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Dielectric Breakdown Model For An Electrically Impermeable Crack In A
Piezoelectric Material

Tong-Yi Zhang1

Abstract: The present work presents a strip Dielec-
tric Breakdown (DB) model for an electrically imperme-
able crack in a piezoelectric material. In the DB model,
the dielectric breakdown region is assumed to be a strip
along the crack’s front line. Along the DB strip, the elec-
tric field strength is equal to the dielectric breakdown
strength. The DB model is exactly in analogy with the
mechanical Dugdale model. Two energy release rates
emerge from the analysis. An applied energy release
rate appears when evaluatingJ-integral along a contour
surrounding both the dielectric breakdown strip and the
crack tip, whereas a local energy release rate appears
when evaluatingJ-integral along an infinitesimal con-
tour surrounding only the crack tip. Under small yield-
ing conditions, the local energy release rate, if used as a
failure criterion, gives a linear relationship between the
applied stress intensity factor and the applied electric in-
tensity factor.

1 INTRODUCTION

Piezoelectric ceramics have become preferred materials
for a wide variety of electronic and mechatronic de-
vices due to their pronounced piezoelectric, dielectric,
and pyroelectric properties. However, piezoelectric ce-
ramics are brittle and susceptible to cracking at all scales
ranging from electric domains to devices. Various de-
fects, such as domain walls, grain boundaries, flaws and
pores, impurities and inclusions, etc, exist in piezoelec-
tric ceramics. The defects cause geometric, electric, ther-
mal, and mechanical discontinuities and thus induce high
stress and/or electric field concentrations, which may in-
duce crack initiation, crack growth, partial discharge, and
cause dielectric breakdown, fracture and failure. Due to
the importance of the reliability of these devices, there
has been tremendous interest in studying the fracture and
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failure behaviors of such materials (Beom and Atluri,
2003; dos Santos e Lucato et al. 2002; Schneider et
al. 2003; Shieh et al. 2003; Landis 2003; Shindo et al.
2003).

The theoretical results (Zhang and Tong 1996; Zhang et
al. 1998; Zhang et al. 2002) based on linear electro-
elasticity show that the electric field is extremely high
at the crack tip. Especially, if the electrically imperme-
able boundary conditions are approximately applied to
an electrically insulated crack, the theoretical predicated
electric field will approach infinity at the impermeable
crack tip when applied electric field has a component
in the direction perpendicular to the crack line. Even
when the electrically permeable boundary conditions are
approximately applied to an electrically insulated crack,
the theoretical predicated electric field, in terms of the
electric field strength, will be about 1000 times higher in
magnitude than the applied electric field for most piezo-
electric materials because most piezoelectric materials
have about a 1000 times higher dielectric constant in
magnitude than the crack interior (air or vacuum). Un-
der such a high local electric field, electrical non-linearity
may occur near the crack tip. The strip polarization sat-
uration (PS) model (Gao et al. 1997) was developed
to explore the effects of the electrical non-linearity on
piezoelectric fracture. The PS model takes the advantage
that the constitutive relationship between the electric dis-
placement and the electric field strength is similar to that
between the stress and the strain. For that reason, the
PS model corresponds to a mechanical Dugdale model
in which the strain remains a constant value as the stress
increases. McMeeking (2001) gave comprehensive and
suggestive comments on the PS model. From the energy
point of view, the electric displacement behaves like the
strain, while the electric field strength functions like the
mechanical stress. Therefore, the PS model does not cor-
respond to the classical Dugdale model (Dugdal 1960) in
which the stress is equal to the yield strength along the
strip in front of a crack tip.
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Zhang and Gao (2004) proposed a strip dielectric break-
down (DB) model, which is exactly analogous to the
classical Dugdale model from the energy point of view
because, in the DB model, the electric field strength on
a strip adjacent to a crack tip is taken as a constant. The
physical arguments for the DB model are described as
follows. As discussed above, a very high electric field
exists near a crack tip when the piezoelectric material is
subjected to mechanical and/or electric loads. The lo-
cal electric field may be much higher than the dielectric
breakdown strength. The dielectric breakdown strength
is defined as a critical electric field at which dielectric
discharge occurs and leads to dielectric breakdown. The
characteristics of the breakdown strength are similar to
those of the mechanical fracture strength (Dissado and
Fothergill 1992), which is very sensitive to solid defects
such as flaws, voids and cracks, thereby indicating that
partial discharge may occur at the crack tip due to the
high electric field. As a result, a local partial discharge
zone or electric breakdown zone, like a plastic deforma-
tion zone, is formed adjacent to the crack tip, and in the
partial discharge zone the electric field cannot exceed the
dielectric breakdown strength,Eb, which is analogous to
the yield strength in mechanically plastic deformation.
In analogy with the mechanical Dugdale model, the di-
electric breakdown region is assumed to be a strip along
the crack’s front line, where the electric field strength is
equal to the dielectric breakdown strength,E b.

