact that the ground state total electronic energy is a func-
tional of the total electron density. However, it is very
difficult to formulate Eel(ρ(r)). Kohn and Sham (1965)
have shown that the DFT can be formulated as a single-
electron problem with self-consistent effective potential
including all the exchange-correlation effects of elec-
tronic interactions. Then the Kohn-Sham equation can
be written as

H1ψi (r) = εiψi (r) , i = 1, · · · ,Ntot (15)

which is the single-electron Schrödinger equation. Here,
H1 is the effective one-electron Hamiltonian, and can be
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written as

H1 =
p2

2me
+VH (r)+VNE (r)+VXC (ρ(r)) (16)

ρ(r) = ∑ |ψi (r)|2 (17)

In equation (16), the first term represents the electron
kinetic energy, the second term represents the electro-
static potential, the third term represents the nucleus-
electron interaction potential, and the last term denotes
the exchange-correlation potential and is a function of
the electron density. While the first three terms can be
obtained explicitly, the last one must be approximated.
The local density approximation (LDA) has been intro-
duced to approximate the unknown effective exchange-
correlation potential by Kohn and Sham (1965). The
LDA assumes that the exchange-correlation function cor-
responds to the homogeneous electron gas. This as-
sumption is only valid locally, when the inhomogene-
ity due to the presence of the nuclei is small. Once
ψi and εi are solved from equation (15), the total en-
ergy can be obtained. The eigenvalues correspond to the
quantum-mechanically possible electronic energy states
of the system, and the eigenfunctions contain informa-
tion about the electronic density distribution in the com-
puted space. The DFT-LDA method has been very suc-
cessful in predicting the properties of materials without
using any experimental inputs other than the identity (i.e.
atomic numbers) of constituent atoms [Car and Parrinello
(1985)]. The major advantage of using LDA is that the
error in the electron energy is second-order between any
given electron density and ground state density.

For practical applications, a single electron wavefunc-
tion with a plane wave and pesudopotential have been
implemented in the DFT-LDA method [Payne, Teter, Al-
lan, Arias, and Joannopoulos (1992)]. These systematic
approximations reduce the electronic structure problem
to a self-consistent matrix diagonalization problem. The
solution procedure requires an iterative diagonalization
process, which in general involves O(N 3) order of com-
putation and limits the DFT-LDA method to simple sys-
tems, and the system sizes currently are limited to only
about a few hundred atoms.

The limitation of the DFT-LDA method mainly comes
from two aspects: one is the use of plane waves as a ba-
sis to expand the electron wave functions; the other is the
inclusion of degrees of freedom from the electron wave
functions in the molecular dynamics. The former limits

the number of atoms used in the simulation due to the
large number of basis functions required in the calcula-
tion, and the latter leads to that the simulation time step
has to be chosen much smaller than that in simulations
with classical potential (about ten times smaller).

To reduce the order of computation, over the last three
decades, a lot of researchers attempted to develop rapid
and effective methods fro solving the Kohn-Sham equa-
tion [Li, Nunes and Vanderbilt (1993), Daw (1993),
Mauri and Galli (1994), Kresse and Furthmuller (1996)].
Major improvements have been made using the Car-
Parrinello MD (CPMD) method [Car and Parrinello
(1985)], cluster variation method [Kawazoe (2001)], and
conjugate gradient (CG) minimization methods [Payne,
Teter, Allan, Arias, and Joannopoulos (1992)]. CPMD
has significantly improved the computational efficiency
by reducing the order from O(N3) to O(N2). As shown
by Payne, Teter, Allan, Arias, and Joannopoulos (1992),
the CG method has further improved the efficiency by an
additional factor 2-3.

The ab initio method makes it possible to model a few
hundred atoms without any experimental inputs, and pro-
vides a powerful tool to investigate nanomaterials with
predictive power. Ab initio method possesses high ac-
curacy and transferability, due to there being no experi-
mental inputs. However, the high order of computation
limits the applicability of the ab initio method. There-
fore, other methods, such as the tight-binding method or
the classical molecular dynamics, are very important in
order to overcome the complexities of some materials.
In these methods, the potential parameters are extracted
from the experiment or ab initio calculations. However,
these methods are only valid in the region where they
are fitted. Nevertheless, they are useful to study complex
materials on the basis of these approximations.

A standard Ab initio routine is illustrated in Fig. 2.

2.2 Tight-binding methods

In the intermediate regime of a few hundred- to thousand-
atom systems, where classical molecular dynamics
method is not accurate enough, nor the ab initio com-
putations are feasible, tight-binding [Slater and Koster
(1954), Harrison (1980)], or semi-empirical quantum
mechanics based methods, provide an important link be-
tween the ab initio quantum mechanics based approaches
described above, and the classical atomistic force field
based methods, that will be described below.
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The tight binding method can handle a much larger sys-
tem than the ab initio method, and has the informa-
tion about the electronic structure of the system, while
maintaining a better accuracy than the MD simulation.
In its nature, the tight-binding method is very similar
to Hartree-Fock methods, but the computations of the
Hamiltonian and overlap matrix elements are based on
semi-empirical formulae. In this method, the atoms are
treated as classical particles that interact in part through
an effective potential exerted by the electrons that are
treated quantum mechanically. Hypothetical basis or-
bitals with the angular symmetries of single atom eigen-
states are centered around each atom. In the tight binding
method, the interatomic forces are evaluated in a straight-
forward way, based on the Hellmann-Feynman theorem
and the rest of the procedure is almost identical to the
MD simulation, that is the reason why the tight binding
method is also referred to as tight binding MD method
(TBMD).

The tight-binding method [Harrison (1980)] further sim-
plifies the quantum many electron problem by assuming
that the crystal potential is strong, such that when an ion
captures an electron during its motion through the lattice,
the electron remains at that site for a long time before

Initial atomic configuration 

Calculate interatomic 

distances 

Move atoms

t+ t

Calculate Hamiltonian 

Matrix Elements 

Calculate eigenvalues and 

eigenfunctions

Calculate interatomic 

forces

Figure 2 : An illustration of ab initio routine

leaking, or tunneling, to the next ion site. During the cap-
ture interval, the electron orbits primarily around a single
ion uninfluenced by other atoms, so that its state function
is essentially that of an atomic orbital. Usually, the elec-
tron is tightly bound to its own atom. Hence, the total
energy (or the interatomic potential) can be expressed as
the sum of the eigenvalues of a set of occupied non-self-
consistent one electron molecular eigenfunctions, in ad-
dition to certain analytical functions [Foulkes and Hay-
dock (1989)]:

VTB =
Nocc

∑
n=1

εn + ∑
I<J

V rep (RIJ) (18)

The sum is over all occupied states Nocc up to the Fermi
level. The first term on the right side is the sum of the
energies of occupied orbits (i.e., band-structure energy),
which can be solved from the Schrödinger equation (5).
V rep is the repulsive inter-atomic potential, and the dou-
ble counting of the Coulomb and exchange-correlation
terms inherent in the eigenvalue sum (the first term) are
eliminated by the sum of the repulsive interatomic po-
tential V rep (the second term). Many papers [Wang and
Ho (1993, 1996), Lewis and Mousseau (1998)] described
how to obtain these two terms. Due to that V rep is de-
rived form the experiment, the TBMD method is a semi-
empirical method. The eigenvalues εn corresponding
to the one-electron states of a first principles Hartree-
Fock or density functional theory are obtained from a
nonorthogonal one-electron Hamiltonian

Hψn = εnSψn (19)

ψn = ∑
Iα

cn
IαφIα (20)

where S is the overlap matrix. It is noted that, in equation
(20), a linear combination of atomic orbitals (referred to
LACO), which is modulated by a Bloch wave-function
phase factor for a periodic lattice, is adopted in the wave
function: the one-electron wave function ψn is expanded
as a linear combination of atomic basis functions φJα , as
discussed in Hartree-Fock approximations. This ensures
that an electron in a tight-binding level will be found,
with equal probability, in any cell of the crystal, since its
wave function changes only by the phase factor, as one
electron moves from one cell to another. Here, n denotes
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the orbital number, and α denotes the basis functions (in
the minimal basis of silicon, these represent s, px, py,
and pz atomic orbits). The details of the basis func-
tions do not enter into the energy calculation, but only
the interactions between basis elements φIα that from the
overlap and Hamiltonian matrices. The matrix elements
within the overlap Sand Hamiltonian H matrices are ob-
tained by fitting the equivalent integrals within an exten-
sive database of the first-principles calculations to a par-
ticular parametric form

Sαβ (r IJ) =
〈
φIα

∣∣φJβ
〉

Hαβ (r IJ) =
〈
φIα

∣∣H ∣∣φJβ
〉 (21)

The function V rep is also obtained by fitting to a database
involving the experimental indirect band gap. The pa-
rameters for this fit are given by Bernstein and Kaxiras
(1997). Although the exact forms of the basis are not
known, the Hamiltonian and overlap matrix can be pa-
rameterized, and the total energy and electronic eigen-
values can be easily extracted from the Hamiltonian ma-
trix, which also contains the effects of angular forces
in a natural way. There are two approaches to per-
form parameterization process, one is fitting to results
from the ab initio methods [Xu, Wang, Chan and Ho
(1992), Mehl and Papaconstantopoulos (1996)], the other
is computing the matrix exactly based on the localized
basis [Liu (1995), Porezag, Frauenheim, Kohler, Seifert,
and Kaschner (1995), Taneda, Esfarjani, Li, Kawazoe
(1998)].

The process of solving for the coefficient cn
Iα is a gen-

eralized eigenvalue problem. For a given set of atomic
coordinates, the coefficients are found by diagonaliza-
tion. One-electron states are occupied up to Femi level.
The interatomic forces are evaluated in a straightforward
way, based on the Hellmann-Feynman theorem, and the
system’s dynamic evolution is governed by Hamilton’s
classical equation of motion from Newton’s second law:

mIR̈I = FI = −∂VT B

∂RI
(22)

After obtaining the force, atomic coordinates can be ad-
vanced through time, using the same algorithm as that
used for the ab initio method or the classical MD, i.e.,
the standard Gear’s fifth-order predictor-corrector or Ver-
let’s leapfrog methods, which will be described in detail
in section 2.3.

The TBMD is one of the fastest numerical quantum
methods containing electronic structure information, and
its application is extensive. Lewis and Mousseau (1998)
used it to study defects and disorder in covalently bonded
materials. Wang and Ho (1993) employed it to investi-
gate the structure, dynamics and electronic properties of
diamond-like amorphous carbon. Colombo (1998) pro-
vided a source code for TBMD simulations.

Since the brute force diagonalization is O(N 3), which
parallelizes poorly, in general, TBMD is an O(N 3) al-
gorithm. To reduce the order of computation (i.e., im-
prove the scale of computation), Khan and Broughton
(1989) implemented a fictitious Lagrangian to reducing
the order from O(N3) to O(N2). There is much discus-
sion in the literature about O(N) schemes for electronic
structure [Li, Nunes, and Vanderbilt (1993), Daw (1993),
Canning, Galli, Mauri, De Vita, and Car (1996), Ordejon
(1998)]. However, such methods often have problems
with situations in which states wander across the Fermi
level. Another way to improve the scale of the TBMD
is the parallel simulation [Kalia, Campbell, Chatterjee,
Nakano, Vashishta, Ogata (2000)]. The parallelization of
the TBMD code involves parallelizing the direct diago-
nalization (of the electronic Hamiltonian matrix) part as
well as the MD part. Parallelizing a sparse symmetric
matrix with many eigenvalues and eigenvectors is a com-
plex bottleneck in the simulation of large intermediate-
range system and requires new algorithms. A survey
of the parallel simulation can be found in Heffelfinger
(2000).

Although TBMD can consider the quantum structure of
electron, its accuracy is less than that of ab initio. Hence,
some researchers developed the first-principles molecu-
lar dynamics by combining the advantages of TBMD and
DFT-LDA (ab initio method) [Demkov, Ortega, Sankey,
and Grumbach (1995), Ortega (1998), Garcia-Vidal,
Merino, Peerez, Rincon, Ortega, and Flores (1994), Pear-
son, Smargiassi, and Madden (1993), Smargiassi, and
Madden (1994)]. This method showed a very good accu-
racy for the problems of defect [Smargiassi (1994)], and
lattice dynamics [Pavone, Karch, Schutt, Windl, Strauch,
Giannozzi, and Baroni (1993), Adler, Honke, Pavone,
and Schroder (1998)].

A major problem with the TBMD method is the way that
the parameterization of the Hamiltonian and the over-
lap matrices, and the function V rep limits its applicabil-
ity. Harrison (1989) has attempted to provide a mini-
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mal tight-binding theory with a set of universal param-
eters that could describe qualitatively a wide range of
materials and properties. However, this approach turns
out to be neither transferable nor accurate. Although fo-
cusing on tetrahedral solids, he emphasized the neces-
sity of including the nonorthogonality of the local envi-
ronment in multi-coordinated structures. This important
factor has generally been overlooked by those seeking a
transferable scheme. After that, Menon and Subbaswami
(1997) proposed a nonorthogonal tight-binding scheme
with minimal number of adjustable parameters, result-
ing in a transferable scheme applicable to clusters as well
as bulk systems. Although nonorthogonal tight-binding
molecular dynamics schemes are more accurate, they are
not easily converted to order O(N), and can typically
handle only systems with up to a few thousand atoms
[Menon and Subbaswami (1997)].

