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Elasto-plastic Analysis of Two-dimensional Orthotropic Bodieswith the Boundary
Element M ethod

X.S. Sunt, L.X. Huang!, Y.H. Liul and Z.Z. Cen'-?

Abstract:  The Boundary Element Method (BEM) is
introduced to analyze the elasto-plastic problems of 2-
D orthotropic bodies. With the help of known boundary
integral equations and fundamental solutions, a numeri-
cal scheme for elasto-plastic analysis of 2-D orthotropic
problems with the BEM is developed. The Hill or-
thotropic yield criterion is adopted in the plastic analy-
sis. Theinitia stress method and tangent predictor-radial
return algorithm are used to determine the stress state in
solving the nonlinear equation with the incremental iter-
ation method. Finally, numerical examples show that the
BEM is effective and reliable in analyzing elasto-plastic
problems of orthotropic bodies.

keyword: Boundary Element Method (BEM), Elasto-
plastic Analysis, Singular Integrals, 2-D Orthotropic
Body, Orthotropic Yield Criterion

1 Introduction

Nowadays new type materials exhibiting a characteristic
of anisotropy or orthotropy are widely used in the indus-
tries and the corresponding numerical analysisis neces-
sary to solve these complicated problems as the exper-
iments are absent or the analytical methods are unfea
sible in most conditions. Elasto-plastic analysisis one
of the practical and desirable problems, which has at-
tracted many interestson study. However, the anisotropic
or orthotropic plastic analysisis much more complicated
than isotropic problems. Fortunately, the devel opment of
computer technologies and computational methods per-
mits amore realistic and complex modeling than ever be-
fore. Thefinite element method (FEM) and the boundary
element method (BEM) are two usual numerical methods
that are widely used in solving many engineering prob-
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lems. In general, the FEM is more mature and popular,
and many elasto-plastic analysison orthotropic problems
have been implemented with the FEM in the past (Owen
and Figuerias, 1983; Vaziri, Olson and Anderson, 1992;
Karakuzu and Sayman, 1994). But the BEM is more &f-
fective and professional in some problems such as stress
concentration, and it has been successfully exploited to
solve many kinds of isotropic problems, including elas-
tic, thermo-elagtic, elasto-plastic, dynamic, contact, frac-
ture and coupling problems, etc. (Brebbia, Telles and
Wrobel, 1984; Du et a, 1989; Aliabadi, 2002) It should
also be pointed out that in certain elasto-plastic problems
the BEM can proveto bevery efficient. For example, bet-
ter accuracy can be obtained only with less discretized
meshes in the BEM than that in the FEM; on the other
hand, if the plastic zone islimited compared with the do-
main of the considered body, the BEM allows discretiza-
tion of only this limited plastic region, rather than that
of the entire domain as is needed for the FEM, which is
much more effective when the plastic zone appearsinthe
field around the boundary in some cases such as stress
concentration or contact problems.

The BEM was first introduced to analyze elasto-plastic
problemsfor 3-D isotropic bodiesby Swedlow and Cruse
(1971). Mendelson (1973) later improved Swedlow and
Cruse'swork and gave the expressionsfor internal stress
and strain for both 2-D and 3-D isotropic problems.
Mukherjee (1977), Kumar and Mukherjee (1977) and
Bui (1978) corrected successively some errorsin the pre-
vious works. Telles and Brebbia (1979) presented the
complete BEM formulations for 2-D and 3-D elasto-
plastic problems of isotropic materials based on the ini-
tial strain method. Banerjee, Cathie and Davies (1979)
established the boundary integral equations for 2-D and
3-D dasto-plastic problems based on the initia stress
method. Cen (1984) developed the BEM in coupling
withthe FEM to solveefficiently 3-D elasto-plastic prob-
lems.
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Since then the BEM on elasto-plastic analysis has been
developed mainly on two aspects: one is the alternative
solutionsfor removing domain discretization (Henry and
Banerjee, 1988; Partridge, Brebbia and Wrobel, 1992;
Ochiai and Kobayashi, 1999) or for removing strong
singularities in the integral equations (Okada, Rgjiyah
and Atluri, 1989; Okada and Atluri, 1994); and the
other is the solution strategies for solving the nonlin-
ear system equations (Banerjee, Henry and Raveendra,
1989; Chopra and Dargush, 1994; Bonnet and Mukher-
jee, 1996). Moreover, the BEM also appeared to solve
other problems related to elasto-plasticity, such as dy-
namics el asto-plastic problems (Carrer and Telles, 1992),
elasto-plastic contact problems (Dong, 1992) and ther-
mal elasto-plastic problems (Sladek and Sladek, 1995).
It should be noted that all the above €elasto-plastic stud-
ies with the BEM only dea with the problems for
isotropic materials. However, up to now, the applica
tion of the BEM to elasto-plastic analysis of orthotropic
or anisotropic problems has not been completely solved.
Therefore, further discussions on the application of the
BEM are necessary, especialy about the elasto-plastic
analysis of orthotropic bodies.

