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Dielectric Breakdown M odel For An Electrically ImpermeableCrack In A
Piezoelectric M aterial

Tong-Yi Zhang'

Abstract:  The present work presents a strip Dieledailure behaviors of such materials (Beom and Atluri,
tric Breakdown (DB) model for an electrically imperme2003; dos Santos e Lucato et al. 2002; Schneider et
able crack in a piezoelectric material. In the DB modad|. 2003; Shieh et al. 2003; Landis 2003; Shindo et al.
the dielectric breakdown region is assumed to be a st#p03).

along the crack’s frontline. Along the DB strip, the elecrhe theoretical results (Zhang and Tong 1996; Zhang et
tric field strength is equal to the dielectric breakdowg|. 1998; Zhang et al. 2002) based on linear electro-
strength. The DB model is exactly in analogy with thg|asticity show that the electric field is extremely high
mechanical Dugdale model. Two energy release rafighe crack tip. Especially, if the electrically imperme-
emerge from the analysis. An applied energy releaggle boundary conditions are approximately applied to
rate appears when evaluatidgntegral along a contour an electrically insulated crack, the theoretical predicated
surrounding both the dielectric breakdown strip and thgectric field will approach infinity at the impermeable
crack tip, whereas a local energy release rate appedkgk tip when applied electric field has a component
when evaluatingl-integral along an infinitesimal con-in the direction perpendicular to the crack line. Even
tour surrounding only the crack tip. Under small yieldyhen the electrically permeable boundary conditions are
ing conditions, the local energy release rate, if used aggproximately applied to an electrically insulated crack,
failure criterion, gives a linear relationship between thfie theoretical predicated electric field, in terms of the
applied stress intensity factor and the applied electric igrectric field strength, will be about 1000 times higher in

tensity factor. magnitude than the applied electric field for most piezo-
electric materials because most piezoelectric materials
1 INTRODUCTION have about a 1000 times higher dielectric constant in

magnitude than the crack interior (air or vacuum). Un-

Piezoelectric ceramics have become preferred materi@dg such a high local electric field, electrical non-linearity
for a wide variety of electronic and mechatronic denay occur near the crack tip. The strip polarization sat-
vices due to their pronounced piezoelectric, dielectrigsation (PS) model (Gao et al. 1997) was developed
and pyroelectric properties. However, piezoelectric cgy explore the effects of the electrical non-linearity on
ramics are brittle and susceptible to cracking at all scalgigzoelectric fracture. The PS model takes the advantage
ranging from electric domains to devices. Various deyat the constitutive relationship between the electric dis-
fects, such as domain walls, grain boundaries, flaws afilcement and the electric field strength is similar to that
pores, impurities and inclusions, etc, exist in piezoelegatween the stress and the strain. For that reason, the
tric ceramics. The defects cause geometric, electric, thes model corresponds to a mechanical Dugdale model
mal, and mechanical discontinuities and thus induce high\which the strain remains a constant value as the stress
stress and/or electric field concentrations, which may ipcreases. McMeeking (2001) gave comprehensive and
duce crack initiation, crack growth, partial discharge, a@@ggestive comments on the PS model. From the energy
cause dielectric breakdown, fracture and failure. Dueﬁgint of view, the electric displacement behaves like the
the importance of the reliability of these devices, theggrain, while the electric field strength functions like the
has been tremendous interest in studying the fracture ghgchanical stress. Therefore, the PS model does not cor-

L Department of Mechanical Engineering res_pond to the cla_ssical Dugdale model (Dugdal 1960) in

Hong Kong University of Science and Technology wh_lch the stress is equ_al to the yield strength along the

Clear Water Bay, Kowloon, Hong Kong, China strip in front of a crack tip.
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Zhang and Gao (2004) proposed a strip dielectric bredk- ANALYSISand RESULTS
down (DB) model, which is exactly analogous to th
classical Dugdale model from the energy point of vie
because, in the DB model, the electric field strength @he simplified constitutive equation (Gao et al. 1997)

a strip adjacent to a crack tip is taken as a constant. Trleeluces the number of the independent material constants
physical arguments for the DB model are described @&sa minimum and takes the form:

follows. As discussed above, a very high electric fiel
exists near a crack tip when the piezoelectric material s©
subjected to mechanical and/or electric loads. The Ig-

cal electric field may be much higher than the dielectri 033
breakdown strength. The dielectric breakdown streng h ©

is defined as a critical electric field at which dielectri 013
discharge occurs and leads to dielectric breakdown. T e012