In developing the BD model, Zhang and Gao (2004) used
the simplified electroelasticity constitutive equations and
an electrically impermeable crack because the simplified
electroelasticity constitutive equations and an electrically
impermeable crack were used in the PS model (Gao et al.
1997). In this way, Zhang and Gao (2004) were able to
compare the results from the BD model with those from
the PS model. The advantage of using the simplified con-
stitutive equations is that the formulation process and fi-
nal results are simple and thus give more insights into the
physical picture. For simplicity, Zhang and Gao (2004)
considered a semi-infinitely long impermeable crack in
their study, which means that the partial discharge zone
is much shorter than the crack length and thus the small-
scale yielding condition is satisfied. In the present work,
we shall study an electrically impermeable crack with a
finite length.

2 ANALYSIS and RESULTS

2.1 Basic equations

The simplified constitutive equation (Gao et al. 1997)
reduces the number of the independent material constants
to a minimum and takes the form:
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when the poling direction is along thex 3-axis, where *
means that the corresponding constant will not appear in
the model,σi j, εi j, Dj andEi are the stress, the strain, the
electric displacement and the electric field, respectively.
Only three positive independent material constants,M,e
andκ, are used to represent, on a qualitative basis, the
elastic, piezoelectric and dielectric properties of the ma-
terial. The static equilibrium and kinematic equations are
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given by

σi j, j = 0, Di,i = 0, (2)

εi j =
1
2

(ui, j +u j,i) , Ei = −ϕ,i, (3)

respectively, whereui andϕ denote the displacement and
the electric potential, respectively.
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Figure 1 : An electrically impermeable crack of a finite
length under remotely electrical and mechanical loading.

Consider an electrically impermeable crack with a finite
length perpendicular to the poling direction in a trans-
versely isotropic piezoelectric material. The coordinate
system is set up such that the crack center is at the origin
and the crack lies on thex-axis from –a to a, as shown in
Fig. 1. In the sample approach (Gao et al. 1997), the ma-
terial is constrained to move only in the y-direction such
that

ux = 0, uy = u (x,y) , (4a)

ϕ = ϕ (x,y) . (4b)

Rearranging the constitutive equations by substituting

Eq. (4) into Eq. (3) and then using Eq. (1), we have

σyx = Mu,x +eϕ,x,
σyy = Mu,y +eϕ,y,

Dx = eu,x −κϕ ,x,
Dy = eu,y −κϕ ,y.

(5)

If u andϕ are expressed as imaginary parts of two ana-
lytic functions, i.e.,

u = Im[U(z)], (6a)

ϕ = Im[Φ(z)], (6b)

the static equilibrium conditions of Eq. (2) are satisfied
automatically, wherez = x + iy. In this case, the kine-
matic and constitutive equations are given by

εyy + i2εyx = U ′(z),
Ey + iEx = −Φ′(z),

(7)

σyy + iσyx = M U ′(z)+eΦ′(z),
Dy + iDx = eU ′(z)−κΦ′(z).

(8)

The formulation is formally identical to that for an analy-
sis of a mode III crack (Pak 1990; Zhang and Tong 1996;
Zhang et al. 2002), which allows us to modify the solu-
tion of a mode III crack for the present study.

For an electrically impermeable crack, the boundary con-
ditions along the crack faces are

σyy = 0 and Dy = 0 for y = 0 and |x|< a. (9)

Note that the boundary conditionσ yx = 0 cannot be en-
forced here due to the constraint that material is allowed
to move in the y-direction only.