As to the application of the BEM to orthotropic or
anisotropic problems, some studieswere mainly focused
on elastic problems so far. Green (1943) first introduced
the fundamental solutionsfor 2-D orthotropic bodies un-
der a concentrated force. Rizzo and Shippy (1970) in-
troduced the fundamental solutionsinto the boundary in-
tegral equations for numerical elastic analysis of stress
concentration. Recently, Sun and Cen (2002) improved
and extended these fundamental solutions into elasto-
plastic problems and established the boundary integral
equations for elasto-plastic analysis of 2-D orthotropic
bodies, but neither numerical techniques nor resultswere
described. Huang et a (2004) used these improved fun-
damental solutionstoimplement parameter identification
for 2-D orthotropic plates with the BEM. Besides these
above studies, Tan and Gao (1992) anayzed the stress
concentrations and cracks of plane anisotropic bodies
and analytical expressions for the stress intensity fac-
tors were derived in terms of the tractions or displace-
ments. Dong, Lo and Cheung (1992) also exploited
the BEM to analyze elastic inclusion problems for or-
thotropic and anisotropic materials. Zhang (2002) pre-
sented a 2-D time-domain boundary integral eguation
method for transient dynamic analysis of cracked or-
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thotropic solids. However, to our knowledge, elasto-
plastic analysis of orthotropic bodies with the BEM has
not been studied so far.

This paper will introduce the application of the BEM to
2-D elasto-plastic problems for orthotropic bodies. The
discretized equations and iterative equations for numeri-
cal implementation are presented based on the boundary
integral equations, internal values and fundamental solu-
tionsfor orthotropic bodies (Sun and Cen, 2002), and the
elasto-plasticanalysisof 2-D orthotropic problemsisdis-
cussed. The Hill orthotropic yield criterion is adopted in
the plastic analysis. Theinitia stress method and tangent
predictor-radial return algorithm are used to determine
the stress state in solving the nonlinear equation with the
incremental iteration method. Two numerical examples
will be presented to demonstrate the validity and relia-
bility of the proposed numerical scheme. The computa-
tional results will also be compared to the existing ones
or those obtained from the FEM using the commercial
code ABAQUS.

2 Basic Equations
2.1 Linear elagtic orthotropic constitutive equation

For convenience, thefollowing discussionisbased onthe
rectangular Cartesian coordinate system and the vector
or matrix denotation is adopted for the major variables.
For the case of plane stress, according to the generalized
linear Hooke' slaw, the el astic orthotropic constitutivere-
lations of stress and strain can be written with matrix as
(Lekhnitskii, 1968):

o =De (or € = S0) Q)

where D = S~ isthe 3 x 3 elastic constant matrix and S
can be written with the compliances or engineering con-

stants as:
Su S O
S=| S S 0
0 0 Se
1/E

1/E; 0
0 1/Gn

(2)

—V12/E1 0
= | —vi2/Es
0

where E;, E, are the Young'smoduli in the two in-plane
principal material directions, respectively; G, isthein-
plane shear modulus; v1» isthe Poisson’'s ratio and con-
formsto therelation V12/E1 = V21/E2.



