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Elasto-plastic Analysis of Two-dimensional Orthotropic Bodies with the Boundary
Element Method

X.S. Sun1, L.X. Huang1, Y.H. Liu1 and Z.Z. Cen1,2

Abstract: The Boundary Element Method (BEM) is
introduced to analyze the elasto-plastic problems of 2-
D orthotropic bodies. With the help of known boundary
integral equations and fundamental solutions, a numeri-
cal scheme for elasto-plastic analysis of 2-D orthotropic
problems with the BEM is developed. The Hill or-
thotropic yield criterion is adopted in the plastic analy-
sis. The initial stress method and tangent predictor-radial
return algorithm are used to determine the stress state in
solving the nonlinear equation with the incremental iter-
ation method. Finally, numerical examples show that the
BEM is effective and reliable in analyzing elasto-plastic
problems of orthotropic bodies.
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Body, Orthotropic Yield Criterion

1 Introduction

Nowadays new type materials exhibiting a characteristic
of anisotropy or orthotropy are widely used in the indus-
tries and the corresponding numerical analysis is neces-
sary to solve these complicated problems as the exper-
iments are absent or the analytical methods are unfea-
sible in most conditions. Elasto-plastic analysis is one
of the practical and desirable problems, which has at-
tracted many interests on study. However, the anisotropic
or orthotropic plastic analysis is much more complicated
than isotropic problems. Fortunately, the development of
computer technologies and computational methods per-
mits a more realistic and complex modeling than ever be-
fore. The finite element method (FEM) and the boundary
element method (BEM) are two usual numerical methods
that are widely used in solving many engineering prob-
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lems. In general, the FEM is more mature and popular,
and many elasto-plastic analysis on orthotropic problems
have been implemented with the FEM in the past (Owen
and Figuerias, 1983; Vaziri, Olson and Anderson, 1992;
Karakuzu and Sayman, 1994). But the BEM is more ef-
fective and professional in some problems such as stress
concentration, and it has been successfully exploited to
solve many kinds of isotropic problems, including elas-
tic, thermo-elastic, elasto-plastic, dynamic, contact, frac-
ture and coupling problems, etc. (Brebbia, Telles and
Wrobel, 1984; Du et al, 1989; Aliabadi, 2002) It should
also be pointed out that in certain elasto-plastic problems
the BEM can prove to be very efficient. For example, bet-
ter accuracy can be obtained only with less discretized
meshes in the BEM than that in the FEM; on the other
hand, if the plastic zone is limited compared with the do-
main of the considered body, the BEM allows discretiza-
tion of only this limited plastic region, rather than that
of the entire domain as is needed for the FEM, which is
much more effective when the plastic zone appears in the
field around the boundary in some cases such as stress
concentration or contact problems.

The BEM was first introduced to analyze elasto-plastic
problems for 3-D isotropic bodies by Swedlow and Cruse
(1971). Mendelson (1973) later improved Swedlow and
Cruse’s work and gave the expressions for internal stress
and strain for both 2-D and 3-D isotropic problems.
Mukherjee (1977), Kumar and Mukherjee (1977) and
Bui (1978) corrected successively some errors in the pre-
vious works. Telles and Brebbia (1979) presented the
complete BEM formulations for 2-D and 3-D elasto-
plastic problems of isotropic materials based on the ini-
tial strain method. Banerjee, Cathie and Davies (1979)
established the boundary integral equations for 2-D and
3-D elasto-plastic problems based on the initial stress
method. Cen (1984) developed the BEM in coupling
with the FEM to solve efficiently 3-D elasto-plastic prob-
lems.
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Since then the BEM on elasto-plastic analysis has been
developed mainly on two aspects: one is the alternative
solutions for removing domain discretization (Henry and
Banerjee, 1988; Partridge, Brebbia and Wrobel, 1992;
Ochiai and Kobayashi, 1999) or for removing strong
singularities in the integral equations (Okada, Rajiyah
and Atluri, 1989; Okada and Atluri, 1994); and the
other is the solution strategies for solving the nonlin-
ear system equations (Banerjee, Henry and Raveendra,
1989; Chopra and Dargush, 1994; Bonnet and Mukher-
jee, 1996). Moreover, the BEM also appeared to solve
other problems related to elasto-plasticity, such as dy-
namics elasto-plastic problems (Carrer and Telles, 1992),
elasto-plastic contact problems (Dong, 1992) and ther-
mal elasto-plastic problems (Sladek and Sladek, 1995).
It should be noted that all the above elasto-plastic stud-
ies with the BEM only deal with the problems for
isotropic materials. However, up to now, the applica-
tion of the BEM to elasto-plastic analysis of orthotropic
or anisotropic problems has not been completely solved.
Therefore, further discussions on the application of the
BEM are necessary, especially about the elasto-plastic
analysis of orthotropic bodies.