2.2 Applied energy release rate

When the crack is loaded by remotely uniform stress,σ∞
yy,

and electric field,E∞
y , the solution is obtained by modi-

fying Eq. (3.98) in the previous work (Zhang et al. 2002)
and using the impermeable boundary conditions, which
is given by

εyy + i2εyx =
σ∞

yy +e E∞
y

M
z√

z2−a2
, (10a)

Ey + iEx = E∞
y

z√
z2−a2

, (10b)

σyy + iσyx = σ∞
yy

z√
z2−a2

, (10c)
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Dy + iDx =
[

eσ∞
yy

M
+
(

κ +
e2

M

)
E∞

y

]
z√

z2−a2
. (10d)

From Eqs. (10a) and (10b), we can calculate the crack
opening,∆uy, and the voltage,∆ϕ, cross the crack faces,
respectively, which take the forms of

∆uy =
σ∞

yy +e E∞
y

M

√
a2−x2, (11a)

∆ϕ = −E∞
y

√
a2−x2. (11b)

Eq. (11a) indicates that in order to open the crack, the
following inequality must be satisfied

σ∞
yy +e E∞

y > 0. (12)

Usually, applied mechanical loading is always in tension
and applied electrical field could be positive or negative.
The inequality is automatically satisfied under mechani-
cal and positively electrical loading, whereas the level of
a negative electrical field should be lower than a critical
value determined by the applied mechanical load, i.e.,

E∞
y > −σ∞

yy/e. (13)

The crack opening condition must be satisfied when a
failure criterion is proposed and applied.

The stress, strain, electric field strength, and electric dis-
placement intensity factors at the right crack tip are de-
fined by

Kσ = lim
x→a

√
2π(x−a)σyy,

Kε = lim
x→a

√
2π(x−a)εyy,

KE = lim
x→a

√
2π(x−a)Ey,

KD = lim
x→a

√
2π(x−a)Dy. (14)

Substituting Eq. (10) into Eq. (14) yields the intensity
factors produced by the applied loads

K(a)
σ =

√
πaσ∞

yy, K(a)
ε = 1

M

(
K(a)

σ +eK(a)
E

)
,

K(a)
E =

√
πaE∞

y , K(a)
D = e

M K(a)
σ +κ

(
1+ e2

Mκ

)
K(a)

E .

(15)

where the superscript “(a)” denotes the applied. Equa-
tion (15) also satisfies the constitutive relationships given
by Eq. (8). From the definitions of the intensity factors,

we can express the mechanical and electrical fields near
the crack in terms of the four intensity factors, i.e.,

σyy = Kσ√
2πr

cosθ
2, σyx = − Kσ√

2πr
sinθ

2 ,

εyy = Kε√
2πr

cosθ
2 , 2εyx = − Kε√

2πr
sinθ

2,

Ey = KE√
2πr

cosθ
2 , Ex = − KE√

2πr
sinθ

2,

Dy = KD√
2πr

cosθ
2 , Dx = − KD√

2πr
sinθ

2,

(16)

wherer is the distance from the crack tip andθ is the po-
lar angle. Using Eq. (16) and the J-integral (Cherepanov
1979; Zhang et al. 2002),

J =
∫

Γ
(hn1−σi jn jui,1 +DiE1ni)dΓ, (17)

whereh is the electric enthalpy per unit volume defined
by h = 1

2σi j εi j − 1
2DiEi, one obtains the relationship be-

tween the energy release rate and the field intensity fac-
tors,

J =
1
2

(KσKε −KDKE) . (18a)

The energy release rate can apparently be divided into
the mechanical energy release rate,JM , and the electrical
energy release rate,JE , (Zhang et al. 2002) such that

J = JM +JE ,

JM = 1
2KσKε,

JE = −1
2KDKE .