Elasto-plastic Analysis of Two-dimensional Orthotropic Bodies

Thestressand strainin Eq.(1) takerespectively the vector
form asfollows:

T
0':[0'1 (o)) le]

3)
(4)

where superscript T denotes the transpose of a vector or
matrix.

82[81 €2 Y2 ]T

2.2 Orthotropicyield criterion

For an orthotropic material, Hill (1948) first introduced a
yield function expressed by yield strengthsin the princi-
pal material directions and shear strengthsin planes, i.e.
Hill orthotropic yield criterion. This criterion is also an
extension of the von Mises criterion for isotropic mate-
rials, and it is used widely in many plastic problems and
creep problems in which reasonable results are demon-
strated. In the case of plane stress, Hill yield criterion
can be written as:

02 0107

2
T
X2 X2 =1

o
vtz
where X, Y are the strength propertiesin principa mate-
rial direction 1 and 2 respectively; Sisthe shear strength
property in plane. If X =Y = /3S= oy, Eq.(5) is re-
duced to von Mises criterion for isotropic materials.

If the equivalent yielding strength 0 is defined as:

()

To= X

(6)

then Hill orthotropic yield criterion can also be rewritten
in the following function form:

1
f(0)==0'Ho—Z62=0

3 3 (")

where H isthe Hill orthotropic coefficient matrix and

1 -1/2 0
H{l/z Hi 0}

0 0 H

(8)

X2

X2
a ©

H1:W7

Hp =

and the equivalent stress G = v 6 'Ho can aso be de-
fined.

Itisobviousthat H; = 1, H, = 3 for von Mises criterion.
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2.3 Plasticflowrule

In the elasto-plastic analysis with infinitesimal deforma-
tion, the strain €, marked by rate (or increment), can be
dividedinto two parts, i.e. elastic and plastic part respec-
tively:
g=¢€°+¢€P (10)
The plastic flow rule, which determines the direction of
plastic straining, can be expressed through the normal
of plastic strain increment and the yield surface as (Hill,
1983):

. of

P = A— =\
€ % a

(11)

where A is the plastic multiplier that determines the

amount of plastic strain and a is termed as the flow vec-

tor. If the yield function f(@) takes the form of Eq.(7),

vector a can be written as:
_of 2

— =ZHo

= 12
aao3 (12)

For an orthotropic material with ideal plasticity, the plas-
tic multiplier A can be obtained through the consistency
conditionsas:

. TpDs

- a' De (13)
Yo

where

Yo=a'Da (14)

2.4 Elasto-plastic orthotropic congtitutive equation

For infinitesimal deformation, if the initial plastic stress
(or plastic strain) is considered, according to Hooke's
law, the relation of stress rate and strain rate including
plastic stress (or plastic strain), i.e. the constitutive equa-
tion, can be written with matrix as:
0 = DE 6P (or € = S0°+-€P) (15)
where 6°, 6P are virtual elastic stress rate and plastic
stress rate, respectively. All these stress or strain vari-
ables take the similar vector form as that in Eq.(3) and
Eq.(4), and

6—6°—aP (16)
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0P = DeP(or €° = SoP) (17)

With the help of Egs.(11), (13), (14), (16) and (17), the
elasto-plastic relation of stressand strain with ideal plas-

ticity can be expressed by rate as:
T
.. Daa'D.
6=0°— 3 18
alDa (18)

3 Boundary Element Implementation

3.1 Boundary integral equation and fundamental so-
lutions

The boundary integra equation for 2-D orthotropic
elasto-plastic problems and corresponding internal vir-
tual elastic stress integral equations have been given as
(Sun and Cen, 2002):

ol = / utdr — / trudr + / u*fdQ + / 0"EPd0
r r Q Q

(19a)
c_/ Tidr — /tudr+/Q( o*)11dQ

+ / 01,EPdQ + 6 (204)
Q

where the variables with the superscript asterisk “*”

denote the fundamental solutions (matrix form) in the

BEM; matrix c is termed the boundary properties and

0% denotes the free term for strong singularity in do-

main which can be expressed as:
¥ = (E +D)&P = (E'S+1) 6" (21)