As to the application of the BEM to orthotropic or
anisotropic problems, some studies were mainly focused
on elastic problems so far. Green (1943) first introduced
the fundamental solutions for 2-D orthotropic bodies un-
der a concentrated force. Rizzo and Shippy (1970) in-
troduced the fundamental solutions into the boundary in-
tegral equations for numerical elastic analysis of stress
concentration. Recently, Sun and Cen (2002) improved
and extended these fundamental solutions into elasto-
plastic problems and established the boundary integral
equations for elasto-plastic analysis of 2-D orthotropic
bodies, but neither numerical techniques nor results were
described. Huang et al (2004) used these improved fun-
damental solutions to implement parameter identification
for 2-D orthotropic plates with the BEM. Besides these
above studies, Tan and Gao (1992) analyzed the stress
concentrations and cracks of plane anisotropic bodies
and analytical expressions for the stress intensity fac-
tors were derived in terms of the tractions or displace-
ments. Dong, Lo and Cheung (1992) also exploited
the BEM to analyze elastic inclusion problems for or-
thotropic and anisotropic materials. Zhang (2002) pre-
sented a 2-D time-domain boundary integral equation
method for transient dynamic analysis of cracked or-

thotropic solids. However, to our knowledge, elasto-
plastic analysis of orthotropic bodies with the BEM has
not been studied so far.

This paper will introduce the application of the BEM to
2-D elasto-plastic problems for orthotropic bodies. The
discretized equations and iterative equations for numeri-
cal implementation are presented based on the boundary
integral equations, internal values and fundamental solu-
tions for orthotropic bodies (Sun and Cen, 2002), and the
elasto-plastic analysis of 2-D orthotropic problems is dis-
cussed. The Hill orthotropic yield criterion is adopted in
the plastic analysis. The initial stress method and tangent
predictor-radial return algorithm are used to determine
the stress state in solving the nonlinear equation with the
incremental iteration method. Two numerical examples
will be presented to demonstrate the validity and relia-
bility of the proposed numerical scheme. The computa-
tional results will also be compared to the existing ones
or those obtained from the FEM using the commercial
code ABAQUS.

2 Basic Equations

2.1 Linear elastic orthotropic constitutive equation

For convenience, the following discussion is based on the
rectangular Cartesian coordinate system and the vector
or matrix denotation is adopted for the major variables.
For the case of plane stress, according to the generalized
linear Hooke’s law, the elastic orthotropic constitutive re-
lations of stress and strain can be written with matrix as
(Lekhnitskii, 1968):

σσσ = Dεεε (or εεε = Sσσσ) (1)

where D = S−1 is the 3×3 elastic constant matrix and S
can be written with the compliances or engineering con-
stants as:

S =


 S11 S12 0

S21 S22 0
0 0 S66




=


 1

/
E1 −ν12

/
E1 0

−ν12
/

E1 1
/

E2 0
0 0 1

/
G12


 (2)

where E1, E2 are the Young’s moduli in the two in-plane
principal material directions, respectively; G12 is the in-
plane shear modulus; ν12 is the Poisson’s ratio and con-
forms to the relation ν12

/
E1 = ν21

/
E2.
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The stress and strain in Eq.(1) take respectively the vector
form as follows:

σσσ =
[

σ1 σ2 τ12
]T

(3)

εεε =
[

ε1 ε2 γ12
]T

(4)

where superscript T denotes the transpose of a vector or
matrix.

2.2 Orthotropic yield criterion

For an orthotropic material, Hill (1948) first introduced a
yield function expressed by yield strengths in the princi-
pal material directions and shear strengths in planes, i.e.
Hill orthotropic yield criterion. This criterion is also an
extension of the von Mises criterion for isotropic mate-
rials, and it is used widely in many plastic problems and
creep problems in which reasonable results are demon-
strated. In the case of plane stress, Hill yield criterion
can be written as:

σ2
1

X2 −
σ1σ2

X2 +
σ2

2

Y2 +
τ2

12

S2 = 1 (5)

where X , Y are the strength properties in principal mate-
rial direction 1 and 2 respectively; S is the shear strength
property in plane. If X = Y =

√
3S = σY , Eq.(5) is re-

duced to von Mises criterion for isotropic materials.

If the equivalent yielding strength σ 0 is defined as:

σ0 = X (6)

then Hill orthotropic yield criterion can also be rewritten
in the following function form:

f (σσσ) =
1
3

σσσTHσσσ− 1
3

σ2
0 = 0 (7)

where H is the Hill orthotropic coefficient matrix and

H =


 1 −1

/
2 0

−1
/

2 H1 0
0 0 H2


 (8)

H1 =
X2

Y2 , H2 =
X2

S2 (9)

and the equivalent stress σ =
√

σσσTHσσσ can also be de-
fined.