1 Basiceguations

characteristics of the breakdown strength are similarto [ 1 * * 0 0 07 ( &
those of the mechanical fracture strength (Dissado and * 1 « 0 00 €22
Fothergill 1992), which is very sensitive to solid defects , | * * 1 0 0 0 €33
such as flaws, voids and cracks, thereby indicatingthat | 0 0 0 1 0 0 2€23
partial discharge may occur at the crack tip due to the 000O01O0 2¢13
high electric field. As a result, a local partial discharge 0 000 0= ] 20
zone or electric breakdown zone, like a plastic deforma- 0 0 —17

tion zone, is formed adjacent to the crack tip, and in the 0 0 -1

partial discharge zone the electric field cannot exceed the 00 1 E,

dielectric breakdown strengtky, which is analogousto  ~€| g 1 o0 B2 (1)
the yield strength in mechanically plastic deformation. 10 O Es

In analogy with the mechanical Dugdale model, the di- 00 O

electric breakdown region is assumed to be a strip along i

the crack’s front line, where the electric field strength i

equal to the dielectric breakdown strendg, 1

In developing the BD model, Zhang and Gao (2004) us d

the simplified electroelasticity constitutive equations an

an electrically impermeable crack because the simplified €11
electroelasticity constitutive equations and an electrically O 0 0010 €22
impermeable crack were used inthe PS model (Gaoetale| 0 0 0 1 0 0 €33
1997). In this way, Zhang and Gao (2004) were able to -1 -1 1000 2823
compare the results from the BD model with those from 2813
the PS model. The advantage of using the simplified con- 2812
stitutive equations is that the formulation process and fi- 100 E;

nal results are simple and thus give more insightsintothe+k | 0 1 0 E, ;, (1b)
physical picture. For simplicity, Zhang and Gao (2004) 0 01 Es

considered a semi-infinitely long impermeable crack in

their study, which means that the partial discharge zow&en the poling direction is along the-axis, where *

is much shorter than the crack length and thus the smafeans that the corresponding constant will not appear in
scale yielding condition is satisfied. In the present worl)e modelgij, &, Dj andE; are the stress, the strain, the

we shall study an electrically impermeable crack with@lectric displacement and the electric field, respectively.
finite length. Only three positive independent material constavitse

andk, are used to represent, on a qualitative basis, the
elastic, piezoelectric and dielectric properties of the ma-
terial. The static equilibrium and kinematic equations are
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given by Eqg. (4) into Eq. (3) and then using Eq. (1), we have
0ijj =0, Dii=0, (2) O =Mux+edy,
Oyy =Muy+edy,
5)
1 Dy = eux—K¢ x,
&ij =5 (Uj+uji), E=-0 (3) Dy=euy—kby.
respectively, where; and¢$ denote the displacement andgf u and¢ are expressed as imaginary parts of two ana-
the electric potential, respectively. Iytic functions, i.e.,
u=1mu(2), (6a)
(0 O O O A
¢ = Im[®(2)], (6b)
y the static equilibrium conditions of Eq. (2) are satisfied
automatically, whereg = x+iy. In this case, the kine-
Poling matic and constitutive equations are given by

gy +i2ey =U’(2), )
E,+iEx=—@'(2),

Oy +i0yx = MU’'(2) +ed'(2), ®8)
Dy +iDx = eU’(2) —KP'(2).

The formulation is formally identical to that for an analy-

sis of a mode Il crack (Pak 1990; Zhang and Tong 1996;

i i i L i i i i i LJ; Zhang et al. 2002), which allows us to modify the solu-
tion of a mode Il crack for the present study.