The further details can be found in the paper of Sun and
Cen (2002). The plastic stress is considered here as the
initial stress. Asthe following equation holdstrue:

[oi#Pd0 = [ o (s%)do
- [ (o;9)8%d0 = | £;6°d0 (22)
Q Q

then Eq.(19a) and EQ.(20a) can be written alternatively
withinitial plastic stressas:

CU:/u*idF—/t*UdF
r r

+ / ufdQ + / £°6°d0
Q Q

(19b)
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(20b)

6~ [ (o)
A

and the displacementsat internal pointscan also be given

Tiar — / tadr

deQ+/ € ode+o

o= / utdr — / trudr + / ufdQ + / £GP0 (23)
r r Q Q

All the fundamental solutionsin the above equationstake
the following matrix forms:

k k * *
ot = | Ui Ui t* — ty i (24)
u* u* ) t* t*
21 Ux» 21 o
* *
e — [ €11 €12 Vi ]
* * )
€11 €2 Yoo
M * * *
o — | O 012 O12 (25)
>k >k >k
| 0211 Oz Oopp
[ o* *
€11 €122 Vi
* * *
€= | €1 €2 Y12 |-
* *
| €211 €222 Vizi2
-k -k -k
01111 01122 O1112
* * * *
Op= | Ox11 O22» Oxp (26)
-k -k -k
01211 O1222 O1012
* *
t1 U
* * *
th=1] tm 1t (27)
* *
t; U

where Yo = 2812, Viji2 = 2&ij12 (i, ) = 1,2) and the
components can be found in the paper of Sun and Cen
(2002). Additionally, Eq.(22) suggeststhat &, = 0},S (or
oy, =¢€;D), sothesetwofundamental solutionsare equiv-
alent and depends on the considered initial stress or ini-
tia strain.

3.2 Discretized formulation of integral equations

Assume n boundary elements (one-dimensional element)
and m internal cells (two-dimensional element) are dis-
cretized in the boundary and domain, respectively, then
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the boundary elements and the internal cells are interpo-
lated with one- and two-dimensional interpolation func-
tions, respectively. For example, the 3-node quadratic in-
terpolation function Ny (§) and 4-node quadrilateral lin-
ear interpolationfunctionN (&1, &) are adopted here for
the boundary elements and internal cells, respectively.
The displacements and tractions on the boundary ele-
ments and the plastic stressratesin the internal cells can
be expressed by the following equations, respectively:

{ U:NbUeI, .t:Nb.teI

& = N (6°)° 28)

where the superscript “el” denotes the nodal values in
an boundary element or internal cell. With the ab-
sence of body force f, substituting the interpolated re-
sults in Eq.(28) into Egs.(19b), (20b) and (23) respec-
tively yields:

ay;

_ki[(/rku*Nbdr).fk] kiﬁl[(/ u*NbdF>tﬁ']
~ 2l Cf )] =5 [ (o) ]
w2, e ]|

'o.e

=3[ o )i

+k_nznl+l [( / k (—a")T Nbdr> ts]

“ 3 ()] -5 [ (] wer) ]

+§1 [( i ks;dig) (cp)s] Lo

=3 [Ch )it 5 [(f o)

“ 3 (oo )] =5[] ovor) 2]
(31)

w2 |(fem) o1

(29)

(30)

2.
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The same implementation is carried throughout all the
nodes. The knowns and unknowns in Egs.(29), (30) and
(31) are reordered, and then the following equations can
be obtained in assembling matrix:

AX =F+Q,E"
Ze = —AX +Fs+ Qsz (32)
U=-AX+F,+Qz2"

where X isthe unknown array for boundary values; F, Fs
and F, are the known arrays for boundary values; U, £°
and £” denote the arrays of displacements, virtua elastlc
and plastic stresses respectively which consist of the vec-
torsinal nodes; A, Agand A denote the assembling co-
efficient matrices for unknowns; and Q, Qs and Q, de-
note the assembling coefficient matrices for plastic stress
and Qs = Q'+ Qv in which Qy comes from the terms
for strong singularity. Solving Eq.(32) yields the follow-
ing equations:

X =y+REP
5 =54 TSP (33)
U =wW+Ty sP

where y = A"IF, 5= Fs— AAF and W = F, —

A,A~1F, which denotetheelastic solutions; R = A ~1Qy,
Ts=Qs— AsA_lQm Tu=Qu~— AuA_le, and the last
terms on the right-hand side of Eq.(33) denote the extra
onesfor plastic deformation.