It is obvious that H1 = 1, H2 = 3 for von Mises criterion.

2.3 Plastic flow rule

In the elasto-plastic analysis with infinitesimal deforma-
tion, the strain ε̇̇ε̇ε, marked by rate (or increment), can be
divided into two parts, i.e. elastic and plastic part respec-
tively:

ε̇̇ε̇ε = ε̇̇ε̇εe + ε̇̇ε̇εp (10)

The plastic flow rule, which determines the direction of
plastic straining, can be expressed through the normal
of plastic strain increment and the yield surface as (Hill,
1983):

ε̇̇ε̇εp = λ̇
∂ f
∂σσσ

= λ̇a (11)

where λ̇ is the plastic multiplier that determines the
amount of plastic strain and a is termed as the flow vec-
tor. If the yield function f (σσσ) takes the form of Eq.(7),
vector a can be written as:

a =
∂ f
∂σσσ

=
2
3

Hσσσ (12)

For an orthotropic material with ideal plasticity, the plas-
tic multiplier λ̇ can be obtained through the consistency
conditions as:

λ̇ =
aTDε̇̇ε̇ε

γ0
(13)

where

γ0 = aTDa (14)

2.4 Elasto-plastic orthotropic constitutive equation

For infinitesimal deformation, if the initial plastic stress
(or plastic strain) is considered, according to Hooke’s
law, the relation of stress rate and strain rate including
plastic stress (or plastic strain), i.e. the constitutive equa-
tion, can be written with matrix as:

σ̇̇σ̇σ = Dε̇̇ε̇ε− σ̇̇σ̇σp (or ε̇̇ε̇ε = Sσ̇̇σ̇σe + ε̇̇ε̇εp) (15)

where σ̇̇σ̇σe, σ̇̇σ̇σp are virtual elastic stress rate and plastic
stress rate, respectively. All these stress or strain vari-
ables take the similar vector form as that in Eq.(3) and
Eq.(4), and

σ̇̇σ̇σ = σ̇̇σ̇σe − σ̇̇σ̇σp (16)
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σ̇̇σ̇σp = Dε̇̇ε̇εp(or ε̇̇ε̇εp = Sσ̇̇σ̇σp) (17)

With the help of Eqs.(11), (13), (14), (16) and (17), the
elasto-plastic relation of stress and strain with ideal plas-
ticity can be expressed by rate as:

σ̇̇σ̇σ = σ̇̇σ̇σe − DaaTD

aTDa
ε̇̇ε̇ε (18)

3 Boundary Element Implementation

3.1 Boundary integral equation and fundamental so-
lutions

The boundary integral equation for 2-D orthotropic
elasto-plastic problems and corresponding internal vir-
tual elastic stress integral equations have been given as
(Sun and Cen, 2002):

cu̇ =
∫

Γ
u∗ ṫdΓ−

∫
Γ

t∗u̇dΓ +
∫

Ω
u∗ ḟdΩ+

∫
Ω

σσσ∗ε̇̇ε̇εpdΩ

(19a)

σ̇̇σ̇σe =
∫

Γ
(−σσσ∗)TṫdΓ−

∫
Γ

t∗pu̇dΓ +
∫

Ω
(−σσσ∗)TḟdΩ

+
∫

Ω
σσσ∗

p ε̇̇ε̇εpdΩ+ σ̇̇σ̇σeV (20a)

where the variables with the superscript asterisk “*”
denote the fundamental solutions (matrix form) in the
BEM; matrix c is termed the boundary properties and
σ̇̇σ̇σeV denotes the free term for strong singularity in do-
main which can be expressed as:

σ̇̇σ̇σeV =
(
EV +D

)
ε̇̇ε̇εp =

(
EV S+ I

)
σ̇̇σ̇σp (21)

The further details can be found in the paper of Sun and
Cen (2002). The plastic stress is considered here as the
initial stress. As the following equation holds true:∫

Ω
σσσ∗

pε̇̇ε̇ε
pdΩ =

∫
Ω

σσσ∗
p (Sσ̇̇σ̇σp)dΩ

=
∫

Ω

(
σσσ∗

pS
)
σ̇̇σ̇σpdΩ =

∫
Ω

εεε∗pσ̇̇σ̇σpdΩ (22)

then Eq.(19a) and Eq.(20a) can be written alternatively
with initial plastic stress as:

cu̇ =
∫

Γ
u∗ ṫdΓ−

∫
Γ

t∗u̇dΓ (19b)

+
∫

Ω
u∗ ḟdΩ+

∫
Ω

εεε∗σ̇̇σ̇σpdΩ

σ̇̇σ̇σe =
∫

Γ
(−σσσ∗)TṫdΓ−

∫
Γ

t∗pu̇dΓ (20b)