A standard TBMD routine is illustrated in Fig. 3.

Initial atomic configuration

Calculate interatomic 

distances 

Calculate total forces 

Move atoms

t+ t

Calculate TB Matrix 

Elements 

Calculate TB eigenvalues 

and eigenfunctions 

Calculate forces from 

V
rep

Calculate Hellmann-

Feynman forces 

Figure 3 : An illustration of the TBMD routine

2.3 Classical Molecular Dynamics

Up to now, we know that atomistic and electronic-scale
simulations can be performed by means of ab initio or
semi-empirical methods such as tight-binding. However,

these methods are still restricted in their capability with
respect to both the number of atoms and the simulation
timescale. Classical molecular dynamics is an important
substitute to study longer-timescale phenomena of sys-
tems composed of larger numbers of particles, which is
much simpler but still an atomic scale method. Molecular
dynamics is a means to study matter at the atomic level
and to predict the static and dynamic properties from the
underlying interactions between the molecules. To go
from quantum mechanics to molecular dynamics requires
averaging over the electrons to obtain spring constants,
discrete charges and van der Waals parameters. It is pos-
sible to construct realistic classical potentials based on
ab initio calculations, experimental results or an empir-
ical model. A possible way is to fit the classical poten-
tials to contour maps of the total energy, which may be
obtained with an ab initio method by changing the posi-
tion of one atom while fixing the coordinates of all other
atoms. With the increase in computing power, the con-
nection between classical MD and ab initio calculations
are being made in a clear and rigorous fashion. Classical
molecular dynamics is an empirical method. Hence, it
is easy to implement in larger systems (million to billion
atoms). However, for different systems, different empir-
ical parameters may be needed, which limits its transfer-
ability.

The method of classical molecular dynamics was first
proposed by Alder and Wainwright (1957). Alder and
Wainwright applied the method to the simplest system-
hard spheres by first assuming an interatomic potential,
and found a liquid-solid phase transition in this hard-
sphere system. Later, the methods were also applied
to various systems with soft potentials [Rahman (1963)]
such as the Lennard-Jones potential. Classical MD de-
scribes system’s atomic-scale dynamics, where atoms
and molecules move, while interacting with many of
the atoms and molecules in the vicinity. The system’s
dynamic evolution is governed by Hamilton’s classical
equation of motion from Newton’s second law:

mIR̈I = FI = − ∂V
∂RI

(no sum on I) (23)

which is derived from the classical Hamiltonian of the
system,

H = ∑
I

P2
I

2mI
+V (RI) (24)
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where RI is the position of atom I, and V is the empirical
potential for the system. Each atom moves and acts sim-
ply as a particle that is moving in many-body force field
FI of other similar particles, which can also be obtained
from more accurate quantum simulation as described in
Sections 2.1 and 2.2. The atomic and molecular inter-
actions describing the dynamics are given by classical
many-body force-field functions. The atomic interaction
energy function V (RI) can be written in terms of pair and
many-body interactions, depending on the relative dis-
tances among different atoms [Daw and Baskes (1983,
1984)].

An alternate but equivalent approach is to solve the
Hamiltonian system of ordinary differential equations

dPI

dt
= −∂H

∂qI
(25)

dqI

dt
=

∂H
∂PI

(26)

where (qI , PI) are the set of canonically conjugate coordi-
nates and momenta, respectively. Symplectic integrators
[Gray, Noid, and Sumpter (1994)] have been developed
to solve the above Hamitonian equations of motion.

In MD simulations, the effects of finite system size and
surfaces are always a severe problem. Periodic boundary
conditions are usually employed to reduce these effects.
All the particles are put inside a unit cell, and if the par-
ticle goes outside the cell boundary, it is brought back in
from the opposite side of the cell. More descriptions of
the general techniques used in molecular dynamics can
be found in Allen and Tildesley (1989), Rapaport (1995),
and Leach (1996).

Classical molecular dynamics have been ap-
plied extensively. Some computer codes can
be available on the websites, such as CCP5 on
http://wserv1.dl.ac.uk/CCP/CCP5, Amber/Sander
on http://www.amber.ucsf.edu/amber/amber.html
(or http://amber.scipps.edu), NAMD on
http://www.ks.uiuc.edu/Research/namd, and LAMMPS
on http://www.cs.sandia.gov/sjplimp/lammps.html.

2.3.1 Short range interactions

As the simplest interatomic potential in MD simulations,
pair potentials are employed to qualitatively model di-
verse properties of materials, such as Buckingam poten-
tial [Wunderlich and Awaji (2001)], Morse potential [Ko-

manduri, Chandrasekaran, and Raff (1998)], and glue po-
tential [Duan, Sun and Gong (2001)]. A very widely used
inverse power model, the 12-6 Lennard-Jones (LJ) po-
tential, was introduced by Lennard-Jones (1924a, b) for
non-bond atomic interactions, as

VLJ = 4ε

[(
σ

RIJ

)12

−
(

σ
RIJ

)6
]

(27)

where ε denotes the bind energy (the minimum of
Lennard-Jones potential), and σ the equilibrium distance
between two unbonded atoms or monomers, RIJ denotes
the inter-atomic distance between atoms I and J. The
Lennard-Jones force (attraction or repulsion) between
two atoms can be written as:

FIJ = −∂VLJ

∂RIJ
= − 4ε

RIJ

[
12

(
σ

RIJ

)12

−6

(
σ

RIJ

)6
]

(28)

Girifalco and Lad (1956), and Girifalco (1992) employed
the Lennard-Jones potential for the carbon-carbon sys-
tem. Two sets of parameters have been used, one for a
graphite system [Girifalco and Lad (1956)] and the sec-
ond for an fcc crystal composed of C60 molecules [Giri-
falco (1992)]. The Lennard-Jones (LJ) potential is a non-
bond order potential, which accounts for the steric and
van der Waals non-bonded interaction.

To model more realistic materials, such as metals and
semiconductors with complex many-body interactions,
the pair potentials must be modified. Up to now, many
approaches emerged, to improve the pair potentials.
However, all of them fall into three categories, which are
introduced below respectively.

The first one is to develop potentials by following
the Born-Openheimer expansion (many-body potentials),
i.e., besides the pair potential, many-body potentials
should be added, such as Pearson [Pearson, Takai, Ha-
licioglu and Tiller (1984)], and Stillinger-Weber (SW)
[Stillinger, and Weber (1985)] potentials. The inter-
atomic potential V as an infinite sum over pair, triplet,
etc., can be expressed by the Born-Openheimer expan-
sion as:

V (R1,R2,R3, · · ·) =
1
2! ∑J �= ∑

I

V (2) (RIJ)+

1
3! ∑

K �=
∑
J �=

∑
I

V (3) (RIJ,RJK,RKI)+ · · ·+

1
n! ∑

Q�=
.. ∑

M �=
..∑

J
∑

I

V (n) (RIJ, · · · ,RIQ, · · · ,RMQ, · · ·) (29)
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V (2), V (3) . . . and V (n) are the interaction potentials of the
two-, three- and n-body interactions, respectively;and R IJ

is the distance between atoms I and J. It is noted that the
n-body potential decreases rapidly with the increase of n.
Therefore, in practice, the Born-Openheimer potential is
truncated at n=3. For covalently-bonded materials, Pear-
son takes the two-body component to be the Lennard-
Jones potential, while triplet interactions are represented
by an Axilrod-Teller-type three-body potential [Pearson,
Takai, Halicioglu and Tiller (1984)]. The SW poten-
tial, which involves both two-body and three-body inter-
atomic terms, is another example of the type of potential
that is used to effectively deal with the directional nature
of bonding in covalent materials. The SW potential can
be written as

VSW (R1,R2,R3, · · ·) = ∑
J �=

∑
I

V (2) (RIJ)

+∑
K �=

∑
J �=

∑
I

V (3) (RIJ,RIK) (30)

The exact form of these interactions V (2) and V (3) are
given in Stillinger, and Weber (1985). The potentials are
assumed to have a cutoff radius, i.e., any atom interacts
directly only with those atoms within a distance R cut from
it.

There are many different many-body empirical po-
tentials developed during last decades, such as AM-
BER [Cornell, et al., (1995)], CFF95 [Peng et al.
(1997)], CHARMM [Mackerell, et al. (1995)], Dreid-
ing [Mayo, Olafson, and Goddard (1990)], MMFF [Hal-
gren (1996)], MM2 [Allinger (1977), and Allinger, Yuh,
Lii (1989)], MM3 [Cui, Li, and Allinger (1993)], MM4
[Nevins, Lii, and Allinger (1996)], OPLS [Jorgensen,
et al. (1996)], SHARP [Bearpark, Robb, Bernardi, and
Olivucci (1994)], UFF [Rappe, et al. (1992)], and VAL-
BON [Cleveland, and Landis (1996)]. In these mod-
els, the total system potential energy V can be expressed
as a sum of several individual energy terms [Burkert
and Allinger (1982), Leach (1996), Rappe and Casewit
(1997)]:

V = Uρ +Uθ +Uω+Uτ +UvdW +Ues (31)

where Uρ, Uθ,Uω, and Uτ are energies associated with
bond stretching (two-body), angle variation (three-body),
inversion and torsion (four-body), respectively; U vdW and
Ues are associated with van der Waals and electrostatic

interactions, respectively. Additional energy terms asso-
ciated with electromechanical or optomechanical interac-
tions can be included in the same way. Different models
may include different terms. One can ignore or focus on
some selective terms of the total potential energy accord-
ing to the physics of a specific problem. MM2-MM4,
SHAPE, VALBON and UFF models have been applied
in the analysis of a variety of organic and inorganic sys-
tems. The Dreiding model has been used to analyze the
structure of fullerene and carbon nano-tube [Guo, Kara-
sawa, and Goddard (1991), Tuzun, Noid, Sumpter and
Merklet (1996)].

The second one is to attempt to model the local environ-
ment using electron density distributions, which results
in an addition energy, such as the embedded atom method
(EAM) [Daw and Baskes (1983, 1984)], and variable
charge molecular dynamics (VCMD) [Streitz and Mint-
mire (1994)]. VCMD is suitable to solving the boundary
problems [Campbell, Kalia, Nakano, Vashishta, Ogata,
and Rodgers (1999)]. However, it is more complicated
than EAM. Based on the quasi-atom approach [Scott, and
Zaremba (1980)], Daw and Baskes (1983) developed the
EAM potential for metals. In this approach, the energy
of an atom in the crystal is divided into two parts, which
can be written as

E (RIJ) = ∑
I

{
FI (ρI)+

1
2 ∑

J �=I

ϕIJ (RIJ)

}
(32)

where the second term on the right side, φIJ(RIJ), is a
two-body core-core interaction energy (pair potential),
and the first term is an additional energy needed to embed
the atom into the electron system in the lattice. ρ I is the
local electron density. The embedding energy is usually
fit to the form

FI = AIE
0
I ρI lnρI (33)

where ρI is obtained by functional fits to the electronic
configuration surrounding atom I, E 0

I is its sublimation
energy, and AI is a constant for atom I. Baskes (1992)
proposed a modified embedded atom method by taking
the non-sphere-symmetry of the electronic structure into
account. Based on variations of the EAM and SW po-
tentials, a wide variety of many-body potentials has been
proposed and used in classical molecular dynamics sim-
ulations. These potentials are expected to work well
within the range of physical parameters in which they
were constructed.
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EAM is applicable to interface and surface problems.
Tan and Yang (1994) used the modified EAM to per-
form the atomistic simulation of interface fracture, and
explained the origin of the crack-tip singularity. Baskes
and his coworkers [Baskes, Angelo and Bison (1994),
Gall, Horstemeyer, Van Schilfgaarde and Baskes (2000)]
applied the modified EAM to study the tensile debond-
ing and fracture of an aluminum-silicon interface, and
analyzed the effect of the micro-defect on the interface.
Fallis, Daw and Fong (1995) investigated the structure
of small Pt clusters on Pt(111) by using EAM. Zhou,
Lomdahl, Voter and Holian (1998) studied the three-
dimensional fracture via large-scale molecular dynam-
ics by appealing to EAM. Li, Gao, Qiao, Zhou and Chu
(2001) simulated the microcrack healing in copper by
means of EAM. Liu and Adams (1992), and Longo, Rey
and Gallego (1999) used different EAM to simulate the
structure of Ni clusters on Ni surface, respectively, and
the results depended on the parameters of embedding en-
ergy.

The third one is to introduce the local electronic environ-
ment directly into pair potentials, such as the Tersoff po-
tential [Tersoff (1986)]. The Tersoff potential was origi-
nally from Abell (1985), and then applied as a practical
potential energy formalism for modeling covalent mate-
rials by Tersoff (1986, 1989). Tersoff potential is a sum
of the energy on each bond. The energy of each bond
consists of a repulsive and attractive part. A bond order
function is embedded in the formulation. The bond order
depends on the local atomic environment such as angu-
lar dependency due to the bond angels. Brenner (1990)
modified the Tersoff potential by introducing additional
terms into the bond order function, which is mainly to
correct the overbinding of radicals. Wang, Tomanek and
Bertsch (1991) introduced local density approximations
(LDA) into a Morse-type potential for carbon systems,
which derived a more reasonable binding energy than
that from the Lennard-Jones potentials [Qian, Liu, and
Ruoff (2001)].