3.3 Numerical integral scheme

Numerical quadrature should be used to compute the
integrals in Egs.(29) ~ (31). The genera Gaussian
guadrature is adopted here for non-singular integrals, but
the singular integrals should be treated specialy. The
terms resulted in singularity include weak singularities
involved Inr;* in the boundary and r; "t in the domain,
strong singularitiesinvolved r;~* in the boundary and r~2
in the domain , and hypersingularity involved r ;2 in the
boundary, where r; (i = 1,2) is the equivalent distance
related to the orthotropic elastic constants.

For the weak singularities in the boundary or domain,
i.e. integralsinvolved Inr;* or "%, the singularities can
be removed by transformations. With the interpolation
functions and the nodal values in the boundary element,
theintegralsinvolved Inr;* in the boundary can be trans-
formed to two partsincluding alogarithmic integral and
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Figure 1l : Internal cell subdivisions(singularity in node
1isexampled)

anon-singular integral, i.e.
/In dr = /In JEJqdr]Jr/ In——=— JdE
i f2_|_f2

(34)

then the two terms on the right-hand-side can be calcu-
lated by the logarithmic quadrature formula and Gaus-
sian quadrature formula, respectively. The integrals in-
volved r; ! in the domain can be treated by appropriate
coordinate transformation, in which a 4-node quadrilat-
eral cell is divided into two triangles (Fig. 1) and the
singular integrals can be calculated with:

/ €"Np(&1,€2)dQ
Qx

2 1 41
= Z/ / S*Np(nlarIZ)JEJr(]k)dnldr]Z (35)
k=1/-1/-1
where
1
3 =2 (1+n2) =o(r), (k=1,2) (36)

2

and the original local coordinatessystem (& 1,&>) istrans-
formed into a new one (N1,n32). Thistransformation re-
suItsmtheJacoblanJr(] ), (k= 1 ,2) proportional tor; and
accordingly the singularity r;~ Lisremoved.

The strong singularity, involved r; ~1 and ri < in the
boundary and domain respectively, can be removed by
indirect methods of rigid displacement solution and con-
stant plastic strain solution, respectively. Therigid dis-
placement solution of EQ.(29), where Up =1 (2 x 2 unit

2
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matrix) and , can result in the following equation:

ci+/ri t*Npdl = — % ( rjt*NbdF> 37)
i
¢ * ®
F!
P
@ L |
'
0
o— -9 ®

Figure 2 : Cellsconnected to aninternal singular point p

Then the boundary singular integrals involved r Lare
calculated indirectly by summation of the non-singular
integrals with Eq.(37). For an internal singular point p,
four cells are connected around, which composes a sub-
domain Q' with sub-boundary I'" including eight one-
dimensiona linear elements (Fig. 2). If al the nodes
at thesingular point p for four cellsare locally numbered
“1", the constant plastic strain solution of Eq.(30), where
&5 =1 (3 x 3 unit matrix) and 6 = 0, t = 0, will resultin
thisequation in sub-domain Q':

4 1
> [ eNgdo+E's
=17 %

8 4 4 .
- 2 Uod — / e:NDdo
21/{( p=0 kZliZQ K PP

where Uy isthe displacement solution under the constant
plastic strain and takes the following matrix:

Uo = [ Siuxi Spxg
SpXo  SpXp

(38)

1Sse%o

5Se6X1 (39)

] (2x3)
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where x; = X' —xP (i = 1,2) is the distance between the
field point g and source point p. Then similar to Eq.(37),
the domain singular integralsinvolved r ;2 are calculated
indirectly by summation of the non-singular integralsand
known sub-boundary integrals.