(18b)

It should be emphasized that Eq. (18) is valid as long as
Eq. (16) is valid along the path of the J-integral. In linear
analysis, i.e., without considering the breakdown zone,
Eq. (18) gives

J(a) =
1
2

(
K(a)

σ K(a)
ε −K(a)

D K(a)
E

)
. (19)

Inserting Eq. (15) into Eq. (19) leads to the expression
of the applied energy release rate with two independent
loading parameters as

2J(a) =
1
M

(
K(a)

σ

)2
−κ

(
1+

e2

Mκ

)(
K(a)

E

)2
. (20)

Equation (20) is consistent with the result of Eq. (3.115)
in the previous work (Zhang et al. 2002) for an imperme-
able crack under mode III loading.
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2.3 Interaction of an electric dislocation with the fi-
nite impermeable crack

An electric dislocation is studied here prior to discussion
of the DB model. In general, a piezoelectric disloca-
tion may have eight characteristics, as discussed in the
previous review article (Zhang et al. 2002), which are
three jumps in three mechanical displacements, yielding
the Burgers vector, a jump in electric potential, three line
forces per unit length along three coordinate directions,
and a line charge per unit length. The electric disloca-
tion studied here has only one characteristic, the potential
jump, ∆ϕb. The electric dislocation produces an electric
field, but it does not produce any mechanical displace-
ment. The complex potentials for such an electric dis-
location located atzd in an infinite domain without any
cracks are given by

U = 0,

Φ = bϕ ln(z− zd) ,
(21)

where

bϕ =
∆ϕb

2π
. (22)

Then, the electric and mechanical fields produced by the
electric dislocation are given by

εyy + i2εyx = 0, (23a)

Ey + iEx = − bϕ

z− zd
, (23b)

σyy + iσyx = −e(Ey + iEx), (23c)

Dy + iDx = κ(Ey + iEx). (23d)

Eq. (23) indicates that the electric dislocation does not
produce any strain field, but it induces a stress field
through the piezoelectric effect. The solution of the elec-
tric dislocation in an infinite medium will be used in the
development of the DB model.

When an electric dislocation is located atz d near the im-
permeable crack, as shown in Fig. 2, the boundary condi-
tions of Eq. (9) should be satisfied. The complex poten-
tials satisfying the boundary conditions are given in Eq.
(4.39) in the previous work (Zhang et al. 2002) and take

a0-a x
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Figure 2 : An electric dislocation near a finite imperme-
able crack.

the following form:

U = 0,

Φ = bϕ ln

(
z+

√
z2−a2− zd −

√
z2

d −a2

)

−bϕ ln


a2− (z+

√
z2−a2)(zd +

√
z2

d −a2)

z+
√

z2−a2


 , (24)

where the overbar denotes the conjugate of a complex
variable. The electric dislocation produces an electric
field, which is given by

Ey + iEx

= − bϕ√
z2−a2


 z+

√
z2−a2

z+
√

z2−a2− zd −
√

z2
d −a2

+
a2

a2− (z+
√

z2−a2)(zd +
√

z2
d −a2)


 . (25)

Eq. (25) can be obtained by modifying Eq. (4.40) in the
previous work (Zhang et al. 2002). Again, the electric
dislocation does not produce any strain field when it is
near an electrically impermeable crack. The stresses and
the electric displacements can be calculated through the
constitutive equations, i.e., Eqs. (23c) and (23d). More
important is that Eqs. (23c) and (23d) indicate that the
boundary conditions along the impermeable crack faces,
i.e., Eq. (9), can be specially simplified as

Ey = 0 for y = 0 and |x| < a. (26)
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Caution should be used that Eq. (26) is applied only to
the electric dislocations, which have only one character-
istic, the potential jump,∆ϕb.

When the electric dislocation is located on thex−axis,
Substituting Eq. (25) into the intensity factor definition
of Eq. (14) leads to

K(d)
E = − ∆ϕb√

πa


 a

xd +
√

x2
d −a2−a


 . (27a)

where the superscript “(d)” denotes the electric disloca-
tion. The electric dislocation does not produce any strain
intensity factor. The stress intensity factor and the elec-
tric displacement intensity factor are calculated through
the constitutive relationships,

K(d)
σ = −eK(d)

E , (27b)

K(d)
D = κK(d)

E . (27c)

Eq. (27) is a special case of the intensity factors pro-
duced by a general dislocation at an impermeable crack
tip, which is given by Eq. (4.41) in the previous work
(Zhang et al. 2002).