F lectrically i bl k, the bound .
T T T T T T T T T T dl?lro?_]r; Zliﬁgrlfﬁeilrch;;arleeas a?ecrac e poun ary con
EY

oy=0 and Dy=0 for y=0 and [x|<a (9)

Figure 1: An electrically impermeable crack of a finitq\lo,[e that the boundar

. . X y conditian, = 0 cannot be en-
length under remotely electrical and mechanical Ioad"‘fgrced here due to the

constraint that material is allowed
to move in the y-direction only.

Consider an elgctrically imperm_eable_z cra_ck vyith a finitg, Applied energy release rate

length perpendicular to the poling direction in a trans-

versely isotropic piezoelectric material. The coordina®/henthe crack is loaded by remotely uniform stress,
system is set up such that the crack center is at the origitfl electric fieldEy’, the solution is obtained by modi-
and the crack lies on theaxis from -ato a, as shown in fying Eq. (3.98) in the previous work (Zhang et al. 2002)
Fig. 1. In the sample approach (Gao et al. 1997), the n#&d using the impermeable boundary conditions, which
terial is constrained to move only in the y-direction sucl given by

that o w
. o3 +e z
gy +i26y = = v 5 =" (10a)
=0, u=u(xy), (4a)
z
E, +iEy = E® , 10b
b —0(xy). @y DS TS T (1o0)
. Y Z
Rearranging the constitutive equations by substitutiffyy 'Oy = Oyy JZ a2 (10c)
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Dy +iD, — eayy n <K+ & £ z (10d) e can express the mechanical and electrical fields near
oo M M) Y| /2 a2 the crack in terms of the four intensity factors, i.e.,
From Egs. (10a) and (10b), we can calculate the crack _ K, cos?. o — — Ko gin®
opening Auy, and the voltageAd, cross the crack faces, >/ yZm ~"2’ 2yx RGeS
respectively, which take the forms of Eyy = Va COSz B =T SN2 16
E, = =E_cos?, E,=——-Ke sin (16)
P IS YT Vom 2’ T Ve T2
Oy + ek _ Kp 8 p.— _ Ko gin®
Auy:T\/az—xz, (11a) Dy= =cos;, Dx=-—7&sing,
A= —EY /a2 _ 2. (11b) Wherer is the distance from the crack tip afids the po-

lar angle. Using Eqg. (16) and the J-integral (Cherepanov
Eqg. (11a) indicates that in order to open the crack, thg79: zhang et al. 2002),
following inequality must be satisfied
oy +eEy > 0. (12) J:/r(hn]_—OijnjUi71+DiE1ni)dr7 (17)
Usually, applied mechanical loading is always in tensiomhereh is the electric enthalpy per unit volume defined
and applied electrical field could be positive or negativby h = %O'ij &j — %Di E;, one obtains the relationship be-
The inequality is automatically satisfied under mechariveen the energy release rate and the field intensity fac-
cal and positively electrical loading, whereas the level tdrs,
a negative electrical field should be lower than a critical

value determined by the applied mechanical load, i.e.,j — %(KGKa — KpKeg). (18a)
Ey > —oy /e (13) o _
The energy release rate can apparently be divided into
The crack opening condition must be satisfied whentRg mechanical energy release rag, and the electrical
The stress, strain, electric field strength, and electric dig—i
. . . . = \]M +JE7
placement intensity factors at the right crack tip are dej _ 1k K 18b
fined by M= 2700 (18b)
JE == _EKDKE'
Kg = lim /21(x— a) oy,
? x-a ( O It should be emphasized that Eq. (18) is valid as long as
Ke = )I(irr;\/ZTI(x— a)gyy, Eq. (16) is valid along the path of the J-integral. In linear
N analysis, i.e., without considering the breakdown zone,
Ke = lim \/2r(x—a)Ey, Eq. (18) gives
Kp = lim /21(x—a)Dy. 14
>V aly et (KRS KK (19)
= 2 o Ne D NE :
Substituting Eq. (10) into Eqg. (14) yields the intensity
factors produced by the applied loads Inserting Eq. (15) into Eq. (19) leads to the expression
of the applied energy release rate with two independent
K@ — JTEGY, K = L (Kga) +e|<éa)> 7 loading parameters as
(a) ) (a) e (@ e (a)
K = ymaE®, K = 8K +k(1+ &)K. ) )
E y D M O ( MK) E ZJ(a) _ i (Kc(ya)> k(14 i (KI(Ea)> ' (20)
(15) M Mk