+
∫

Ω
(−σσσ∗)TḟdΩ+

∫
Ω

εεε∗pσ̇̇σ̇σ
pdΩ+ σ̇̇σ̇σeV

and the displacements at internal points can also be given
as:

u̇ =
∫

Γ
u∗ ṫdΓ−

∫
Γ

t∗u̇dΓ +
∫

Ω
u∗ ḟdΩ+

∫
Ω

εεε∗σ̇̇σ̇σpdΩ (23)

All the fundamental solutions in the above equations take
the following matrix forms:

u∗ =
[

u∗11 u∗12
u∗21 u∗22

]
, t∗ =

[
t∗11 t∗12
t∗21 t∗22

]
(24)

εεε∗ =
[

ε∗111 ε∗122 γ∗112
ε∗211 ε∗222 γ∗212

]
,

σσσ∗ =
[

σ∗
111 σ∗

122 σ∗
112

σ∗
211 σ∗

222 σ∗
212

]
(25)

εεε∗p =


 ε∗1111 ε∗1122 γ∗1112

ε∗2211 ε∗2222 γ∗2212
ε∗1211 ε∗1222 γ∗1212


 ,

σσσ∗
p =


 σ∗

1111 σ∗
1122 σ∗

1112
σ∗

2211 σ∗
2222 σ∗

2212
σ∗

1211 σ∗
1222 σ∗

1212


 (26)

t∗p =


 t∗111 t∗112

t∗221 t∗222
t∗121 t∗122


 (27)

where γi12 = 2εi12, γi j12 = 2εi j12 (i, j = 1,2) and the
components can be found in the paper of Sun and Cen
(2002). Additionally, Eq.(22) suggests that εεε∗p = σσσ∗

pS (or
σσσ∗

p =εεε∗pD), so these two fundamental solutions are equiv-
alent and depends on the considered initial stress or ini-
tial strain.

3.2 Discretized formulation of integral equations

Assume n boundary elements (one-dimensional element)
and m internal cells (two-dimensional element) are dis-
cretized in the boundary and domain, respectively, then



Elasto-plastic Analysis of Two-dimensional Orthotropic Bodies 95

the boundary elements and the internal cells are interpo-
lated with one- and two-dimensional interpolation func-
tions, respectively. For example, the 3-node quadratic in-
terpolation function Nb(ξ) and 4-node quadrilateral lin-
ear interpolation function N p(ξ1,ξ2) are adopted here for
the boundary elements and internal cells, respectively.
The displacements and tractions on the boundary ele-
ments and the plastic stress rates in the internal cells can
be expressed by the following equations, respectively:
{

u̇ = Nbu̇el , ṫ = Nbṫel

σ̇̇σ̇σp = Np (σ̇̇σ̇σp)el (28)

where the superscript “el” denotes the nodal values in
an boundary element or internal cell. With the ab-
sence of body force ḟ, substituting the interpolated re-
sults in Eq.(28) into Eqs.(19b), (20b) and (23) respec-
tively yields:

ciu̇i

=
n1

∑
k=1

[(∫
Γk

u∗NbdΓ
)

ṫ
el

k

]
+

n

∑
k=n1+1

[(∫
Γk

u∗NbdΓ
)

ṫel
k

]

−
n

∑
k=n1+1

[(∫
Γk

t∗NbdΓ
)

u̇
el
k

]
−

n1

∑
k=1

[(∫
Γk

t∗NbdΓ
)

u̇el
k

]

+
m

∑
k=1

[(∫
Ωk

εεε∗NpdΩ
)

(σ̇̇σ̇σp)el
k

]
(29)

σ̇̇σ̇σe

=
n1

∑
k=1

[(∫
Γk

(−σσσ∗)T NbdΓ
)

ṫ
el

k

]

+
n

∑
k=n1+1

[(∫
Γk

(−σσσ∗)T NbdΓ
)

ṫel
k

]

−
n

∑
k=n1+1

[(∫
Γk

t∗pNbdΓ
)

u̇
el
k

]
−

n1

∑
k=1

[(∫
Γk

t∗pNbdΓ
)

u̇el
k

]

+
m

∑
k=1

[(∫
Ωk

εεε∗pNpdΩ
)

(σ̇̇σ̇σp)el
k

]
+ σ̇̇σ̇σeV (30)

u̇

=
n1

∑
k=1

[(∫
Γk

u∗NbdΓ
)

ṫ
el

k

]
+

n

∑
k=n1+1

[(∫
Γk

u∗NbdΓ
)

ṫel
k

]

−
n

∑
k=n1+1

[(∫
Γk

t∗NbdΓ
)

u̇
el
k

]
−

n1

∑
k=1

[(∫
Γk

t∗NbdΓ
)

u̇el
k

]