2.4 Dielectric breakdown model

Following the successful treatment of the problem of
plastic yielding at a crack tip by Dugdale (1960), Bilby
et al. (1963) developed a dislocation model to formulate
the strip plastic yielding. In the dislocation model (Bilby
et al. 1963), the crack and the strip plastic zone are sim-
ulated by an array of dislocations. We shall adopt the
dislocation approach to develop the DB model.

Figure 3 shows the proposed DB model, where (–c, -a)
and (a, c) denote the dielectric breakdown strips. The
remote boundary conditions for this problem are

σyy + iσyx = σ∞
yy, Ey + iEx = E∞

y , for z → ∞. (28)

The boundary conditions along the crack faces are the
same as these given by Eq. (9). In addition, the boundary
conditions along the dielectric breakdown strips are

u+
y = u−y , Ey = Eb, for y = 0 and a < |x| < c.

(29)

Eqs. (7) and (8) indicate that the total solutions are ob-
tained if we have the solutions of the strain field and the
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Figure 3 : The schematic of the dielectric breakdown
model.

electrical field. Since the electric dislocation does not
produce any strains, we can separately derive the strain
field and the electrical field. The strain field is completely
determined by the applied loads, which is given by Eq.
(10a). The electric field will be derived from the disloca-
tion model.

Consider a linear array of electric dislocationsdistributed
from –c to c, as shown in Fig. 4. The equilibrium equa-
tion for the array may be written as

−bϕ

c∫
−c

f (x′)
x−x′

dx′ +E∞
y = 0 for

y = 0 and |x| < a, (30a)

and as

−bϕ

c∫
−c

f (x′)
x−x′

dx′ +E∞
y = Eb for

y = 0 and a < |x| < c, (30b)

where f (x) is the distribution function of the dislocations
and the Cauchy principal values of the integral are to be
taken atx = x′ to avoid divergence. The solution to this
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Figure 4 : The schematic distribution of an electric dis-
location array.

singular integral equation may be obtained by the method
developed by Muskhelishvili (1953) and is given by

f (x) = − 2Eb

π∆ϕb
ln

[∣∣∣∣∣x
√

c2−a2 +a
√

c2−x2

x
√

c2−a2−a
√

c2−x2

∣∣∣∣∣
]

. (31)

To ensure that there is no singularity at|x| = c, the fol-
lowing equation must be satisfied

a
c

= cos

(πE∞
y

2Eb

)
. (32)

From Eq. (32) we can calculate the size of the dielectric
breakdown zone,

rb = c−a = a sec

(πE∞
y

2Eb

)
−a. (33)

Under the small yielding condition,r b << a, which cor-
responds toπE ∞

y /(2Eb) → 0, Eq. (33) can be approxi-
mately reduced to

rb =
a
2

(πE∞
y

2Eb

)2

. (34a)

Using Eq. (15), we can further express the size of the di-
electric breakdown zone in terms of the electric intensity
factor,K(a)

E , under the small yielding condition as

rb =
π
2

(
K(a)

E

2Eb

)2

. (34b)

The mechanical and electric fields are finally calculated
from

εyy + i2εyx =
σ∞

yy +e E∞
y

M
z√

z2−a2
, (35a)

Ey + iEx = −bϕ

c∫
−c

f (x′)
z−x′

dx′, (35b)

σyy + iσyx = M(εyy + i2εyx)−e(Ey + iEx), (35c)

Dy + iDx = e( εyy + i2εyx)+κ(Ey + iEx). (35d)

When the mechanical and electrical fields are available,
we are able to calculate the local intensity factors, which
turn out to be

K(l)
ε =

√
πa

σ∞
yy +eE∞

y

M
,

K(l)
E = lim

x→a

√
2π(x−a)


−bϕ

c∫
−c

f (x′)
x−x′

dx′

 = 0,

K(l)
σ =

√
πa

(
σ∞

yy +eE∞
y

)
, K(l)

D = e
√

πa
σ∞

yy +eE∞
y

M
,

(36a)

where the superscript “(l)” denotes the local. The local
intensity factors can be expressed in terms of the applied
intensity factors as