where the superscriptd{” denotes the applied. Equa-Equation (20) is consistent with the result of Eq. (3.115)
tion (15) also satisfies the constitutive relationships givémthe previous work (Zhang et al. 2002) for an imperme-
by Eg. (8). From the definitions of the intensity factorgble crack under mode Il loading.
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2.3 Interaction of an electric dislocation with the fi- y
nite impermeable crack
Poling

An electric dislocation is studied here prior to discussion

of the DB model. In general, a piezoelectric disloca- >/zd
tion may have eight characteristics, as discussed in the
previous review article (Zhang et al. 2002), which are -a 0 a
three jumps in three mechanical displacements, yielding
the Burgers vector, a jump in electric potential, three line
forces per unit length along three coordinate directions,
and a line charge per unit length. The electric disloca-
tion studied here has only one characteristic, the potential
jump, Adp. The electric dislocation produces an electric

field, but it does not produce any mechanical displageigure 2 : An electric dislocation near a finite imperme-
ment. The complex potentials for such an electric dighle crack.

location located argy in an infinite domain without any

cracks are given by

s

the following form:

U=0,
® = by In(z—2z4), (21) U =0,
® — by n <z+m_zd_,/zg_az)
where
&~ (2+ V2 -22)(Z+ /5~ &)
by = A;%' (22) —Dbyln /72 _ a2  (24)
2T Z+VZr—a

Then, the electric and mechanical fields produced by tweere the overbar denotes the conjugate of a complex
electric dislocation are given by variable. The electric dislocation produces an electric
field, which is given by

Eyy +126yx =0, (23a) E,+iEy

_ b, b, z+VZ2—-a2
Ey+iEx= ———, (23b) =- 2¢ 2 v /
+ — (25)
Dy +iDx = K(Ey +iEy). (23d) &= (z+ V- ) (Z+1/ 55— @)

Eq. (23) indicates that the electric dislocation does nfgfl- (25) can be obtained by modifying Eq. (4.40) in the
produce any strain field, but it induces a stress figRj€vious work (Zhang et al. 2002). Again, the electric

through the piezoelectric effect. The solution of the elefliSlocation does not produce any strain field when it is
tric dislocation in an infinite medium will be used in thé"€ar an electrically impermeable crack. The stresses and
development of the DB model. the electric displacements can be calculated through the

- . . constitutive equations, i.e., Egs. (23c) and (23d). More
When an electric dlslocatlon is Ipcatedzatnear the im- igmportant is that Egs. (23c) and (23d) indicate that the
permeable crack, as shown in Fig. 2, the boundary condi’ " :

: . oundary conditions along the impermeable crack faces,
tions of Eq. (9) should be satisfied. The complex potelné Eq. (9), can be specially simplified as
tials satisfying the boundary conditions are given in Eq. " q- ), P y simp

(4.39) in the previous work (Zhang et al. 2002) and takklg =0 for y=0 and |x <a. (26)
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Caution should be used that Eq. (26) is applied only to T T T T T T T T T TG;;
the electric dislocations, which have only one character- y

istic, the potential jumpAdp,.

When the electric dislocation is located on theaxis, _
Substituting Eq. (25) into the intensity factor definition Poling
of Eq. (14) leads to

R 4

(d) Aq)b a -C -a 0 a C
K’ =— . (27a)
E y/Ta (Xd+ /Xgaza)

where the superscript “(d)” denotes the electric disloca-
tion. The electric dislocation does not produce any strain
|n_ten_5|ty factor. The strgss intensity factor and the elec- i i i i i i i i i LUZ;
tric displacement intensity factor are calculated through ’
the constitutive relationships,

KW = _ex@ (27b) T T T T TEI T T T T

g — 7 CIZNE

KW = k. (27¢)