+
m

∑
k=1

[(∫
Ωk

εεε∗NpdΩ
)

(σ̇̇σ̇σp)el
k

]
(31)

The same implementation is carried throughout all the
nodes. The knowns and unknowns in Eqs.(29), (30) and
(31) are reordered, and then the following equations can
be obtained in assembling matrix:




AẊ = Ḟ+QxΣ̇̇Σ̇Σ
p

Σ̇̇Σ̇Σe = −AsẊ+ Ḟs +QsΣ̇̇Σ̇Σ
p

U̇ = −AuẊ+ Ḟu +QuΣ̇̇Σ̇Σ
p

(32)

where Ẋ is the unknown array for boundary values; Ḟ, Ḟs

and Ḟu are the known arrays for boundary values; U̇, Σ̇̇Σ̇Σe

and Σ̇̇Σ̇Σp
denote the arrays of displacements, virtual elastic

and plastic stresses respectively which consist of the vec-
tors in all nodes; A, As and Au denote the assembling co-
efficient matrices for unknowns; and Qx, Qs and Qu de-
note the assembling coefficient matrices for plastic stress
and Qs = Q′

s + QV in which QV comes from the terms
for strong singularity. Solving Eq.(32) yields the follow-
ing equations:




Ẋ = ẏ+RΣ̇̇Σ̇Σp

Σ̇̇Σ̇Σe = ṡ+TsΣ̇̇Σ̇Σ
p

U̇ = ẇ+TuΣ̇̇Σ̇Σp
(33)

where ẏ = A−1Ḟ, ṡ = Ḟs − AsA−1Ḟ and ẇ = Ḟu −
AuA−1Ḟ, which denote the elastic solutions; R = A−1Qx,
Ts = Qs −AsA−1Qx, Tu = Qu −AuA−1Qx, and the last
terms on the right-hand side of Eq.(33) denote the extra
ones for plastic deformation.

3.3 Numerical integral scheme

Numerical quadrature should be used to compute the
integrals in Eqs.(29) ∼ (31). The general Gaussian
quadrature is adopted here for non-singular integrals, but
the singular integrals should be treated specially. The
terms resulted in singularity include weak singularities
involved lnr−1

i in the boundary and r−1
i in the domain,

strong singularities involved r −1
i in the boundary and r−2

i
in the domain , and hypersingularity involved r −2

i in the
boundary, where ri (i = 1,2) is the equivalent distance
related to the orthotropic elastic constants.

For the weak singularities in the boundary or domain,
i.e. integrals involved lnr−1

i or r−1
i , the singularities can

be removed by transformations. With the interpolation
functions and the nodal values in the boundary element,
the integrals involved lnr−1

i in the boundary can be trans-
formed to two parts including a logarithmic integral and
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1 2

34

1

2

O

1

2

O

(singular point)

(b)
1 2

34

1

2

O 1

2

O

(singular point)
(a)

Figure 1 : Internal cell subdivisions (singularity in node
1 is exampled)

a non-singular integral, i.e.

∫
Γ

ln
1
ri

dΓ =
∫ 1

0
ln

1
η

JξJηdη +
∫ 1

−1
ln

1√
αi f 2

1 + f 2
2

Jξdξ

(34)

then the two terms on the right-hand-side can be calcu-
lated by the logarithmic quadrature formula and Gaus-
sian quadrature formula, respectively. The integrals in-
volved r−1

i in the domain can be treated by appropriate
coordinate transformation, in which a 4-node quadrilat-
eral cell is divided into two triangles (Fig. 1) and the
singular integrals can be calculated with:
∫

Ωk

εεε∗Np(ξ1,ξ2)dΩ

=
2

∑
k=1

∫ 1

−1

∫ 1

−1
εεε∗Np(η1,η2)JξJ(k)

η dη1dη2 (35)

where

J(k)
η =

1
2

(1+η2) = o(ri), (k = 1,2) (36)

and the original local coordinates system (ξ 1,ξ2) is trans-
formed into a new one (η1,η2). This transformation re-

sults in the Jacobian J (k)
η , (k = 1,2) proportional to ri and

accordingly the singularity r−1
i is removed.