K(l)
ε =

K(a)
σ +eK(a)

E

M
, K(l)

E = 0,

K(l)
σ = K(a)

σ +eK(a)
E , K(l)

D = e
K(a)

σ +eK(a)
E

M
. (36b)

Eq. (36) indicates that the impermeable crack is com-
pletely shielded electrically such that the local electric in-
tensity factor,K (l)

E , nulls. However, comparing Eq. (36a)
with Eq. (15) indicates that the local stress intensity fac-
tor depends not only on the remotely applied mechani-
cal load, but also on the remotely applied electrical load,
making it differ from the applied stress intensity.

The local energy release rate corresponds to the J-integral
along an infinitesimal local contour enclosing just the
crack tip. The local fields are dominated by the local
intensity factors. Thus, Eq. (18) holds. Substituting Eq.
(36) into Eq. (18) gives the local energy release rate as

2J(l)
DB =

1
M

(
K(a)

σ +eK(a)
E

)2
, (37)
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whereJ(l)
DB indicates the local J-integral based on the strip

dielectric breakdown model. As expected, Eq. (37) is
identical to Eq. (201) in the previous work (Zhang and
Gao 2004) for a semi-infinite impermeable crack.

If we re-express the local energy release rate,J(l)
PS , derived

from the PS model (Gao et al 1997), i.e., Eq. (39) in
Gao et al. paper in terms of the applied stress intensity
factor and the applied electric intensity factor,J (l)

PS takes
the form of

2J(l)
PS =

1
M

(
1+

e2

Mκ

)(
K(a)

σ +eK(a)
E

)2
. (38)

Comparing Eq. (37) with Eq. (38), one finds

J(l)
PS

J(l)
DB

= 1+
e2

Mκ
> 1. (39)

This means that the PS model gives a higher value of the
local energy release rate than that derived from the DB
model. However, Eqs. (37) and (38) both indicate that
positive electric field will assist an applied mechanical
stress to propagate the impermeable crack if the local J-
integral is adopted as a failure criterion, while a negative
electric field will retard crack propagation. Note that to
ensure the crack open, Eq. (13) must be satisfied if the
electrical field is negative. The relationship between the
applied stress intensity factor and the applied electric in-
tensity factor is identical in the two models. In this sense,
the DB model gives the same result as the PS model.

As described above, the energy release rate can be ap-
parently divided in the electric energy release rate and
mechanical energy release rate. Due to the piezoelec-
tric effect, an electric field contributes to the mechanical
release rate and a stress field is involved in the electric
energy release rate. In the DB model the electric field
strength at the crack tip is completely shielded by the di-
electric breakdown zone, whereas the electric displace-
ment at the crick tip is completely shielded by the po-
larization saturation zone in the PS model. Either the
complete shielding of the electric field strength or the
complete shielding of the electric displacement leads to
a zero value of the local electric energy release rate and
results in the local energy release rate to be purely local
mechanical energy release rate.

When the local energy release rate is purely mechanical,
applying the local stress intensity factor as a failure may
be equivalent to applying the local energy release rate. In

the DB model, the local stress intensity factor is given by
K(l)

σ,DB = K(a)
σ + eK(a)

E , whereas the local stress intensity

factor is given byK (l)
σ,PS = [1+ e2/(Mκ)] · (K(a)

σ + eK(a)
E )

in the PS model. Clearly, the ratio ofK (l)
σ,PS/K(l)

σ,DB is the

same as that ofJ(l)
PS/J(l)

DB, as shown in Eq. (39).

3 CONCLUDING REMARKS

The present work reports the DB model for an electri-
cally impermeable crack with a finite length. Although
the approach used in the present work differs from the
approach used in the previous work for a semi-infinite
permeable crack (Zhang and Gao, 2004), the derived re-
sults are the same as those reported in the previous work
when small yielding conditions are applied, which is ex-
pected. For the sake of explicitness, the analysis of the
DB model has been restricted to the case of an imper-
meable crack. Theoretically, we shall be able to extend
the DB model to the cases of permeable cracks and/or
semi-permeable cracks. The more challenging task is to
experimentally verify the DB model.
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