A major distinguishing feature of the Tersoff-Brenner po-
tential is that short-range bonded interactions are reac-
tive, so that a chemical bond can form and break dur-
ing simulation. The Tersoff-Brenner potentials [Brenner,
Sherendova, Areshkin (1998)] are used to model carbon
based systems using the type II parameterization, and
have been used in a wide variety of scenarios. This poten-
tial has been successfully applied in the analysis of for-

mation of fullerenes and their properties [Brenner, Harri-
son, White, and Colton (1991), Robertson, Brenner, and
Mintmire (1992), Robertson, Brenner, and White (1992,
1995)], surface patterning [Sinnott, Colton, White, and
Brenner (1994)], indentation and friction at nanoscale
[Harrison, White, Colton, and Brenner (1992, 1993a, b,
1995), Harrison, Colton, White, and Brenner (1993)],
calculating properties of carbon nanostructures [Brenner,
Shenderova, Areshkin, Schall, and Frankland (2002)],
and energetics of nanotubes [Robertson, Brenner, and
Mintmire (1992)].

Up to now, to authors’ knowledge, there is no universal
classical MD potential, which works for all the materials
and in all the scenarios. EAM type potentials are suited
for metals, while Stillinger-Weber (SW) and/or Tersoff-
Brenner potentials are suited for semiconductors.

Hereinbefore, we only consider the short range interac-
tions. In general, if the potential drops down to zero
faster than R−d, where R is the distance between two
atoms and d the dimension of the problem, it is called
short ranged. In shot range interactions, a cutoff radius
is introduced, only neighbored atoms up to the cutoff ra-
dius are taken into account for the calculation of inter-
actions, beyond the cutoff radius mutual interactions be-
tween atoms are neglected. In order to compensate for
the neglect of explicit calculations, long range correc-
tions may be introduced. Energy modifying terms in a
periodic molecular cell to account for long range interac-
tions were studied in Madelung (1918), Ewald (1921),
Deleeuw, Peram, and Smith (1980) and Heyes (1981)
with additional references therein.

2.3.2 Long range interactions

In the case of short range potentials, it is easy to calculate
the potential or force if one cuts it off at a certain range
and uses a neighbor list, that is called a particle-particle
method. The amount of calculation of this method is of
O(N) for an N-particle system. However, in the case of
long range potentials, like the Coulomb potential, inter-
actions between all particles in the system must be taken
into account, if treated without any approximation. This
leads to an O(N2) problem, which increases considerably
the execution time of a program for larger systems.

The Ewald sum method [Ewald (1921)] is used to de-
crease the amount of calculation in Coulomb systems by
accelerating the force calculation. The Ewald method is
limited to fully or partially periodic systems, but has been
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widely applied in studies of condensed matter, where it is
important to eliminate surface effects arising in a small,
isolated system. However, the computational task in this
method is still heavy in large system.

There are many algorithms to deal with this problem by
accelerating the force calculation, which can be clas-
sified into two categories: particle-mesh methods, and
hierarchical or multipole methods [Gibbon, and Sut-
mann (2002)]. Particle-mesh models are more widely
used in the field of cosmology than in MD. There are
two principal types of particle-mesh simulation mod-
els: the particle-mesh (PM) model, and the particle-
particle-particle-mesh (P3M) model [Birdsall, and Lang-
don (1985); Hockney and Eastwood (1981)]. The
particle-particle (PP) model uses the action at a distance
formulation of the force law, the PM model regards the
force as a field quantity – approximating it on a mesh –
and the P3M model is a hybrid of the PP model and PM
models. The PP method can be used for small systems
with long range forces or for large systems with short
range forces. In the previous subsection the PP method
is employed to calculate the short range forces. The PM
method, on the other hand is computationally fast, but
can only handle smoothly varying forces, and the result
is generally less accurate. The P3M method combines the
advantages of the PP and PM methods and enables large
correlate systems with long range force to be simulated.

Recently, a PP-MLPG/BIE method is developed to sim-
ulate the long range force by Atluri (2004), which will
be more accurate and faster than the P3M method. In
PP-MLPG/BIE method, the MLPG/BIE (Meshless Lo-
cal Petrov-Galerkin BIE) method replaces the particle
mesh method in P3M method. The MLPG/BIE method
was proposed by Atluri, Han and Shen (2003) by us-
ing the concept of the general meshless local Petrov-
Galerkin (MLPG) approach developed in Atluri et al
(1998, 2002a,b), and has been successfully applied in
3D fracture analysis and the crack growth [Han, Atluri
(2003a, b)]. Then one will have the best of the worlds of-
fered by pure MD and MLPG/BIE respectively: high res-
olution of individual encounters, combined with a rapid
meshless evaluation of the long range forces.

In this case, the total potential (Coulomb’s potential) of
the system is

Π =
1
2

N

∑
i=1

N

∑
j �=i

q j

4πε
∣∣r i − r j

∣∣ (34)

where N is the total number of the particles, ε is the per-
mittivity of free space, and q j is the charge of the par-
ticle j. The force of particle j on particle i is give by
Coulomb’s law as

fcoul
i j =

qiq j

4πε
r i − r j∣∣r i − r j

∣∣3 (35)

The inter-particle force is initially split into two contri-
butions:

fi = ∑
j �= i
j ∈ Ωsr

i

fsr
i j + flr

i (36)

The first sum represents the direct forces of the particle j
on particle i within the short range domain Ω sr

i , as shown
in Fig. 4, the shaded box represents the short range do-
main Ωsr

i , the first sum is over all the black particles. The
first term is obtained by the PP method. The second term
represents the long range forces which are obtained from
the MLPG/BIE method in the global domain.

Neighboring particles 

A generic particle i

Far-away particles

Figure 4 : Force splitting scheme

The long range interaction is assumed to be temporally
and spatially smooth enough, so that the long range con-
tribution to the interaction energy is found by solving
the Poisson’s equation for long range potential [Hockney,
Eastwood (1981)] by employing the MLPG/BIE method
[Atluri (2004)]. The derived boundary integral equations
for the long range potential and the gradient of the po-
tential are weakly singular. The PP-MLPG/BIE method
will be faster and cheaper than the P3M method, although
both of them are of O(N) computational complexity.

After obtaining the force on the particle i, we should
solve the equation of motion. The multiple time scales
method [Tuckerman et al. (1991)] in conjugation with
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Verlet’s leapfrog method is a natural choice to integrate
the equation of motion mi r̈ i = fi, because the force is al-
ready subdivided into short and long range components,

fi = fsr
i + flr

i (37)

where fsr
i varies fast and f lr

i varies slow. In this multiple
time step method, the short range forces are calculated
every time step δt by means of PP method, while the
long range forces are renewed every n time steps by using
MLPG/BIE method. However, it should be pointed out
that this multiple time scales method only focus on the
calculation of the interaction of the particles, the equa-
tion of motion mir̈ i = fiis still integrated every time step
δt.

Multipole methods [Pfalzner, and Gibbon (1996)] are
based on the observation that distant charges (or masses)
may be grouped together and substituted by a single mul-
tipole expansion, that lead to a considerable saving in
the number of interactions necessary to sum the poten-
tial or force. Two approaches proposed in mide-1980
belong to this category: hierarchical tree code method
[Appel (1985); Barnes and Hut (1986)], and fast mul-
tipole method (FMM) [Greengard and Rohklin (1987)].
The hierarchical tree code method is O(NlogN)-schemes
based on hierarchical grouping of distant particles. The
fast multipole method (FMM) is O(N)-schemes with
rounding-error accuracy. They serve a good basis for
the accelerating calculation of many-body systems gov-
ern by long-range potentials. A detailed discussion about
Multipole methods can be found in [Gibbon, and Sut-
mann (2002)].

Instead of accelerating the force calculation, the sym-
plectic method [Channell and Scovel (1990); Candy and
Rozmus (1991); and Wisdom and Holman (1991)] can
also be employed to improve the accuracy and reduce the
required computational time, which integrates the Hamil-
tonian rigorously and allow one to make the basic time
step larger.

2.3.3 Time integrators

In order to obtain a trajectory through phase space for
these atoms, an integrator is required for Newton’s laws
of motion. Numerical integration of the equations of
motion is performed either by explicit or implicit meth-
ods, such as the Verlet [Verlet (1967)], leapfrog [Hock-
ney (1970)], and velocity Verlet [Swope, et al. (1982)]
methods. Because of the lack of numerical stability, the

simple Euler scheme is not appropriate for MD simula-
tions. In Verlet method, the error will accumulate with
the time steps and may lead to a serious error in the fi-
nal results. The leapfrog method was proposed to avoid
this accumulation of errors. The leapfrog method is more
tractable than the Verlet method when one introduces ve-
locity scaling in a system with periodic boundary condi-
tions. However, the leapfrog method cannot handle the
velocity properly, the velocity Verlet method is usually
adopted. The explicit velocity Verlet method is very pop-
ular in MD simulations due to the fact that it is stable,
memory-efficient, and easily augmented to handle multi-
ple timescale MD. The following algorithm is iterated:

ṘI

(
t +

∆t
2

)
= ṘI (t)+

∆t
2mI

FI (t) (38)

RI (t +∆t) = RI (t)+∆tṘI

(
t +

∆t
2

)
(39)

FI (t +∆t) =
∂V

∂RI (t +∆t)
(40)

ṘI (t +∆t) = ṘI

(
t +

∆t
2

)
+

∆t
2mI

FI (t +∆t) (41)

At each iteration, each of the four steps is performed se-
quentially for every atom I in the system. After exit-
ing the last step, the simulation time is incremented by
∆t. Another popular implicit integration method for MD
is the predictor-corrector scheme, specially the Gear al-
gorithm [Gear (1971)], which can integrate the tempo-
ral evolution equation for longer times with more accu-
racy. For detailed description for the technique of the
molecular dynamics simulation, the readers are referred
to Rapaport (1995). Tucker and his colleagues [Tucker,
et al. (1991), and Tucker, and Berne (1992)] developed
the multi-time-step method to improve the accuracy and
reduce the required computational time.

The above descriptions are used for a microcanonical
simulation (NVE ensemble), where the total energy is a
conserved quantity. If the temperature or the pressure
should keep constant (the NVT or NTP ensembles), it
is not enough to only integrate Newton’s equations of
motion, the effect of a thermostat interacting with the
system should be considered. In canonical simulations
(NVT ensemble), to maintain the fixed temperature, one
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should use the equipartition theorem and equate the ki-
netic energy to 3

2 NkBT , where N is the total number of
the atoms in this system, kB is the Boltzman constant,
and T is the temperature. A number of more sophisti-
cated thermostats have also been developed, such as the
Langevin’s algorithm or Nosé-Hoover thermostat [Nosé
(1984)].

The standard molecular dynamics routine is illustrated in
Fig. 5.

The previous treatments, ab initio molecular dynamics,
tight binding, and classical molecular dynamics are all
deterministic. The state of the system is determined com-
pletely by the initial condition. These approaches are
useful in understanding stable structures, vibrations, and
growth at the atomistic level. Another method for treat-
ing complex systems is the Monte Carlo method, which
investigates problems by sampling from random distribu-
tions, and uses concepts of probability theory. It assumes
very idealized or simplified interaction parameters and
can treat larger number of atoms. Physical and chemical
properties of large systems are obtained by statistically
averaging over randomly moved particles. Hence, it is a
stochastic method. These techniques are now routinely
applied in almost every field, from biology to nuclear
physics to social studies. The detailed discussion about
this method is omitted here, interested readers are refer

Initial atomic configuration

Calculate interatomic 

distances 

Calculate interatomic 

forces

Move atoms

t+ t

Figure 5 : An illustration of classical MD routine

to Ohno, Esfarjani and Kawazoe (1999). Some of its ap-
plications can be found in Battaile et al. (1997), Bortz et
al. (1975), Huang et al. (1998), Gilmer et al. (2000) and
Singh et al. (1997).

3 Multi-scale Simulation

Recently, an intense effort has been devoted to the model-
ing and simulations of physical phenomena occurring on
a vast range of length scales. This endeavor has prompted
the development of multiscale modeling and simulation
strategies. Although constant increases in available com-
putational power and improvement in numerical algo-
rithms, even classical molecular dynamics methods with
very simple potentials are still limited to simulating on
the order of 106-108 atoms for a few nanoseconds. How-
ever, real materials are composed of ∼1023 atoms and
molecules, and sometimes it becomes necessary to per-
form far-larger-scale simulations. For phenomena on a
much larger space scale and longer time scale, one possi-
ble strategy is the multi-scale methods. The simulation of
large systems must be left to continuum methods. Con-
tinuum mechanics is used to predict the phenomena de-
scribed by uniform collective behavior of atoms, while
nano-mechanics is used to predict the phenomena de-
scribed by dramatic changes in the state of few atoms.
Multiscale modeling and simulations are being used in
diverse fields, such as materials science, nano/micro-
electronics, environmental remediation, and biotechnol-
ogy. The overall goal of multiscale modeling is to predict
the response of complex systems across all relevant spa-
tial and temporal scales. It is of interest to build models
that can seamlessly simulate multi-scale systems. Sev-
eral methods have been developed for the multiscale sim-
ulations. A recent review paper on the multiscale model-
ing in nano- and micro-mechanics of materials is written
by Ghoniem and Cho (2002).