The strong singularity, involved r −1
i and r−2

i in the
boundary and domain respectively, can be removed by
indirect methods of rigid displacement solution and con-
stant plastic strain solution, respectively. The rigid dis-
placement solution of Eq.(29), where u̇0 = I (2×2 unit

matrix) and , can result in the following equation:

ci +
∫

Γi

t∗NbdΓ = −
n

∑
j=1

i�= j

(∫
Γ j

t∗NbdΓ
)

(37)

p

Figure 2 : Cells connected to an internal singular point p

Then the boundary singular integrals involved r −1
i are

calculated indirectly by summation of the non-singular
integrals with Eq.(37). For an internal singular point p,
four cells are connected around, which composes a sub-
domain Ω′ with sub-boundary Γ ′ including eight one-
dimensional linear elements (Fig. 2). If all the nodes
at the singular point p for four cells are locally numbered
“1”, the constant plastic strain solution of Eq.(30), where
ε̇̇ε̇εp

0 = I (3×3 unit matrix) and σ̇̇σ̇σ = 0, ṫ = 0, will result in
this equation in sub-domain Ω ′:

4

∑
k=1

∫
Ω′

k

εεε∗pN(1)
p dΩ+EV S

=
8

∑
k=1

∫
Γ′

k

t∗pU̇0dΓ −
4

∑
k=1

4

∑
i=2

∫
Ω′

k

εεε∗pN(i)
p dΩ (38)

where U̇0 is the displacement solution under the constant
plastic strain and takes the following matrix:

U̇0 =
[

S11x1 S12x1
1
2 S66x2

S12x2 S22x2
1
2 S66x1

]
(2×3)

(39)
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where xi = xq
i − xp

i (i = 1,2) is the distance between the
field point q and source point p. Then similar to Eq.(37),
the domain singular integrals involved r −2

i are calculated
indirectly by summation of the non-singular integrals and
known sub-boundary integrals.

The hypersingularity involved r−2
i in the boundary only

appears when the boundary stress is considered with
the internal stress integral equations. In some previous
works, a weighted residual method was used to derive
the integral equations (BIE), and a formulation of weak-
singular BIE, which doesn’t involve the hyper-singularity
any more, was established to solve finite/small strain
elastoplastic problems (Okada and Atluri, 1994; Han and
Atluri, 2003; Atluri, Han and Shen, 2003). Additionally,
some direct methods to treat the hypersingularity have
also been presented, such as semi-analytical integration
with Cauchy Principal Value (CPV) (Guiggiani, Krish-
nasamy, Rudolphi and Rizzo, 1992), finite part concept
(Hildenbrand, Kuhn, 1992), etc. In this paper, the in-
direct method of displacement-traction recovery method
is adopted to treat the hypersingularity in the bound-
ary. This method exploits the displacement gradients and
traction relations, as well as the nodal displacements and
tractions in the boundary, to establish the stress formu-
lae for boundary nodes similar to the second equation in
Eq.(32). But the kernel integrals are replaced by some
algebraic and derivative expressions and accordingly no
singularity appears.

3.4 Stress computation in elasto-plastic analysis

Eq.(33) consists of a number of nonlinear equations and
some numerical techniques are necessary to treat these
equations. The techniques to be introduced here are ini-
tial stress method and tangent predictor-radial return al-
gorithm in the integration of the elasto-plastic consti-
tutive equations. The initial stress method, which as-
sumes the plastic stress as the initial stress, was described
by Banerjee, Cathie and Davies (1979) in analyzing the
isotropic elasto-plastic problems with the BEM, and the
tangent predictor-radial return algorithm was first intro-
duced by Nayak and Zienkiewicz (1972) in the FEM nu-
merical analysis. This integration algorithm is widely
used in numerical solution of stress with both the FEM
and the BEM for its good accuracy. These two meth-
ods are implemented here through incremental iteration
of the load.

For elasto-plastic analysis, if the load factor is ∆α i at ev-

ery iterative step, the alternative incremental relations of
stress in Eq.(33) is

∆ΣΣΣe = ∆αis+Ts∆ΣΣΣp (40)

During the application of an increment of load, an el-
ement (or cell) or part of it may yield. All the stress
quantities can be obtained with the elastic analysis by the
BEM, and then the plastic state can be judged to occur
or not at some points with reference to yield criterion.
For any load increment, it is necessary to determine what
proportion is elastic and what part is plastic with the elas-
tic stress increment ∆σσσe, or trial stress increment. If the
plastic deformation has occurred in current stress state
tσσσ+∆σσσe, when f (tσσσ) ≤ 0 and f (tσσσ+∆σσσe) > 0, the por-
tion of the stress increments that is greater than the yield
stress value must be reduced to the yield surface, i.e. the
following equation must hold true:

f (tσσσ+m∆σσσe) = 0 (41)

and the reduction factor m can be solved with Eqs.(7) and
(41) as:

m =
−a1 +

√
a2

1 −4a0a2

2a2
(42a)

where



a0 = (tσσσ)T H(tσσσ)−σ2
0

a1 = 2(∆σσσe)T H(tσσσ)
a2 = (∆σσσe)T H(∆σσσe)

(43)