The hypersingularity involved r =2 in the boundary only
appears when the boundary stress is considered with
the internal stress integral equations. In some previous
works, a weighted residual method was used to derive
the integral equations (BIE), and a formulation of weak-
singular BIE, which doesn’tinvolve the hyper-singul arity
any more, was established to solve finite/small strain
elastoplastic problems (Okada and Atluri, 1994; Han and
Atluri, 2003; Atluri, Han and Shen, 2003). Additionally,
some direct methods to treat the hypersingularity have
also been presented, such as semi-analytical integration
with Cauchy Principal Value (CPV) (Guiggiani, Krish-
nasamy, Rudolphi and Rizzo, 1992), finite part concept
(Hildenbrand, Kuhn, 1992), etc. In this paper, the in-
direct method of displacement-traction recovery method
is adopted to treat the hypersingularity in the bound-
ary. Thismethod exploitsthe displacement gradientsand
traction relations, as well as the nodal displacements and
tractions in the boundary, to establish the stress formu-
lae for boundary nodes similar to the second equation in
Eq.(32). But the kernel integrals are replaced by some
algebraic and derivative expressions and accordingly no
singularity appears.

3.4 Stresscomputation in elasto-plastic analysis

Eq.(33) consists of a number of nonlinear equations and
some numerical techniques are necessary to treat these
equations. The techniquesto be introduced here are ini-
tia stress method and tangent predictor-radial return al-
gorithm in the integration of the elasto-plastic consti-
tutive equations. The initia stress method, which as-
sumesthe plastic stressastheinitial stress, wasdescribed
by Banerjee, Cathie and Davies (1979) in anayzing the
isotropic elasto-plastic problems with the BEM, and the
tangent predictor-radial return algorithm was first intro-
duced by Nayak and Zienkiewicz (1972) in the FEM nu-
merical analysis. This integration algorithm is widely
used in numerical solution of stress with both the FEM
and the BEM for its good accuracy. These two meth-
ods are implemented here through incremental iteration
of the load.

For elasto-plastic analysis, if the load factor isAa; at ev-
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ery iterative step, the aternative incremental relations of
stressin EQ.(33) is
AZ® = Aajs+TAZP (40)
During the application of an increment of load, an el-
ement (or cell) or part of it may yield. All the stress
quantities can be obtained with the elastic analysisby the
BEM, and then the plastic state can be judged to occur
or not at some points with reference to yield criterion.
For any load increment, it is necessary to determine what
proportioniselastic and what part isplasticwiththe elas-
tic stress increment Aa®, or tria stressincrement. If the
plastic deformation has occurred in current stress state
g+ Aa®, when f('g) < 0and f(‘g+Ac®) > 0, the por-
tion of the stress increments that is greater than the yield
stress value must be reduced to the yield surface, i.e. the
following equation must hold true:

f('o+mac®) =0 (41)

and the reduction factor m can be solved with Egs.(7) and

(41) as:
—ay + /&% —4agay
m= ! (429)
282
where
a0 = (‘0)' H (‘) -5}
a1 = 2(A6®) T H (o) (43)

ap = (Aoe)T H (Ac®)

If thetrial stressincrement Aa® is sufficiently small com-
pared to the stress '@, the reduction factor m can also be
obtained by this simple proportional relation:

— o0 (42b)
Or4+1— Oy

where G, and 0,1 are the equivalent stresses for pre-

vious and current stress states, respectively. Then with

the help of EQ.(18), the stress increment Ao can be cal-

culated through the tangent predictor-radial return algo-

rithm with the following equation (Fig. 3):

Daa' (1—m)Ac®

Ao = Na® —
alDa

(44)
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05,

Figure 3 : Stress computation in the elasto-plastic anal-
ysis

and then the current stress can be renewed with:

g = (‘o +mAc®) + Ao (45)
However, the stress obtained by Eq.(45) may depart a
little from the yield surface usualy, which can be prac-
tically eliminated by sufficiently small load increment.
But the scaling factor R is also necessary to ensure that
the final stress state lies on the yield surface, i.e. @ =
R- (t+AtO') andR= 60/6r+1.