The traditional approaches to couple spatial and tempo-
ral scales are the hierarchical approaches in which a hi-
erarchy of approaches and mathematical/computational
models with different physical levels of description is
pieced together, and the output of the smaller-scale mod-
els is used as input for the larger-scale models. Sinclair
(1971) modeled a bcc dislocation core by equilibrating
forces between atoms and continua with the continuum
region modeled with analytical techniques. Clementi
(1988) combined quantum mechanics, molecular dynam-
ics, and fluid dynamics to predict the tidal circulations. In
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a series of calculations, each calculation was used as in-
put to next up the length and time hierarchy. Kohlhoff,
Gumbsch and Fishmeister (1991) proposed a method in-
corporating a non-local elasticity theory for a transition
region connecting the lattice and continuum regions. Tan
and Yang (1994) used the molecular dynamics (EAM)
and finite element method to simulate interface fracture.
Gumbsch (1996) used the molecular dynamics and fi-
nite element method to simulate brittle crack propaga-
tion. Noguchi and Furuya (1997) matched displacements
between atomistic molecular dynamics and a microme-
chanics model to simulate elastic-plastic crack propaga-
tion. Sham and Tichy (1997) simulated thin film lubrica-
tion by means of molecular dynamics and finite element
method. However, many gaps still exist in these models.
Some of these methods were reviewed by Cleri, et al.
(1998). So far, no rational way exists to relate the phe-
nomena at the very small length scales with the macro-
scopic behavior.

An equivalent-continuum modeling approach was pro-
posed to model structure-property relationships of nano-
structured materials by [Odegard, Gates, Nicholson, and
Wise (2002)]. This method replaced discrete molecular
structures with equivalent-continuum representative vol-
ume models by equating the molecular potential energy
of nano-structured materials with the mechanical strain
energy of the representative volume element (equivalent-
energy). This method has been applied to determine
the effective geometry and effective bending rigidity of
a graphene sheet [Odegard, Gates, Nicholson, and Wise
(2002)]. The development of an equivalent-truss model
may be used as intermediate step in establishing the
equivalent-continuum model. Each atom in the molec-
ular model is represented by a pin-joint, and each truss
element represents an atomic bonded or non-bonded in-
teraction. The moduli of the truss elements are based
on the molecular mechanics force constants. If one
stops at this equivalent-truss model instead establishing
the equivalent-continuum model, the so-called molecular
structural mechanics is developed [Wang, et al. (2002);
Li, and Chou (2003)]. This method focuses mainly on
simulating atom mechanics using linear continuum ab-
stractions (trusses and bars). It preserves, and in some
cases increases, the number of degrees of freedom com-
pared to the full atomistic system. The expense is paid in
order to make the problem quasi-static and linear before
the application of a numerical solution procedure. So,

in the end, the atomic positions are easier to obtain than
from full molecular dynamics. Wang, et al. (2002)
derived the continuum mechanical properties of poly-
mer networks using this molecular structural mechan-
ics. The equivalent-continuum modeling is based on the
equivalent-energy, it can not determine the geometry and
material properties uniquely at the same time since all
the quantities are mixed in the energy, only one of them
can be determined given another one is predetermined
from the literatures or assumed. Every independent ma-
terial constant is determined by a different corresponding
boundary condition. This method is not self-consistent,
nor appropriate to large deformation.

With the advent of parallel computers, another approach
to the coupling of length scales, the handshaking ap-
proach, appears. In this approach, the problem is divided
into its natural components, each of which may be ad-
dressed by one or more processors. Then, the “handshak-
ing” between the different regions plays a important role
in this method. The “handshaking” is not just an algo-
rithmic issue but also one that requires physical insight
[Broughton, Abraham, Bernstein, and Kaxiras (1999)].
The FE/MD/TB model has recently been propounded by
Abraham and coworkers [Broughton, Abraham, Bern-
stein, and Kaxiras (1999), Abraham (2000)]. An exam-
ple of this handshaking approach for dynamic fracture
analysis is shown in Fig. 6. In this model, the prob-
lem is divided into three regions: continuum mechanics,
the implementation of which is via finite elements (FE);
atomistic statistical mechanics, implemented by molecu-
lar mechanics; and mean-field quantum mechanics rep-
resented by semiempirical tight bind (TB) (or ab initio
method). Each simulation is performed on a different
region of the domain, with a coupling imposed in “hand-
shake” regions where the different simulations overlap.
The method is designed for implementation on super-
computers via parallel algorithms, allowing the solution
of large problems. A Hamiltonian, Htot , is defined for
the entire system, which can be conceptually written as
[Broughton, Abraham, Bernstein, and Kaxiras (1999)]

Htot = HFE ({u, u̇} ∈ FE)
+HFE / MD

({
u, u̇,R,Ṙ

} ∈ FE / MD
)

+HMD
({

R, Ṙ
} ∈ MD

)
+HMD / TB

({
R, Ṙ

} ∈ MD / TB
)

+HTB
({

R, Ṙ
} ∈ TB

)
(42)



74 Copyright c© 2004 Tech Science Press CMC, vol.1, no.1, pp.59-90, 2004

The degrees of freedom are atomic positions, R, and their
velocity, Ṙ, for the TB and MD regions; and displace-
ments, u, and their time rates of change, u̇, for the FE
regions. This equation states that there are three separate
Hamiltonians for each subsystem as well as Hamiltoni-
ans that dictate the dynamics of variables in the hand-
shake regions. The subscripts “FE/MD” and “MD/TB”
denote such handshake regions.

Abraham, Broughton, Bernstein, and Kaxiras (1999) and
Abraham, Bernstein, Broughton, and Hess (2000) used
this method to simulate the propagation of a crack in a
brittle material, where the TB method is used to simulate
bond breaking at the crack tip, MD is used near the crack
surface, and the surrounding medium is treated with FE.
Rafii-Tabar, Hua, and Cross (1998) proposed a related
method by a stochastic coupling of a molecular-dynamics
region to a finite element region. The system is propa-
gated in time using a stochastic differential equation so
as to produce something resembling Langevin dynam-
ics. Simirnova, Zhigilei, and Garrison (1999) studied the
propagation of a laser-induced pressure wave in a solid
by combining the molecular dynamics and finite element
method. This method has been extensively applied in the
field of laser of ablation by Zhigilei and his colleagues.

Figure 6 : The multiscale modeling approaches that at-
tempt to link several computational approaches in a com-
bined model for dynamic fracture analysis. In this model,
electronic structure model (quantum mechanics) is com-
bined with a molecular dynamics model, which in turn is
embedded into a continuum model (discretized) by finite
elements [Noor (2002)].

Fig. 6 The multiscale modeling approaches that attempt
to link several computational approaches in a combined
model for dynamic fracture analysis. In this model, elec-
tronic structure model (quantum mechanics) is combined

with a molecular dynamics model, which in turn is em-
bedded into a continuum model (discretized) by finite el-
ements [Noor (2002)].

In the handshaking approach, the standard technique is to
a priori identify the atomistic and continuum regions and
tie them together with some interface boundary condi-
tions. The challenge for mesh generation is that the mesh
should smoothly transition between the true atomic lat-
tice in the MD region and the closely-packed FE meshes.
Too abrupt a crossover leads to unphysical behavior, such
as elastic wave reflections at the interface [Rudd and
Broughton (1998, 2000)]. In addition to the disadvan-
tage of introducing artificial numerical interfaces into the
problem, a further drawback of these models is their in-
ability to adapt to changes in loading an evolving state
of deformation. To connect seamlessly to molecular dy-
namics in the atomic limit, Coarse Grained Molecular
Dynamics (CGMD) has been developed as a substitute
for finite elements Rudd and Broughton (1998, 2000)],
which derived the equation of motion directly from finite
temperature MD through a statistical coarse graining pro-
cedure. Although CGMD reduced unphysical scattering
of waves traveling from the atomistic region into the CG
region as compare to FE, the short-wavelength wave still
reflected from the CG region. Moreover, the computa-
tional cost of the CG procedure is far beyond that of FE.

The quasicontinuum method was originally introduced
by Tadmor, Ortiz, and Phillips (1996). The theory of the
quasicontinuum furnishes a computational scheme for
linking the atomistic and continuum realms, and regards
that all the system is in the atomistic realm. The basic
idea is that every point in a continuum corresponds to a
region on the atomic scale, which is homogeneously dis-
torted according to the deformation gradient at the point.
The finite strain theory is employed in the continuum
realms. The details about the finite strain analysis can
be found in Atluri (1979, 1980). A hypothesis to con-
nect the continuum displacement field and the motions
of atoms must be employed. The Cauchy-Born hypothe-
sis is the basis for developing the quasicontinuum elastic
potentials, from the atomistic description of the system.
The Cauchy-Born hypotheses for crystals are equivalent
for homogeneous deformations [Born and Huang (1954),
Ericksen (1984)].

For simple Bravais lattice that has the centrosymmetric
atomic structure, the Cauchy-Born rule [Born and Huang
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(1954), Ericksen (1984)] gives

r IJ = FRIJ (43)

where F is the deformation gradient, and R IJ and r IJ rep-
resent the distances between two atoms I and J in the ref-
erence configuration and current configuration, respec-
tively. However, it does not for complex Bravais lattice
which can be given be means of a number of interpene-
trating simple Bravais lattices (sub-lattices) and does not
possess centrosymmetry, such as the hexagonal lattice. In
this case, the Cauchy-Born rule gives [Zanzotto (1996),
Martin (1975), Cousins (1978), Born and Huang (1954)]

r IJ = FRIJ +ςk (44)

where the internal variable ςk are shift vectors, with k
ranging from 0 to some integer N (There are N+1 sub-
lattices in the complex Bravais lattice. If atoms I, J are
in the same sub-lattices, ςk=0). ςk and F are independent
variables. At the static equilibrium state, the vectors ςk

are to be determined by the minimization of the energy
function, so as to reach an equilibrium configuration in
the deformed crystal. This means that the equilibrium
values of ςk can be written as functions of F. If focusing
on dynamical problems, one will avoid making any spe-
cific hypothesis on the behavior of ςk, what one need is
∂r IJ

/
∂F = RIJ from either (43) or (44).

Once the geometry of the deformed lattice vectors is
linked to the continuum deformation, a constitutive
model based on atomistic description can be constructed
by equating the continuum strain energy density to the
potential energy of the atomic system for a representa-
tive cell, divided by its volume. A continuum finite ele-
ment formulation is used to characterize the mechanical
response of a given system. The difference from stan-
dard finite element methodologies is that the constitutive
response of the system is obtained from an atomistic cal-
culation rather than an empirical phenomenological rule.
This type of approach is due to Kroner (1967). In this
method, a set of atoms making up a Bravais lattice has
selected from a subset. A triangulation of this subset al-
lows the introduction of finite element-like shape func-
tions at lattice points, allowing the interpolation of quan-
tities at intermediate points in the lattice. The finite mesh
permeates the entire system, right down to atomic dimen-
sions. In the inhomogeneous deformation region (such as
near defects), the atoms are expressed explicitly, while in

the homogeneous deformation region, the atoms are ex-
pressed implicitly by the representative atoms. An un-
derlying atomistic Hamiltonian is used to determine the
energy density of the system; a separate atomistic cal-
culation is required for each cell in their finite element
mesh. The energy of the atoms in inhomogeneous defor-
mation region is calculated by building the appropriate
complement of neighbors as in the classical MD method.
In the homogeneous deformation regions, the energy is
calculated using a single representative atom in the cen-
ter of a uniformly deformed crystal in which the defor-
mation gradient is F. This crystal is always made suffi-
ciently large that there are no boundary effects there. The
problem of the minimization of energy to find equilib-
rium configurations can be written in terms of a reduced
set of variables.

The method is made practical by approximating summa-
tions over all atoms, as using summation rules analogous
to numerical quadrature. The rules rely on the smooth-
ness of the quantities over the size of the triangulation to
ensure accuracy. The adaptivity rules allow the reselec-
tion of representative lattice points in order to tailor the
computational mesh to the structure of the deformation
field. The criteria for adaptivity are designed to allow full
atomic resolution in regions of large local strain, such as
near a defect.

Different variants of the quasicontinuum theory have
been developed in a series of publications where numer-
ous examples of application have also been presented,
such as the simulation of dislocations, grain boundary in-
teractions, nanoindentation, fracture, and the response of
ferroelectric materials to electrical and mechanical load-
ing. Recently, Shenoy (2003) extended the method to
dynamics at zero temperature, and a multiple-time-step
method was also developed for the time integrating.

There are several limitations in the quasicontinuum
method. In particular, cracks and defects are not allowed
to form, and since the simulation is carried out at zero
temperature, thermally-activated processes are not in-
cluded [Smith, Tadmor, Bernstein, and Kaxiras (2001)].
Moreover, interface energies between different phases
are not taken into account. Due to that the procedure
focused on approximating the energy but not the forces,
some non-physical forces are induced [Shenoy, Miller,
Tadmor, Rodney, Phillips, and Ortiz (1999)]. Actually,
another reason for these non-physical forces is the fact
that the finite element interpolation is a local interpola-
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tion, which disobeys the non-local physics property of
the atoms. In addition, in these approaches, the nodes
must coincide with atoms at the interface, therefore, the
resolution of the discretized continuum nodal space down
to the atom scale, that restrict the size of the continuum
and leads to smaller overall dimension problem. Chung
and Namburu (2003) circumvented the interface entirely
through homogenization theory. A lattice statics based
tangent-stiffness finite element method is developed for
the interface/transition region by Chung, Namburu, and
Henz (2004). Wagner and Liu (2003) presented a multi-
scale method for coupling molecular dynamics and con-
tinuum mechanics at finite temperature by using “bridg-
ing scale” decomposition and quasicontinuum method,
where the entire system is treated as a coarse scale one,
first; and then the entire system is treated as a fine scale
one, later sequentially. Multiple time steps are employed
for wave propagation in the coarse scale and fine scale. A
recent review of the quasicontinuum method discussing
its theory and applications can be found in Miller and
Tadmor (2002).