If the trial stress increment ∆σσσe is sufficiently small com-
pared to the stress tσσσ, the reduction factor m can also be
obtained by this simple proportional relation:

m =
σ0 −σr

σr+1 −σr
(42b)

where σr and σr+1 are the equivalent stresses for pre-
vious and current stress states, respectively. Then with
the help of Eq.(18), the stress increment ∆σσσ can be cal-
culated through the tangent predictor-radial return algo-
rithm with the following equation (Fig. 3):

∆σσσ = ∆σσσe − DaaT (1−m)∆σσσe

aTDa
(44)



98 Copyright c© 2004 Tech Science Press CMC, vol.1, no.1, pp.91-105, 2004

e

p

t

t t
12

22

11

0f

em 1 em

t tR

Figure 3 : Stress computation in the elasto-plastic anal-
ysis

and then the current stress can be renewed with:

t+∆tσσσ =
(tσσσ+m∆σσσe)+∆σσσ (45)

However, the stress obtained by Eq.(45) may depart a
little from the yield surface usually, which can be prac-
tically eliminated by sufficiently small load increment.
But the scaling factor R is also necessary to ensure that
the final stress state lies on the yield surface, i.e. σσσ =
R · (t+∆tσσσ

)
and R = σ0

/
σr+1.

The above incremental iteration process with initial stress
method can be summarized as follows:

• a) Assume an elastic behavior occurs and then the
trial stress ∆σσσe is obtained;

• b) Judge the elasto-plastic state and compute reduc-
tion factor m;

• c) Compute current stress increment ∆σσσ, and then
renew current stress state t+∆tσσσ and scale it to the
yield surface;

• d) Continue with next Gauss point with starting
from step a) until all Gauss points have been con-
sidered;

• e) Verify convergence with ∆σσσp = ∆σσσe − ∆σσσ and
accumulate the plastic stress, or initial stress, with
t+∆tσσσp = tσσσp +∆σσσp;

• f) Start next load increment with t+∆tσσσp as the initial
stress.

After the increment loops over, the final stress is solved
and the accumulated plastic stress σσσp is obtained as well.
The boundary values can be solved through the first equa-
tion in Eq.(33), and the internal displacements can also
obtained by the third equation in Eq.(33) if necessary.

4 Numerical Examples

Two examples are presented here to demonstrate the ap-
plication of the BEM to elasto-plastic analysis of 2-D
orthotropic bodies by the proposed numerical scheme.
The plane stress state is assumed and the elastic-perfectly
plastic material model is adopted. In the numerical im-
plementation, the 3-node quadratic element and 4-node
quadrilateral linear element are used for the boundary
elements and internal cells, respectively. The rectangu-
lar Cartesian coordinate directions are identical with the
principal material directions.

Table 1 : Material properties of cantilever

Elastic constants Strength properties 

1E  74MPa X  24MPa 

2E  85MPa Y  230MPa 

12  0.26 S  48.9MPa 

12G  30MPa   

4.1 A cantilever under uniform load

In the first example, a homogenous orthotropic cantilever
is considered, which is subjected to a transverse uni-
formly distributed load along one of the principal ma-
terial direction (Fig. 4), and the material properties are
listed in Table 1. The model is discretized with 377
nodes (including 80 boundary nodes), 40 boundary el-
ements and 366 cells. The numerical solutions obtained
by the present BEM are compared with the existing ana-
lytical results (Karakuzu and Ozcan, 1996), which were
obtained on basis of the assumption that the stress com-
ponent σy is equal to zero.
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Figure 4 : A cantilever under uniform load
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Figure 5 : A plate with hole under uniform internal pres-
sure
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Figure 6 : Stress distribution along loaded side (y =
15mm)
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Figure 7 : Shear stress distribution along bent axis (y =
0mm)

The stress distributions along loaded side and bent axis
are shown respectively in Fig. 6 and Fig. 7, where the
elasto-plastic results are also compared with the elastic
ones. These two figures show that plastic zone begins ap-
proximately at the section of x = 85mm. Fig. 8 ∼ Fig. 11
show the stress distributions along different x-sections.
The results obtained by the BEM are generally in good
agreement with the analytical ones. However, it should
be pointed out that the analytical results (Karakuzu and
Ozcan, 1996) are approximate on basis of the assump-
tion that the stress component σy is equal to zero and the
present numerical results are closer to the real solutions.
It can be found from Fig. 10 and Fig. 11 that the plas-
tic zone obtained by the BEM is slightly larger than that
from the results (Karakuzu and Ozcan, 1996) near the
fixed end.

The vertical displacements along the bent axis (y = 0mm)
are shown in Fig. 12 and the elasto-plastic results are
compared with the elastic ones.