Theaboveincremental iteration processwithinitial stress
method can be summarized as follows:

e 3d) Assume an elastic behavior occurs and then the
trial stress A@® is obtained;

¢ b) Judgethe elasto-plastic state and compute reduc-
tion factor m;

e C) Compute current stress increment Ag, and then
renew current stress state "+2'o' and scale it to the
yield surface;

e d) Continue with next Gauss point with starting
from step @) until al Gauss points have been con-
Sidered;

CMC, vol.1, no.1, pp.91-105, 2004

e ¢©) Verify convergence with AoP = Ao® — Ao and
accumulate the plastic stress, or initial stress, with
tH+MGP — tgP 1 AGP:

o f) Start next load increment with 2 @gP astheinitial
stress.

After the increment loops over, the final stressis solved
and the accumul ated plastic stress@P is obtained aswell.
Theboundary val ues can be solved through the first equa
tion in EQ.(33), and the internal displacements can also
obtained by the third equation in Eq.(33) if necessary.

4  Numerical Examples

Two examples are presented here to demonstrate the ap-
plication of the BEM to elasto-plastic analysis of 2-D
orthotropic bodies by the proposed numerical scheme.
The plane stress state isassumed and the el astic-perfectly
plastic material model is adopted. In the numerical im-
plementation, the 3-node quadratic element and 4-node
quadrilateral linear element are used for the boundary
elements and internal cells, respectively. The rectangu-
lar Cartesian coordinate directions are identical with the
principal material directions.

Table 1: Materia propertiesof cantilever

Elastic constants Strength properties

=y

74MPa

85MPa
0.26

30MPa

24MPa
230MPa
48.9MPa

= o
Y~

IS

Q

4.1 A cantilever under uniform load

In the first example, a homogenous orthotropic cantilever
is considered, which is subjected to a transverse uni-
formly distributed load along one of the principa ma-
terial direction (Fig. 4), and the material properties are
listed in Table 1. The modd is discretized with 377
nodes (including 80 boundary nodes), 40 boundary el-
ements and 366 cells. The numerical solutions obtained
by the present BEM are compared with the existing ana
Iytical results (Karakuzu and Ozcan, 1996), which were
obtained on basis of the assumption that the stress com-
ponent oy is equal to zero.
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Y »=1.0MPa
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L=110mm, A=30mm, b=3mm

Figure4: A cantilever under uniform load

p=22MPa

a
(a) Model

(b) Mesh

Figure5: A plate with hole under uniforminternal pres-
sure
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40 Elastic Results

Plastic Results ((Karakuzu and Ozcan, 1996)
e Plastic Results (BEM) ;

X

s (MPa)

35+
304
254

20

-6 1

T T T T 1
50 60 70 80 90 100 110 120

Distance along x-axis (mm)

Figure 6 : Stress distribution along loaded side (y =
15mm)
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e Plastic Results (BEM)

10+

T

T T 1
70 80 90 100 110 120

Distance along x-axis (mm)

Figure 7 : Shear stress distribution along bent axis (y =
Omm)

The stress distributions along loaded side and bent axis
are shown respectively in Fig. 6 and Fig. 7, where the
elasto-plastic results are also compared with the elastic
ones. Thesetwo figures show that plastic zone begins ap-
proximately at the section of x = 85mm. Fig. 8 ~ Fig. 11
show the stress distributions along different x-sections.
The results obtained by the BEM are generally in good
agreement with the analytical ones. However, it should
be pointed out that the analytical results (Karakuzu and
Ozcan, 1996) are approximate on basis of the assump-
tion that the stress component oy is equal to zero and the
present numerical results are closer to the real solutions.
It can be found from Fig. 10 and Fig. 11 that the plas-
tic zone obtained by the BEM is dlightly larger than that
from the results (Karakuzu and Ozcan, 1996) near the
fixed end.

Thevertical displacementsalong the bent axis(y = 0mm)
are shown in Fig. 12 and the elasto-plastic results are
compared with the elastic ones.