Recent, by virtue of the dynamic principle of virtual
work, an equivalent continuum is defined for dynami-
cally deforming atomistic system by Zhou and his col-
league [Zhou and McDowell (2002); Zhou (2003)].
Work-conjugate continuum stress and deformation fields,
mass distribution, and all other work- and momentum-
preserving kinetic quantities are specified for the equiva-
lent continuum. The resulted equivalent continuum fields
represent a continuum reinterpretation of the result of
a discrete MD calculation, and have exactly the same
number of independent degrees of freedom as the dis-
crete atomistic system. Hence, this equivalent continuum
fields is computationally intensive to obtain. This equiv-
alent continuum may offer a theoretical basis for linking
MD to continuum in multiscale simulation, just likes the
role of the Cauchy-Born hypotheses in the quasicontin-
uum method.

Other studies describing methods for multi-scale sim-
ulations of the atomistic and the quantum regimes or
continuum and the atomistic regimes can be found in
Hoover, De Groot, and Hoover (1992), Capaz, Cho
and Joannopoulos (1995), and Vanduijnen and Devries
(1996). Friesecke and James (2000) proposed a scheme
of bridging between continuum and atomic structure, fo-
cusing on nano-structures in which the size of one dimen-
sion is much larger than the other. Zhang, Klein, Huang,

Gao, and Wu (2002) developed virtual-internal-bond
(VIB) model to apply continuum mechanics to multi-
scale material problems, which incorporated a cohesive-
type law into constitutive equations. VIB model provides
an effective method to investigate crack nucleation and
propagation in engineering materials. Garikipati (2002)
embedded micromechanical models in the macrome-
chanical formulation by means of a variational multiscale
method. The resulting macromechanical formulation is
formed solely in terms of the coarse scale displacements,
but is influenced by the fine scale, which is governed
by micromechanical models; thereby it has a multiscale
character. Insepov et al. (1997, 2000) used a multiscale
method to study the effects of impact by atomic clusters
on crystal surfaces. In this method, an ensemble averag-
ing technique is employed to pass thermal and deforma-
tion from the atomistic region to the FE region.

As we know, in the multiscale simulation, the atomistic
method is employed where the displacement field varies
on an atomic scale, and the continuum approach is em-
ployed elsewhere. For the seamless multiscale simula-
tion, it is important to ensure that the elastic waves gen-
erated in the atomistic region can propagate into the con-
tinuum region. The continuum region cannot support
modes of short wavelength, which is less than the spacing
of the nodes. One source of finite size effects is the short
waves which are reflected back unphysically from an ar-
tificial interface or boundary, which may also produce
uneven heating across the interface. In order to minimize
such reflections, some interfacial conditions are proposed
[Cai et al. (2000), E and Huang (2001), Wagner and Liu
(2003)]. Cai et al. (2000), Wagner and Liu (2003) de-
rived the interface conditions as a generalized Langevin
equations. However, the time history integral is diffi-
cult to compute, especially for moving MD region. E
and Huang (2001) minimized boundary reflection in an
MD simulation with a reduced weighted sum of history
terms. We developed a method for the seamlessly cou-
pling of continuum and MD simulation at finite temper-
ature [Shen, and Atluri (2004)], where alternate interfa-
cial conditions between atomistic and continuum regions
were proposed by considering the fluctuation of atoms in
the continuum region. Their effectiveness in ensuring the
accurate passage of information between atomistic and
continuum regions was discussed.

Consider a multiscale system, including an atomistic re-
gion, which may contain inhomogeneities, and an equiv-
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alent continuum mechanics (ECM) domain, which is
defect-free. In the (ECM) region, the deformation is ho-
mogeneous, and thus can be approximated by an equiv-
alent continuum mechanics model as in quasicontinuum
method, where the individual atomic displacements are
not being solved using molecular dynamics. The mate-
rial in ECM is discritized into a set of nodes, which are
not necessarily coincident with the atoms. The positions
of the atoms in this region can be interpolated from those
of the nodes. Effectively, the ECM model involves an
averaging over the atomic degrees of the freedom that
are missing from the node. The meshless local Petrov-
Galerkin (MLPG) method is employed to solve for the
displacements of the nodes in the ECM region. This is
illustrated of in Fig. 7. In the ECM region, the nodes
can be taken to be arbitrary, and not necessarily be coin-
cident with the atoms. In MD region, the nodes are taken
to be the atoms themselves. In the ECM region, the solid
points represent the atoms, while the open points repre-
sent the nodes of the MLPG method. MLPG5 is imple-
mented in “ECM” region and MLPG2 is implemented in
MD region.
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Figure 7 : Illustration of ECM/MD multiscale simula-
tion.

The MLPG method, a truly meshless method devel-
oped by Atluri and his colleagues, is a simple and less-
costly alternative to the FEM and BEM [Atluri and Zhu
(1998), Atluri and Shen (2002a, b)]. Remarkable suc-

cesses of the MLPG method have been reported in solv-
ing the convection-diffusion problems [Lin and Atluri
(2000)]; beam problems [Raju, Phillips (2003)]; frac-
ture mechanics [Kim & Atluri (2000), Ching & Batra
(2001)]; strain gradient materials [Tang, Shen and Atluri,
(2003)]; three dimensional elasticity problems [Li, Shen,
Han and Atluri (2003)]; elstodynamic problems [Batra,
Ching (2002); Sellountos, and Polyzos (2003)]; elas-
todynamic problems in continuously nonhomogeneous
solids [Sladek, Sladek, Zhang (2003)]; thermoelastic-
ity [Sladek, Sladek, Atluri (2001)]; Navier-Stokes flows
[Lin and Atluri (2001)]; and plate bending problems [Gu
& Liu (2001), Long and Atluri (2002), Qian, Batra, and
Chen (2003a, b)]. A comparison study of the efficiency
and accuracy of a variety of meshless trial and test func-
tions is presented in Atluri and Shen (2002a, b), based
on the general concept of the meshless local Petrov-
Galerkin (MLPG) method. The recent review of the
MLPG method, regarding its theory and applications can
be found in Atluri (2004), and Atluri and Shen (2003).

As mentioned before, the displacement ui of an atom in
ECM region implies an average value of the atomic dis-
placement, it can not catch the thermal fluctuations. To
describe it more accurately, we assume that the “real”
displacement qi of the atom in the ECM region can be
expressed as:

qi = ui +δui (45)

where δui denote the atomic thermal fluctuations, and it
is assumed that δui << ui in ECM region. This decom-
position has the multiscale feature offered by pure MD
and the continuum respectively: short-wavelength fluc-
tuation of individual atom and long-wavelength wave of
the continuum. By means of this decomposition, the ef-
fects of the thermal fluctuations on the MD region lead
to the interface conditions. An optimal method was pro-
posed [Shen and Atluri (2004)] in both reducing the re-
flection of phonons and in lowering computational cost,
especially when the atomistic region moves with time.
A multiple time step method was employed for the time
integration in both MD and ECM region: the MD simu-
lation is advanced by k steps of size ∆tA, when the ECM
simulation is advanced for a step of size∆tB = k∆tA. The
stability of multiple time step method was studied in Be-
lytschko et al. (1979). Numerical experiments stated that
this method was very accurate and efficient. More details
about this multiscale method are given in Shen and Atluri
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(2004), and Atluri (2004).

For more examples about the multi-scale simulations and
their application, see the proceedings of the Training
Workshop on Multiscale Modeling, Simulation and Visu-
alization and Their Potential for Future Aerospace Sys-
tems [Noor (2002)]. In addition, two special issues of
CMES: Computer Modeling in Engineering & Sciences
(2002a, b) have been devoted to this topic. Srivastava,
Menon and Cho (2001) briefly reviewed computational
techniques and provided a few examples derived from
computer simulations of carbon nanotube-based molec-
ular nanotechnology. Chang and Guo (2002) also re-
viewed the recent advances in molecular dynamics and
Monte Carlo simulations.

Although substantial progress has been made in recent
years, multi-scale modeling method is still in its infancy,
and it still requires intensive efforts. As pointed by many
researchers, the main issues in the development of seam-
less multi-scale modeling methodology are still the lim-
itations on the length and time scale, and the numerical
accuracy and efficiency. Hence, a more accurate and effi-
cient multi-scale modeling methodology is still desirable,
and attracts many researchers.

4 Numerical Simulations in Carbon Nanotube

Since the debut of carbon nanotube (CNT) in 1991
[Iijima (1991)], it has stimulated activities in the inves-
tigation of the physical and mechanical properties and
their potential technological application. CNT can be
produced by an array of techniques, such as laser abla-
tion, arc discharge and chemical vapor deposition. They
possess exceptional properties, such as high stiffness and
strength, the ability to sustain large elastic strain, and
high thermal and electric conductivity.

A single-walled carbon nanotube (SWNT) can be viewed
as a result of rolling a graphene sheet, by specifying the
direction of rolling and the circumference of the cross-
section. A multi-walled carbon nanotube (MWNT) is
composed of concentric graphitic cylinders with closed
caps at both ends and the graphitic layer spacing is about
0.34 nm. In the graphene sheet, carbon atoms are ar-
ranged in a hexagonal array, and each has three nearest
neighbors. The atomic structure of nanotube is described
in terms of the tube chirality, or helicity, which is defined
by the chiral vector Ch and the chiral angle θ, as shown in
Fig. 8. After cutting the graphite sheet along the dotted

lines and rolling to form a nanotube, the two end nodes
of the chiral vector coincide. The chiral vector, i.e. the
roll-up vector can be expressed as a linear combination
of base vectors a1 and a2 of the hexagon:

Ch = na1 +ma2 (46)

where the integers (n, m), which uniquely define the type
of the nanotube, are the number of steps along the zigzag
carbon bonds of the hexagonal lattice. Three major cate-
gories of nanotube are defined based on the chiral angle
θ. The chiral angles are 0◦ and 30◦ for the two limiting
cases which are referred to as zigzag and armchair, re-
spectively. The chiral angle is between 0◦ and 30◦for chi-
ral. The zigzag nanotube is denoted by (n, 0) and the arm-
chair nanotube (n, n). The roll-up vector of the nanotube
also defines the diameter of the nanotube. The physical
properties of CNTs are sensitive to their diameter, length
and chirality [Dresselhaus, et al. (1997); Popov, et al.
(2000); Hernandez, et al. (1998)]. A survey about the
mechanics of carbon nanotubes can be found in Qian,
Wagner, Liu, Yu and Ruoff (2002). Here, we only review
the latest achievements in this field.

Figure 8 : Schematic diagram of a hexagonal graphene
sheet [Thostenson, et al. (2001)].

Ab initio, TBMD and classical MD methods were em-
ployed to perform the analysis of CNT. They are the “bot-
tom up” methods. By means of MD, Iijima, et al. (1996)
studied the structural flexibility of CNTs, and Yakob-
son, et al. (1997) simulated the high strain fracture in
CNTs. Hernandez, et al. (1998) investigated the elas-
tic properties of nanotubes using TBMD. Sanchez-Portal
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(1999) studied the elastic and vibrational properties of
CNTs resorting to density functional theory (ab initio).
Belytschko et al. (2002) simulated the nanotube fracture
using MD methods, and showed moderate dependence
of fracture strength on chirality. Dumitrica et al. (2003)
proposed a brittle bond-breaking CNT failure mechanism
by using the density functional theory (DFT). Troya,
et al. (2003) presented quantum mechanical studies of
CNT fracture using two different semiempirical meth-
ods. The different fracture mechanisms from quantum
mechanics and empirical potentials were explored. Guo
and Guo (2003) investigated the coupled mechanical and
electrostatic properties of single walled open CNTs un-
der applied electric field and tensile loading by means of
quantum mechanics and quantum-MD techniques. Quite
different failure mechanisms in electric or mechanical
loading were predicted. Guo and Guo (2003) simulated
an exceptional large axial electrostrictive deformation in
CNTs using Hartree-Fock and density functional theory.
The volumetric and gravimetric work capacities are pre-
dicted to be three and six orders higher than those of the
best known ferroelectric, electrostrictive, magnetostric-
tive materials and elastomers, respectively.