4.2 A plate with hole under uniform pressure

This example is about a square orthotropic plate with
hole under uniform internal pressure in the hole (Fig. 5a).
The geometry is a = b = 60mm, r = 10mm and the mag-
nitude of load is p = 22MPa. The material properties are
listed in Table 2. Due to symmetry, a quarter of the plate
is analyzed and the quarter-model is discretized with 425
nodes (including 80 boundary nodes), 40 boundary ele-
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Figure 8 : Stress distribution along x-section (x =
85mm)
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Figure 9 : Stress distribution along x-section (x =
90mm)

-15 -10 -5 0 5 10 15
-30

-20

-10

0

10

20

30

 Karakuzu and Ozcan (1996)
 Present BEMx (M

P
a)

Distance along y-axis (mm)

Figure 10 : Stress distribution along x-section (x =
95mm)
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Figure 11 : Stress distribution along x-section (x =
100mm)
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Figure 12 : Vertical displacements along the bent axis
(y = 0mm)

Table 2 : Material properties of square-plate with hole

Elastic constants Strength properties 

1E  1.2GPa X  230MPa 

2E  0.6GPa Y  24MPa 

12  0.071 S  48.9MPa 

12G  0.07GPa   

ments and 384 cells (Fig. 5b). The numerical solutions
obtained by the BEM are compared with the results by
commercial code ABAQUS.

For the FEM analysis with ABAQUS, 5200 CPS4R 4-
node elements with 5361 nodes are used. The circumfer-
ential stress (σθ) and radial displacements (ur) along the
hole boundary are shown in Fig. 13 and Fig. 14, respec-
tively, and the elastic results are plotted as well. It can be
seen that the results obtained by the present BEM are in
good agreement with those calculated by ABAQUS, ex-
cept for slight differences of the displacements in several
points near the x-axis, but the maximum error is less than
5%. The reason is that more exact displacement results
can be obtained on the boundary with the BEM than with
the FEM. Fig. 13 also shows that the area around the
hole’s boundary near x-axis is much easier to yield than
that near y-axis.

Fig. 15 ∼ Fig. 18 plot the stress distributions in both
elastic and elasto-plastic analyses along x-axis and y-
axis, respectively. The present BEM results and the FEM
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Figure 13 : Stress distribution along the circumference
of the hole
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Figure 14 : Radial displacements of the hole

results by ABAQUS are again in good agreement. Nu-
merical results also show that there is a much greater
elastic stress concentration near the hole in y-axis di-
rection than that in x-axis direction as E 1 > E2, but the
plastic zone begins first around the x-axis near the hole,
where the stress σy gives the major contribution to the
yielding as Y < X . This means that the potential frac-
ture would happen in the principal material direction with
greater value of elastic modulus and strength property
in the plate, which is quite different from that in the
isotropic materials with isotropic yielding strength.

Fig. 19 and Fig. 20 show the deformation of the plate
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Figure 15 : Stress distribution along x-axis (σ x)
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Figure 16 : Stress distribution along x-axis (σ y)

along the x- and y-axis, respectively. It can be found
that there is a greater deformation along the y-axis than
that along the x-axis, which is resulted by different elastic
moduli and strength properties in the two directions. The
displacements ux along x-axis (Fig. 19) with the BEM
are little different from the results by ABAQUS, which is
similar to the result in Fig. 14 and results from the fact
that the boundary displacements obtained by the BEM
are more exact than those by the FEM.

Fig. 21 shows the stress distributions along the direc-
tion of 45 degree from x-axis, i.e. diagonal direction in
the plate. Fig. 22 contours the equivalent stress distribu-
tions throughout the plate, which clearly shows the plas-
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Figure 17 : Stress distribution along y-axis (σ x)
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Figure 18 : Stress distribution along y-axis (σ y)

tic zones and the elasto-plastic stress distributions in the
plate.

5 Conclusions

In this paper, a numerical scheme for elasto-plastic anal-
ysis of 2-D orthotropic problems with the BEM is de-
veloped. The discretized equations and iterative equa-
tions for numerical implementation are presented based
on the boundary integral equations, internal values and
fundamental solutions for orthotropic bodies. Numeri-
cal integral techniques, including coordinate transforma-
tions, rigid displacement solution or constant plastic so-
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Figure 19 : Displacements in x-axis (ux)
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Figure 20 : Displacements in y-axis (uy)
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Figure 21 : Stress distribution along the direction of an-
gle 45 degree from x-axis
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Figure 22 : The equivalent stress contour in the plate
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lution, and displacement-traction recovery method, are
introduced to remove all kinds of singularities in the in-
tegral equations. The Hill orthotropic yield criterion is
adopted in the plastic analysis. The initial stress method
and tangent predictor-radial return algorithm are used to
compute the stress in the elasto-plastic analysis with in-
cremental iteration scheme. Numerical examples show
that the results obtained by the present BEM are in good
agreement with the existing ones or those obtained by the
FEM. The computational results demonstrate the validity
and reliability of the developed numerical scheme.
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