4.2 A platewith hole under uniform pressure

This example is about a sguare orthotropic plate with
hole under uniform internal pressureinthehole(Fig. 5a).
The geometry isa = b = 60mm,r = 10mm and the mag-
nitude of load is p = 22MPa. The material propertiesare
listed in Table 2. Due to symmetry, a quarter of the plate
isanalyzed and the quarter-model isdiscretized with 425
nodes (including 80 boundary nodes), 40 boundary ele-
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Table 2 : Materia properties of square-plate with hole

Elastic constants Strength properties

E, 1.2GPa X 230MPa
E, 0.6GPa Y 24MPa
Vi 0.071 s 48.9MPa
G, 0.07GPa

S

ments and 384 cells (Fig. 5b). The numerical solutions
obtained by the BEM are compared with the results by
commercial code ABAQUS.

For the FEM analysis with ABAQUS, 5200 CPAR 4-
node elements with 5361 nodes are used. The circumfer-
entia stress (0g) and radial displacements (u;) along the
hole boundary are shown in Fig. 13 and Fig. 14, respec-
tively, and the elastic results are plotted as well. It can be
seen that the results obtained by the present BEM arein
good agreement with those calculated by ABAQUS, ex-
cept for dight differences of the displacementsin several
points near the x-axis, but the maximum error islessthan
5%. The reason is that more exact displacement results
can be obtained on the boundary with the BEM than with
the FEM. Fig. 13 also shows that the area around the
hole’'s boundary near x-axisis much easier to yield than
that near y-axis.

Fig. 15 ~ Fig. 18 plot the stress distributions in both
elastic and elasto-plastic analyses along x-axis and y-
axis, respectively. The present BEM resultsand the FEM
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Figure 14 : Radial displacements of the hole

results by ABAQUS are again in good agreement. Nu-
merical results also show that there is a much greater
elastic stress concentration near the hole in y-axis di-
rection than that in x-axis direction as E; > E,, but the
plastic zone begins first around the x-axis near the hole,
where the stress oy gives the mgjor contribution to the
yielding as Y < X. This means that the potentia frac-
turewould happen inthe principal material directionwith
greater value of elastic modulus and strength property
in the plate, which is quite different from that in the
isotropic materials with isotropic yielding strength.

Fig. 19 and Fig. 20 show the deformation of the plate
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along the x- and y-axis, respectively. It can be found
that there is a greater deformation along the y-axis than
that along the x-axis, whichisresulted by different elastic
moduli and strength propertiesin the two directions. The
displacements uy along x-axis (Fig. 19) with the BEM
arelittledifferent from the resultsby ABAQUS, whichis
similar to the result in Fig. 14 and results from the fact
that the boundary displacements obtained by the BEM
are more exact than those by the FEM.

Fig. 21 shows the stress distributions aong the direc-
tion of 45 degree from x-axis, i.e. diagonal direction in
the plate. Fig. 22 contours the equivalent stress distribu-
tions throughout the plate, which clearly showsthe plas-
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Figure 18 : Stress distribution along y-axis (o)

tic zones and the elasto-plastic stress distributionsin the
plate.

5 Conclusions

In this paper, a numerical scheme for elasto-plastic anal-
ysis of 2-D orthotropic problems with the BEM is de-
veloped. The discretized equations and iterative equa-
tions for numerical implementation are presented based
on the boundary integral equations, internal values and
fundamental solutions for orthotropic bodies. Numeri-
cal integral techniques, including coordinate transforma-
tions, rigid displacement solution or constant plastic so-
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lution, and displacement-traction recovery method, are
introduced to remove al kinds of singularitiesin the in-
tegral equations. The Hill orthotropic yield criterion is
adopted in the plastic analysis. Theinitia stress method
and tangent predictor-radial return algorithm are used to
compute the stressin the elasto-plastic analysiswith in-
cremental iteration scheme. Numerical examples show
that the results obtained by the present BEM are in good
agreement with the existing ones or those obtained by the
FEM. The computational results demonstrate the validity
and reliability of the developed numerical scheme.
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