Multiwalled carbon nanotubes (MWNTs) have been pro-
posed as candidates for nanoscale molecular bearings,
spring, and oscillators. Zhao, et al. (2003) used MD to
study the energy dissipation mechanism for isolated sys-
tems of two coaxial carbon nanotubes, which may serve
as a nearly frictionless nano-oscillator. Guo, et al. (2003)
also performed MD simulations of a double walled CNT
oscillator to show that the rate of energy dissipation de-
pends on the commensuration and relative morphology
of the bitube. Zhang, et al. (2003) studied double-walled
CNTs-based bearings using MD simulations. Their re-
sults showed that dynamic effects dominate the friction
in these DWCNT bearings and the interlayer friction is
very small. In their simulations, the intralayer interac-
tion is described by a Brenner potential, and the inter-
layer interaction is represented by the registry-dependent
graphitic potential developed by Kolmogorov and Crespi
(2000). Qian et al. (2003) studied the nature of load
transfer in a single walled carbon nanotube bundle us-
ing a Lennard-Jones potential for the inter-tube inter-
actions. Their results revealed that the radial deforma-
tion strongly depended on the twist angle, which conse-
quently changes the nature of the contact and contributes
a new interlayer tribology. Zhang, et al. (2003) inves-

tigated the mechanical properties of SWNTs filled with
small fullerenes (C20, C36 and C60) using MD simu-
lation. The interaction between carbon atoms was de-
scribed by a combination of Brenner potential with a
two-body pair potential. Their mechanical properties de-
pended on the filling-density and the radius of the tube.
Such peapod types of structures may use in functional
nanoscale devices such as nano-pistons, nano-bearings,
nano-writing implements, or as a nano-capsule storage
system. Wei and Srivastava (2003) studied the transport
of long polymer molecules through CNT channels using
the MD simulations. A polymer molecule is adsorbed
into a NT due to van der Waales interactions, which is
modeled as Lennard-Jones potentials. Tersoff-Brenner
potentials were used for carbon-carbon and hydrogen-
carbon interactions.

As discussed in previous sections, these atomistic mod-
eling techniques are limited to systems containing a
small number of molecules or atoms and are usually
confined to studies of relatively short-lived phenomena,
from picoseconds to nanoseconds. Nanotubes domi-
nated by atomistic effects exhibit continuum-like be-
havior. Continuum-like methods that have been devel-
oped for nanoscale devices rely on parameterizations of
more detailed calculations, e.g. from molecular dynam-
ics and/or ab initio, to be fed into existing continuum
models such as shell [Yakobson, Brabec, and Bernholc
(1996)] and beam [Wong, Sheehan, and Lieber (1997)]
theories. Yakobson, Brabec, and Bernholc (1996) stud-
ied the nanotube instability problem by means of the
shell theory. Pantano and his colleagues (2003) used a
continuum/finite element approach to model the struc-
ture and the deformation of SWCNTs and MWCNTs.
In their works, individual tubes are modeled using shell
elements, the effects of van der Waals forces are simu-
lated with special interaction elements. Vodenitcharova
and Zhang (2003) investigated the effective wall thick-
ness of a single-wall carbon nanotube using the contin-
uum ring theory. Savinskii and Petrovskii (2002) calcu-
lated the vibration spectrum of a nanotube in the long-
wavelength limit as a function of the radius and thick-
ness of the nanotube, which was represented as an elastic
cylindrical shell of a finite thickness. Harik (2002) an-
alyzed the applicability of continuum-beam models and
continuum shell theories to the global mechanical behav-
ior of SWNTs, and concluded that the direct use of the
beam theory should be limited to SWNTs with very small
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diameters. Sudak (2003) presented a multiple column
model for the linearized column buckling of multi-walled
carbon nanotubes using the theory of nonlocal contin-
uum mechanics. Gao and Li (2003) developed another
continuum-based model for computing strain energies
and Young’s modulus of SWCNT, which is viewed as
a continuum hollow cylinder by rolling up a flat graphite
sheet that is treated as an isotropic continuum plate. In
their model, kinematics of finite deformations was em-
ployed with the Hencky strain and the Cauchy stress. All
these kinds of continuum models can be used to analyze
the static or dynamic mechanical properties of nanotubes.
However, these models neglect the detailed characteris-
tics of nanotube chirality, and are unable to account for
forces acting on the individual atoms. Moreover, devel-
opments such as these are difficult to extend to general
computational methods due to the strict assumptions as-
sociated with shell and beam theories.

The equivalent-continuum modeling approach [Odegard,
Gates, Nicholson, and Wise (2002)] and molecular struc-
tural mechanics method [Li, and Chou (2003)], as intro-
duced in section 3, were also used to treat nanotubes.
Odegard, et al. (2003) developed constitutive models for
nanotube-reinforced polymer composite system, where
the nanotube, the local polymer near the nanotube, and
the nanotube/polymer interface were modeled as an ef-
fective continuum fiber using the equivalent-continuum
modeling approach. Li and Chou (2003) used the molec-
ular structural mechanics method to model the deforma-
tion of single-walled CNTs, the elastic properties was ob-
tained. Then, they extended this method to simulate the
elastic behavior of multi-walled CNTs under tension and
torsion. The van der Waals interactions are accounted by
introducing a nonlinear truss rod model. They also ana-
lyzed the interfacial load transfer in the carbon nanotube
reinforced polymer composite by combining this method
and continuum FEM, where the CNT is modeled by the
molecular structural mechanics method, and the matrix
is modeled by FEM. CNTs are regarded as ideal rein-
forcing materials for high-performance nanocomposites
[Maryyama, and Alam (2002)], a review of nanotube-
based composites can be found in Thostenson, et al.
(2001).

Crystal elasticity theories based on the Cauchy-Born
rule, as discussed in quasicontinuum method in section 3,
have also been applied to CNTs. A continuum theory for
modeling carbon nanotubes was proposed by directly in-

corporating interatomic potentials into a continuum-level
constitutive relation on the basis of the Cauchy-Born rule
in Zhang, Huang, Gao, et al. (2002), same as the qua-
sicontinuum method. The SWCNT is assumed to be a
cylindrical with vanishing thickness. The theory was first
used to study the elastic modulus of a SWNT [Zhang,
Huang, Geubelle, et al. (2002)], and then applied to the
study of fracture nucleation in SWNTs [Zhang, Huang,
Gao, et al. (2002)]. It was also employed to investigate
the effect of nanotube radius on the constitutive model
of SWCNTs [Jaing, et al. (2003)], and the influence of
mechanical deformation on the electrical properties of
SWCNTs via the k-space tight-binding method [Liu, et
al. (2004)]. This method is limited to uniformly defor-
mation, and the cross-section of the SWCNT must re-
main circular during the deformation (since this method
required that the sequence of deforming a CNT and “un-
roll” the deformed CNT to a plane can be exchanged).
Therefore, this method can be applied to tension and tor-
sion, but not bend. Qian, Liu and Ruoff (2001) proposed
a combined continuum/MD models for the analysis of in-
teraction between C60 and nanotube, where the nanotube
is modeled as a cylindrical shell with finite thickness us-
ing the Cauchy-Born rule as in quasicontinuum method,
and the C60 is modeled directly by MD. The direct ap-
plication of the Cauchy-Born rule to CNT will result in
inconsistency, since a CNT is not space-filling, but com-
posed of a curved single-atom-thickness atomic layer.
Arroyo and Belytschko (2002) corrected this inconsis-
tency by introducing the exponential map from differen-
tial geometry. Using the modified Cauchy-Born rule, a
quasicontinuum method was developed for single layer
crystalline films, and the CNT is modeled as a continuum
membrane with no thickness. Good results for the bend-
ing of nanotubes were presented [Arroyo and Belytschko
(2002)]. However, it is not an easy task to evaluate the
exponential map for a complicated configuration.

5 Conclusion

The recent developments and applications of the multi-
scale modeling in nanomechanics and nanotubes are re-
viewed in this paper. Although many promising methods
are proposed, a number of challenges still remain, such
as the limitations on the length and time scale, the numer-
ical accuracy and efficiency, the self-consistency (or non-
reflection/seamless) of multiscale models. The numerical
accuracy depends on the accuracy of interactomic poten-
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tials, and the self-consistency depends on the interfacial
condition between MD/continuum or QM/MD.

The Cauchy-Born rule and energy-equivalent assump-
tion play important roles in reasonably bridging the con-
tinuum level to atomistic level. But the homogeneous-
deformation assumption limits the application of the
Cauchy-Born rule. The Cauchy-Born rule is only appro-
priate for bond interaction. For non-bond interaction, an
accuracy, efficiency and reasonable continuum model is
still lacking. The energy-equivalent assumption involves
too many assumptions and mixed many quantities; these
are the main reasons why there is a wide varieties in the
values of Young’s modulus/wall-thickness pair for SWC-
NTs in the literatures. Rather than Cauchy-Born rule and
energy-equivalent assumption, possibly, a new general-
ized multiscale method should be directly based on the
force (conservation of local linear momentum) and aver-
aging techniques (constitutive equations represent some
averaged behavior of collective atoms). For deriving the
electric properties of the nanomaterials, the simulation
must be taken down to quantum mechanics. An effective
electromechanical multiscale model may be helpful.

Nanomechanics is a developing field which is rich of nu-
merical, computational, physical and mathematical chal-
lenges. A novel and seamless multi-scale modeling
methodology will play a key role in the simulation and
design methodology for nanotechnology.

Acknowledgement: This work was supported by the
U. S. Army Research Office, and the U. S. Army Re-
search Laboratory, under a cooperative research agree-
ment with the University of California at Irvine. The
Cognizant Program Official at the U. S. Army Research
Labs is Dr. R. Namburu. Partial support for this work
was also provided by the Office of Naval Research, in
the program directed by Dr. Y.D.S. Rajapakse.

References

Abell, G. C. (1985): Empirical chemical pesudopoten-
tial theory of molecular and metallic bonding Physical
Review B 31(10): 6184-6196.

Abraham, F. F. (2000): MAADLY spanning the length
scales in dynamic fracture. CMES: Computer Modeling
in Engineering & Sciences 1 (4): 63-69

Abraham, F. F.; Bernstein, N.; Broughton, J. Q.; Hess,
D. (2000): Dynamic fracture of silicon: concurrent simu-

lation of quantum electrons, classical atoms, and the con-
tinuum solid. Materials Research Society Bulletin 25:27-
32.

Abraham, F. F.; Broughton, J. Q.; Benstein, N.; Kaxi-
ras, E. (1998): Spanning the length scales in dynamic
simulation. Comput. Phys. 12(6): 538-546.

Adler, C.; Honke, R.; Pavone, P.; Schroder, V.(1998):
First-principles investigation of the lattice dynamics of
epsilon-GaSe. Phys. Rev. B 57: 3726-3728.

Ajayan, P. M.; Zhou, O. Z. (2001): Applications of Car-
bon Nanotubes, in Carbon Nanotubes, Topics in Applied
Physics; M.S. Dresselhaus, et al. (Eds); 80: 391-425,
Springer

Alder, B. J.; Wainwright, J. (1957): Phase transition for
a hard sphere system. J. Chem. Phys. 27(5): 1208-1209.

Allen, M. P.; Tildesley, D. J. (1989): Computer simula-
tion of liquids. Clarendon, Oxford.

Allinger, N. L. (1977): Conformational-analysis. 130.
MM2-Hydrocarbon force-field utilizing v1 and v2 tor-
sional terms. J. Am. Chem. Soc. 99(25): 8127-8134.

Allinger, N. L.; Yuh, Y. H.; Lii, J. H. (1989): Molecu-
lar mechanics-The MM3 force-field for hydrocarbons. J.
Am. Chem. Soc. 111(23): 8551-8566.

Appel, A. (1985): An efficient program for many-body
simulation. SIAM J. Sci. Statist. Comput. 6: 85-103.

Arroyo, M.; Belytschko, T. (2002): An atomistic-based
finite deformation membrane for single layer crystalline
films. Journal of Mechanics and Physics of Solids 50:
1941-1977.

Atluri, S. N. (1979): On rate principles for finite strain
analysis of elastic and inelastic nonlinear solids. In Re-
cent Research on Mechanical Behavior, 79-107, Univer-
sity of Tokyo Press.

Atluri, S. N. (1980): On some new general and com-
plementary energy theorems for the rate problems in fi-
nite strain, classical elastoplasticity. Journal of Struc-
tural Mechanics 8(1): 61-92.

Atluri, S. N. (2004): The meshless local Petrov-Galerkin
(MLPG) method for domain and boundary discretization.
Tech. Science Press, Los Angeles.

Atluri, S. N.; Han, Z.D.; Shen, S.(2003): The Meshless
Local Petrov-Galerkin (MLPG) Approaches for Solving
the Weakly-Singular Traction & Displacement Boundary
Integral Equations. CMES: Computer Modeling in Engi-
neering & Sciences 4(5), 507-516.



82 Copyright c© 2004 Tech Science Press CMC, vol.1, no.1, pp.59-90, 2004

Atluri, S. N.; Shen, S. (2002a): The meshless local
Petrov-Galerkin (MLPG) method. Tech. Science Press,
Los Angeles, 440 pages.

Atluri, S. N.; Shen, S. (2002b): The meshless lo-
cal Petrov-Galerkin (MLPG) method: A simple & less-
costly alternative to the finite element and boundary ele-
ment method. CMES: Computer Modeling in Engineer-
ing & Sciences 3 (1): 11-52.

Atluri, S. N.; Shen, S. (2004): The Basis of Mesh-
less Domain Discretization: The Meshless Local Petrov
Galerkin (MLPG) Method. Advances in Computational
Mathematics (in press).

Atluri, S. N.; Zhu, T. (1998a): A new meshless lo-
cal Petrov-Galerkin (MLPG) approach to nolinear prob-
lems in computational modeling and simulation. Com-
put. Modeling Simulation in Engrg. 3: 187-196.

Atluri, S. N.; Zhu, T. (1998b): A new meshless local
Petrov-Galerkin (MLPG) approach in computational me-
chanics. Comput. Mech. 22: 117-127.

Barnes, J.; Hut, P. (1986): A hierarchical O(NlogN)
force-calculation algorithm. Nature 324: 446-449.

Baskes, M. I. (1992): Modified embedded-atom poten-
tials for cubic materials and impurities. Phys. Rev. B 46:
2727–2742.

Baskes, M. I.; Angelo, J. E.; Bison, C. L. (1994):
Atomistic calculations of composite interfaces. Modell.
Simul. Mater. Sci. Engng. 2: 505–518.

Batra, R. C.; Ching, H. K. (2002): Analysis of
elastodynamic deformations near a crack/notch tip by
the meshless local Petrov-Galerkin (MLPG) method.
CMES: Computer Modeling in Engineering & Sciences
3 (6): 717-730.

Battaile, C. C.; Srolovitz, D. J. (1997): A kinetic Monte
Carlo method for the atomic-scale simulation of chemi-
cal vapor deposition: application to diamond. J. Applied.
Phys. 82 (12): 6293-6300.

Bearpark, M. J.; Robb, M. A.; Bernardi, F.; Olivucci,
M. (1994): Molecular mechanics valence-bond meth-
ods for large active spaces-application to conjugated
polycyclic-hydrocarbons. Chem. Phys. Lett. 217: 513-
519.

Belytschko, T.; Xiao, S. P.; Schatz, G. C.; Ruoff, R.
(2002): Atomistic simulation of nanotube fracture. Phys.
Rev. B 65(23): Art. No. 235430

Belytschko, T.; Yen, H.; Mullen, R. (1979): Mixed

methods for time integration. Comput. Meth. Appl.
Mech. Eng. 17-8: 258-275.

Berendsen, H. J. C.; van Gunsteren, W. F.(1986): Dy-
namics simulation of statistical mechanical systems, ed.
Ciccotti GPF, Hoover, W.G. Vol. 63. North Holland.
Amsterdam. 493.

Bernstein, N.; Kaxiras, E. (1997): Nonorthogonal
tight-binding Hamiltonians for defects and interfaces in
silicon. Phys. Rev. B 56: 10488-10496.

Birdsall, C. K.; Langdon, A. B. (1985): Plasma physics
via computer simulation. McGraw-Hill, New York.

Born, M.; Huang, K. (1954): Dynamical theory of crys-
tal lattices. Oxford University Press. Oxford.

Bortz, A. B.; Kalos, M. H.; Lebowitz, J. L. (1975): A
new algorithm for Monte Carlo simulation of Ising spin
systems. J. Computational Phys. 7(1): 10-18.

Brenner, D. W. (1990): Empirical potential for hy-
drocarbons for use in simulating the chemical vapor-
deposition of diamond films. Physical Review B 42(15):
9458-9471.

Brenner, D. W.; Harrison, J. A.; White, C. T.; Colton,
R. J. (1991): Molecular-dynamics simulations of the
nanometer-scale mechanical-properties of compressed
Buckminster fullerene. Thin Solid Films 206(1-2): 220-
223.

Brenner, D. W.; Shenderova, O. A.; Areshkin, D. A.
(1998): Quantum based analytic interatomic forces and
materials simulation. Reviews in Computational Chem-
istry, VCH Publishers, New York: 213.

Brenner, D. W.; Shenderova, O. A.; Areshkin, D. A.;
Schall, J. D.; Frankland, S.-J.V. (2002): Atomic mod-
eling of carbon-based nanostructures as a tool for devel-
oping new materials and technologies. CMES: Computer
Modeling in Engineering & Sciences 3 (5): 643-673.

Broughton, J. Q.; Abraham, F. F.; Bernstein, N.;
Kaxiras, E. (1999): Concurrent coupling of length
scales: Methodology and application. Physical Review
B 60(4): 2391-2403.

Burkert, U.; Allinger, N. L. (1982): Molecular mechan-
ics. ACS Monograph 177. American Chemical Society,
Washington, DC.

Cai, W.; de Koning, M.; Bulatov, V. V.; Yip, S.
(2000): Minimizing boundary reflections in coupled-
domain simulations. Phys. Rev. Lett. 85: 3213-3216.

Campbell, T.; Kalia, R. K.; Nakano, A.; Vashishta,



Computational Nano-mechanics and Multi-scale Simulation 83

P.; Ogata, S.; Rodgers, S.(1999): Dynamics of oxi-
dation of aluminum nanoclusters using variable charge
molecular-dynamics simulations on parallel computers.
Phys. Rev. Lett. 82: 4866–4869.

Candy, J.; Rozmus, W.(1991): A symplectic integra-
tion algorithm for separable hamiltonian functions. J.
Comput. Phys. 92: 230-256.

Canning, A.; Galli, G.; Mauri, F.; De Vita, A.; Car,
R. (1996): O(N) tight-binding molecular dynamics on
massively parallel computers: An orbital decomposition
approach. Computer Physics Communications 94(2-3):
89-102.

Capaz, R.; Cho, K.; Joannopoulos, J.(1995): Sig-
natures of bulk and surface arsenic antisite defects in
gaas(110). Phys. Rev. Lett. 75: 1811-1814.

Car, R.; Parrinello, M. (1985): Unified Approach
for Molecular Dynamics and Density-Functional Theory.
Physical Rev. Letters 55: 2471–2474.

Chang, T.; Guo, W. (2002): Recent advances in numer-
ical simulation methods in nanomechanics. Advances in
Mechanics 32(2): 175-188.

Channell, P. J.; Scovel, C.(1990): Symplectic integra-
tion of hamiltonian-systems. Nonlinearity 3: 231-259.

Ching, H. K.; Batra, R. C. (2001): Determination of
Crack Tip Fields in Linear Elastostatics by the Meshless
Local Petrov-Galerkin (MLPG) Method. CMES: Com-
puter Modeling in Engineering & Sciences 2 (2): 273-
290.

Chung, P. W.; Namburu, R. R. (2003): On a formu-
lation for a multiscale atomistic-continuum homogeniza-
tion method. Int. J. Solids Struc. 40: 2563-2588.

Chung, P. W.; Namburu, R. R.; Henz, B. J. (2004):
A lattice statics based tangent stiffness finite element
method. CMES: Computer Modeling in Engineering &
Sciences 5(1): 45-62.

Clementi, E. (1988): Global scientific and engineering
simulations on scalar, vector and parallel LCAP-type su-
percomputers. Phil. Trans. Roy. Soc. A326: 445-470.

Clementi, E. (2000): Ab initio computations in atoms
and molecules. IBM Journal of Research and Develop-
ment. 44(1-2): 228-245.

Cleri, F.; Phillpot, S. R.; Wolf, D.; Yip, S. (1998):
Atomistic simulations of materials fracture and the link
between atomic and continuum length scales. J. Am. Ce-
ramic Soc. 81: 501-516.

Cleveland, T.; Landis, C.R.(1996): Valence bond con-
cepts applied to the molecular mechanics description
of molecular shapes. 2. Applications to hypervalent
molecules of the P-block. J. Am. Chem. Soc. 118:
6020-6030. CMES: Computer Modeling in Engineering
& Sciences (2002) 3 (2). CMES: Computer Modeling in
Engineering & Sciences (2002) 3 (5).

Colombo, L. (1998): A source code for tight-binding
molecular dynamics simulations. Comput. Mat. Sci.
12(3): 278-287.

Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.;
Merz, K. M.; Ferguson, D. M.; Spellmeyer, D. C.; Fox,
T.; Caldwell, J. W.; Kollman, P. A. (1995): A second
generation force field for the simulation of proteins, nu-
cleic acids, and organic molecules. J. Am. Chem. Soc.
117: 5179-5197.

Cousins, C. S. G.(1978): Inner elasticity. J. Phys. C:
Solid State Phys. 11: 4867-4879.

Cui, W. L.; Li, F. B.; Allinger, N. L. (1993): Simulation
of conformational dynamics with the mm3 force-field -
the pseudorotation of cyclopentane. J. Am. Chem. Soc.
115: 2943-2951.

Daw, M. S. (1993): Model for energetics of solids based
on the density matrix. Phys. Rev. B 47: 10895–10898.

Daw, M.; Baskes, M.(1983): Semiempirical, quantum-
mechanical calculation of hydrogen embrittlement in
metals. Phys. Rev. Lett. 50: 1285-1288.

Daw, M. S.; Baskes, M. I. (1984): Embedded-atom
method: Derivation and application to impurities and
other defects in metals. Phys. Rev. B 29: 6443–6453.

DeLeeuw, S. W.; Perram, J. W.; Smith, E. R.(1980):
Simulatiom of electroststic systems in periodic boundary
conditions. i. lattice sums and dielectric constants. Proc.
Roy. Soc. London A 373: 27-56.

Demkov, A. A.; Ortega, J.; Sankey, O. F.; Grumbach,
M. P. (1995): Electronic structure approach for complex
silicas. Phys. Rev. B 52: 1618-1630.

Dresselhaus, M. S.(1997): Future directions in carbon
science. Annu. Rev. Mater. Sci. 27: 1-34.

Duan, X. M.; Sun, D. Y.; Gong, X. G. (2001): Hyper-
molecular dynamics simulations of monovacancy diffu-
sion. Computational Materials Science, 20(2): 151-156.

Dumitrica, T.; Belytschko, T.; Yakobson, B. I. (2003):
Bond-breaking bifurcation states in carbon nanotube
fracture. J. Chem. Phys. 118(21): 9485-9488.



84 Copyright c© 2004 Tech Science Press CMC, vol.1, no.1, pp.59-90, 2004

E, W.; Huang, Z. (2001): Matching conditions in
atomistic-continuum modeling of materials. Phys. Rev.
Lett. 87, art. No.-135501.

Ericksen, J. L. (1984): Phase transformations and ma-
terial instabilities in solids. Academic Press: 61-77.

Ewald, P. (1921): Die berechung optischer und elek-
troststischer gitterpotential. Annalen der Physik 64: 253-
287.

Fallis, M. C.; Daw, M. S.; Fong, C. Y. (1995): Ener-
getics of small Pt clusters on Pt (111): Embedded-atom-
method calculations and phenomenology. Phys. Rev. B
51: 7817-7826.

Foulkes, C.; Haydock, R.(1989): Tight-binding mod-
els and density functional theory. Physical Review B.
39(17): 12520-12536.

Fock, V. (1930): Naherungsmethode zur losung des
quantenmechanis –chen mehrkorper problems. Z.
Physik. 61: 126.

Friesecke, G.; James, R. D.(2000): A scheme for the
passage from atomic to continuum theory for thin films,
nanotubes and nanorodes. J. Mech. Phys. Solids 48:
1519-1540.

Gall, K.; Horstemeyer, M. F.; Van Schilfgaarde, M.;
Baskes, M. I.(2000): Atomistic simulations on the ten-
sile debonding of an aluminum–silicon interface. Jour-
nal of the Mechanics and Physics of Solids, 48(10):
2183-2212.

Gao, X.-L.; Li, K. (2003): Finite deformation contin-
uum model for single-walled carbon nanotubes. Int. J.
Solids Struct. 40: 7329-7337.

Garcia-Vidal, F. J.; Merino, J.; Peerez, R.; Rincon,
R.;, Ortega, J.; Flores, F. (1994): Density-functional
approach to LCAO methods. Phys. Rev. B 50: 10537-
10547.

Garikipati, K. (2002): A variational multiscale method
to embed micromechanical surface laws in the macrome-
chanical continuum formulation. CMES: Computer
Modeling in Engineering &Sciences 3(2): 175-184.

Gear, C. W. (1971): Numerical initial value problems
in ordinary differential equations. Prentice Hall, Engle-
wood Cliffs, New Jersey.

Ghoniem, N. M.; Cho, K. (2002): The emerging role
of multiscale modeling in nano and micro-mechanics of
materials. CMES: Computer Modeling in Engineering &
Sciences 3 (2): 147-173.

Gibbon, P. (2002): Classical molecular dynamics.
Quantum Simulations of Complex Many-body Systems:
from theory to algorithm. J. Grotendorst, D. Marx, A.
Muramatsu (Eds.). John von Neumann Institute for Com-
puting, Julich, NIC Series 10: 211-254.

Gibbon P.; Sutmann, G. (2002): Long-range interac-
tions in many-particles simulation. Quantum Simula-
tions of Complex Many-body Systems: from theory to al-
gorithm. J. Grotendorst, D. Marx, A. Muramatsu (Eds.).
John von Neumann Institute for Computing, Julich, NIC
Series 10: 467-506.

Gilmer, G. H.; Huang, H.; Diaz de la Rubia, T.; Torre,
J. D.; Baumann, F. (2000): Lattice Monte Carlo mod-
els of thin film deposition, an invited review. Thin Solid
Films 365: 189-200.

Girifalco, L. A. (1992): Molecular-properties of c-60 in
the gas and solid-phases. Journal of Physical Chemistry.
96(2): 858-861.

Girifalco, L. A.; Lad, R. A. (1956): Energy of cohesion,
compressibility and the potential energy functions of the
graphite system. Journal of Chemical Physics. 25(4):
693-697.

Gray, S. K.; Noid, D. W.; Sumpter, B. G. (1994): Sym-
plectic integrators for large-scale molecular-dynamics
simulations - a comparison of several explicit methods.
Journal of Chemical Physics. 101(5): 4062-4072.

Greengard, L.; Rokhlin, V. (1987): A fast algorithm for
particle simulations. J. Comp. Phys. 73: 325-348.

Gu, Y. T.; Liu, G. R. (2001): A meshless local Petrov-
Galerkin (MLPG) formulation for static and free vibra-
tion analysis of thin plates. CMES: Computer Modeling
in Engineering & Sciences 2 (4): 463-476.

Gumbsch, P.(1996): An atomistic study of brittle frac-
ture: toward explicit failure criteria from atomistic mod-
eling. J. Mater. Res. 10: 2897-2907.

Guo, W.; Guo, F. (2003): Giant Axial electrostrictive
deformation in carbon nanotubes. Phys. Rev. Lett. 91:
115501.

Guo, W.; Guo, F.; Gao, H.; Zheng, Q.; Zhong W.
(2003): Energy dissipation in gigahertz oscillators from
multiwalled carbon nanotubes. Phys. Rev. Lett. 91:
125501.

Guo Y.; Guo, W. (2003): Mechanical and electrostatic
properties of carbon nanotubes under tensile loading and
electric field. J. Phys. D: Appl. Phys. 36: 805-811.



Computational Nano-mechanics and Multi-scale Simulation 85

Guo, Y. J.; Karasawa, N.; Goddard, W. A. (1991):
Prediction of fullerene packing in C60 and C70 crystals.
Nature 351(6326): 464-467.

Halgren, T. A. (1996): Merck molecular force field. I.
basis, form, scope, parameterization, and performance of
MMFF94. J. Comp. Chem. 17: 490-519.

Han, Z. D.; Atluri, S. N. (2003a): On Simple For-
mulations of Weakly-Singular Traction & Displacement
BIE, and Their Solutions through Petrov-Galerkin Ap-
proaches, CMES: Computer Modeling in Engineering &
Sciences 4 (1): 5-20.

Han, Z. D.; Atluri, S. N. (2003b): Truly Meshless Lo-
cal Patrov-Galerkin (MLPG) solutions of traction & dis-
placement BIEs. CMES: Computer Modeling in Engi-
neering & Sciences 4(6): 665-678.

Harik, V. M. (2002): Mechanics of carbon nanotubes:
applicability of the continuum-beam models. Comput.
Mater. Sci. 24: 328-342.

Harrison, W. A. (1989): Electronic structure and the
properties of solids: The physics of the chemical bond.
Dover. New York.

Harrison, J. A.; White, C. T.; Colton, R. J.; Bren-
ner, D. W. (1992): Molecular-dynamics simulations of
atomic-scale friction of diamond surfaces. Physical Re-
view B 46(15): 9700-9708.

Harrison, J. A.; Colton, R. J.; White, C. T.; Brenner,
D. W. (1993a): Effect of atomic-scale surface-roughness
on friction - a molecular-dynamics study of diamond sur-
faces. Wear 168(1-2): 127-133.

Harrison, J. A.; Colton, R. J.; White, C. T.; Brenner,
D. W. (1993b): Effects of chemically bound, flexible hy-
drocarbon species on the frictional-properties of diamond
surfaces. Journal of Physical Chemistry 97(25): 6573-
6576.

Harrison, J. A.; White, C. T.; Colton, R. J.; Bren-
ner, D. W. (1995): Investigation of the atomic scale fric-
tion and energy- dissipation in diamond using molecular-
dynamics. Thin Solid Films 260(2): 205-211.

Hartree, D. R. (1928): The wave mechanics of an atom
with a non-coulomb central field, part I, theory and meth-
ods. Proc. Cambridge Phil. Soc. 24: 89.

Heffelfinger, G. S. (2000): Parallel atomistic simula-
tions. Comput. Phys. Commun., 128: 219-237.

Hernandez, E.; Goze, C.; Bernier, P.; Rubio, A.
(1998): Elastic properties of C and BxCyNz composite

nanotubes. Phys. Rev. Lett. 80: 4502-4505.

Heyes, D. M.(1981): Electrostatic potentials and fields
in infinite point charge lattices. J. Chem. Phys. 74: 1924-
1929.

Hockney, R. W. (1970): The potential calculation and
some applications. Methods Comput. Phys. 9: 135-211.

Hockney, R. L.; Eastwood, J. W. (1981): Computer
simulation using particles. McGraw-Hill, New York.

Hohenberg, P.; Kohn, W.(1964): Inhomogeneous elec-
tron gas. Physical Review B. 136: 864.

Hoover, W. G.; De Groot, A.; Hoover, C. (1992):
Massively parallel computer simulation of plane-strain
elastic-plastic flow via nonequilibrium molecular dy-
namics and Lagrangian continuum mechanics. Comput-
ers in Physics 6: 155-167.

Huang, H.; Gilmer, G. H.; Diaz de la Rubia, T. (1998):
An atomistic simulator for thin film deposition in three
dimensions. J. Appl. Phys. 84:3636-3649.

Iijima, S. (1991): Helical microtubules of graphitic car-
bon. Nature (London) 354(6348):56-58.

Iijima, S.; Brabec, C.; Maiti, A.; Bernholc, J. (1996):
Structural flexibility of carbon nanotubes. J. Chem.
Phys. 104: 2089-2092.

Insepov, Z.; Sosnowski, M.; Yamada, I.(1997): Simu-
lation of cluster impacts on silicon surfaces. Nuclear In-
struments and Methods in Physics Research B 127: 269-
272.

Insepov, Z.; Manory, R.; Matsuo, J.; Yamada, I.
(2000): Proposal for a hardness measurement tech-
nique without indentor by gas-cluster-beam bombard-
ment. Phys. Rev. B 61(13): 8744-8752.

Jiang, H.; Zhang, P.; Liu, B.; Huang, Y.; Geubelle, P.
H.; Gao, H.; Huang, K. C. (2003): The effect of nan-
otube radius on the constitutive model for carbon nan-
otubes. Comput. Mater. Sci. 28: 429-442.

Jones, J. E.(1924a): On the determination of molecular
fields-I. From the variation of the viscosity of a gas with
temperature. Proc. Roy. Soc. 106: 441-462.

Jones, J. E.(1924b): On the determination n of molec-
ular fields-ii. From the equation of state of a gas. Proc.
Roy. Soc. 106: 463.

Jorgensen, W. L.; Maxwell, D. S.; Tiradorives, J.
(1996): Development and testing of the OPLS all-atom
force field on conformational energetics and properties of



86 Copyright c© 2004 Tech Science Press CMC, vol.1, no.1, pp.59-90, 2004

organic liquids. J. Am. Chem. Soc. 118: 11225-11236.

Kalia, R. K.; Campbell, T. J.; Chatterjee, A.; Nakano,
A.; Vashishta, P.; Ogata, S.(2000): Multiresolution al-
gorithms for massively parallel molecular dynamics sim-
ulations of nanostructured materials. Computer Physics
Communications 128 (1-2): 245-259.

Kawazoe, Y.(2001): How well can physical, chemical,
and mechanical properties of materials be predicted by
ab initio techniques? Materials and Design 22: 61-67.

Khan, F. S.; Broughton, J. Q. (1989): Simulation of
silicon clusters and surfaces via tight-binding molecular-
dynamics. Phys. Rev. B 39: 3688-3700.

Kim, H. G.; Atluri, S. N. (2000): Arbitrary placement
of secondary nodes, and error control, in the meshless lo-
cal Petrov-Galerkin (MPLG) method. CMES: Computer
Modeling in Engineering & Sciences 1(3): 11-32.

Kohlhoff, S.; Gumbsch, P.; Fischmeister, H. F.(1991):
Crack propagation in bcc crystals studied with a com-
bined finite element and atomistic model. Phil. Mag. A
64(4): 851-878.

Kohn, W.; Sham, L. J. (1965): Self-consistent equations
including exchange and correlation effects. Physical Re-
view. 140(4A): 1133.

Kolmogorov, A. N.; Crespi, V. H. (2000): Smoothest
bearings: interlayer sliding in multiwalled carbon nan-
otubes. Phys. Rev. Lett. 85(22): 4727-4730.

Komanduri, R.; Chandrasekaran, N.; Raff, L. M.
(1998): Effect of tool geometry in nanometric cutting: a
molecular dynamics simulation approach. Wear 219(1):
84-97.

Kresse, G.; Furthmuller, J. (1996): Efficient iterative
schemes for ab initio total-energy calculations using a
plane-wave basis set. Phys. Rev. B 54: 11169–11186.

Kroner, E. (1967): Elasticity theory of materials with
long range cohesive forces. Int. J. Solids Struct. 3: 731-
742.

Leach, A. R. (1996): Molecular Modeling Principles
and Applications. Addison Wesley Longman Limited,
London.

Lewis, L. J.; Mousseau, N. (1998): Tight-binding
molecular-dynamics studies of defects and disorder in
covalently bonded materials. Computational Materials
Science 12 (3): 210-241.

Li, C.; Chou, T. W. (2003): A structural mechanics ap-
proach for the analysis of carbon nanotubes. Int. J. Solids

Struct. 40: 2487-2499.

Li, Q.; Shen, S.; Han, Z-D.; Atluri, S. N. (2003): Ap-
plication of Meshless Local Petrov-Galerkin (MLPG) to
Problems with Singularities, and Material Discontinu-
ities, in 3-D Elasticity, CMES: Computer Modeling in
Engineering & Sciences 4(5): 567-581.

Li, S.; Gao, K. W.; Qiao, L. J.; Zhou, F. X.; Chu,
W. Y. (2001): Molecular dynamics simulation of microc-
rack healing in copper. Computational Materials Science
20(2): 143-150.

Li, X. P.; Nunes, W.; Vanderbilt, D. (1993): Density-
matrix electronic-structure method with linear system-
size scaling. Phys. Rev. B 47: 10891–10894.

Lin, H.; Atluri, S. N. (2000): Meshless local Petrov-
Galerkin (MPLG) method for convection-diffusion prob-
lems. CMES: Computer Modeling in Engineering & Sci-
ences 1 (2): 45-60

Lin, H.; Atluri, S. N. (2001): The meshless local Petrov-
Galerkin (MPLG) method for solving incompressible
Navier-stokes equations. CMES: Computer Modeling in
Engineering & Sciences 2 (2): 117-142.

Liu, B.; Jiang, H.; Johnson, H.T.; Huang, Y. (2004):
The influence of mechanical deformation on the electri-
cal properties of single wall carbon nanotubes. J. Mech.
Phys. Solids (in press)

Liu, F. (1995): Self-consistent tight-binding method.
Physical Review B. 52(15): 10677- 10680.

Liu, C. L.; Adams, J. B. (1992): Structure and diffusion
of clusters on Ni surfaces. Surf. Sci. 268: 73-86.

Long, S. Y.; Atluri, S. N. (2002): A meshless local
Petrov-Galerkin method for solving the bending problem
of a thin plate. CMES: Computer Modeling in Engineer-
ing & Sciences 3 (1): 53-63.

Longo, R. C.; Rey, C.; Gallego, L. J.(1999): Structure
and melting of small Ni clusters on Ni surfaces. Surface
Science 424(2-3): 311-321.

Mackerell, A. D.; Wiorkiewiczkuczera, J.; Karplus,
M. (1995): An all-atom empirical energy function for
the simulation of nucleic-acids. J. Am. Chem. Soc. 117:
11946-11975.

Madelung, E. (1918): Das elektrische field in sys-
temen von regalmassig angeordneten punktladungen.
Zeitschrift fur Physik 19:524-533.

Martin, J. W. (1975): Many-body forces in solids and
the Brugger elastic constants: II. Inner elastic constants.



Computational Nano-mechanics and Multi-scale Simulation 87

J. Phys. C: Solid State Phys. 8: 2858-2868.

Maruyama, B.; Alam, K. (2002): Carbon nanotubes
and nanofibers in composite materials. SAMPE J. 38(3):
59-68.

Mauri, F.; Galli, G. (1994): Electronic-structure calcu-
lations and molecular-dynamics simulations with linear
system-size scaling. Phys. Rev. B 50: 4316–4326.

Mayo, S. L.; Olafson, B. D.; Goddard, W. A. (1990):
Deriding - a generic force-field for molecular simula-
tion., Journal of Physical Chemistry. 94(26): 8897-8909.

Mehl, M. J.; Papaconstantopoulos, D. A.(1996): Ap-
plications of a tight-binding total energy method for tran-
sition and noble metals: Elastic constants, vacancies, and
surfaces of monatomic metals. Physical Review B. 54(7):
4519-4530.

Menon, M.; Subbaswamy, K. R.(1994): Transferable
nonorthogonal tight-binding scheme for silicon. Phys.
Rev. B 50: 11577-11582.

Menon, M.; Subbaswamy, K. R. (1997): Nonorthog-
onal tight-binding molecular dynamics scheme for sili-
con with improved transferability. Physical Review B.
55(15): 9231-9234.

Miller, R. E.; Tadmor, E. B. (2002): The quasicontin-
uum method: overview, applications and current direc-
tion. J. Computer-Aided Materials Design 9: 203-239.

Nevins, N.; Lii, J. H.; Allinger, N. L. (1996): Molecular
mechanics (MM4) calculations on conjugated hydrocar-
bons. J. Comp. Chem. 17: 695-729.

Noguchi, H.; Furuya, Y. (1997): A method of seam-
lessly combining a crack tip molecular dynamics enclave
with a linear elastic outer domain in simulating elastic-
plastic crack advance. Int. J. Frac. 87: 309-329.

Noor, A. K. (2002): Multiscale Modeling, Simula-
tion and Visualization and Their Potential for Future
Aerospace Systems. NASA/CP-2002-211741.
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