. . . . [ : Th h ic of the dielectri k

Eq. (27) is a special case of the intensity factors prg-ggﬁ 3 e schematic of the dielectric breakdown
duced by a general dislocation at an impermeable cracE '
tip, which is given by Eq. (4.41) in the previous work

(Zhang et al. 2002). electrical field. Since the electric dislocation does not

24 Didectric breakdown model produce any strains, we can separately derive the strain
. field and the electrical field. The strain field is completely
Following the successful treatment of the problem efetermined by the applied loads, which is given by Eq.

plastic yielding at a crack tip by Dugdale (1960), Bilby10a). The electric field will be derived from the disloca-
et al. (1963) developed a dislocation model to formulat®n model.

the strip plastic yielding. In the dislocation model (Bilby- o \iger a linear array of electric dislocations distributed

et al. 1963), the crack and the strip plastic zone are SI5m —c to ¢. as shown in Fig. 4. The equilibrium equa-
ulated by an array of dislocations. We shall adopt ﬂﬂﬁ‘)n for the élrray may be written as

dislocation approach to develop the DB model.

Figure 3 shows the proposed DB model, wherg () 7 f(x) N
and @, c) denote the dielectric breakdown strips. The b¢/mdxl+Ey =0 for
remote boundary conditions for this problem are —c
y=0 and [x<a, (30a)
Oyy+i0yx =0y, Ey+iEx=E;, for z— . (28)
» and as
The boundary conditions along the crack faces are the
same as these given by Eq. (9). In addition, the boundary ¢ f(X)

conditions along the dielectric breakdown strips are ~ — b X— dx' + Ey =Ep for
—C
u;,r =u,, Ey=Ep for y=0 and a<|x<c. y=0 and a<|x <c, (30b)
(29)

wheref(x) is the distribution function of the dislocations
Egs. (7) and (8) indicate that the total solutions are obnd the Cauchy principal values of the integral are to be
tained if we have the solutions of the strain field and thaken atx = X' to avoid divergence. The solution to this
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y The mechanical and electric fields are finally calculated
T from
Poling o® +e E;" 7
; _ 2w

Eyy + 126y = v N (35a)

- T Liiihi11 1 1 c

T T TTTTUITTT T > f(x

- -a 0 a -C x Ey‘HEx = _b¢/ Z(XX)’ dx, (35b)

—C
Dy + Dy = €( &y +i2eyx) + K(Ey +iEy). (35d)

When the mechanical and electrical fields are available,

Figure 4 : The schematic distribution of an electric dis™€ are able to calculate the local intensity factors, which

location array. turn out to be
Oy + €EY
K = &S

singular integral equation may be obtained by the method
developed by Muskhelishvili (1953) and is given b O _ i _
ped by (1953) ¢ Yy Kg )I(m«/Zn(x a) {

Cc
f 4
by | (X),dx’} o0,
X—X
—C
F(x) = — 2B [ xv/c? —a?+ayv/c? —x2
O TAR | |[x/P—@—ayE— X2 0% + eE®
KO = V(o o). KL =eyma o

To ensure that there is no singularity|&ft= c, the fol- (36a)
lowing equation must be satisfied

] . (31

where the superscriptl’(’ denotes the local. The local
a nEy? intensity factors can be expressed in terms of the applied
—=cos| — |. (32) . .
2Ey intensity factors as
From Eqg. (32) we can calculate the size of the dlelectwgl) _ Do E_ K|(z|) -0
breakdown zone, M
I K((;a) + eK(a)

nEY 0 _ @, @ _ E
rb_c_a_asec<2Ey>_a_ (33) Ko =Ko ek, Kp'=e-— 5. (36b)
b

Eq. (36) indicates that the impermeable crack is com-
Under the small yielding conditiom, << a, which cor- pletely shielded electrically such that the local electric in-

responds tatEy’ /(2E,) — 0, Eq. (33) can be approxi-tensity factorK, nulls. However, comparing Eq. (36a)

mately reduced to with Eq. (15) indicates that the local stress intensity fac-

o 2 tor depends not only on the remotely applied mechani-

Fp = a (E) (34a) cal load, but also on the remotely applied electrical load,
2 \ 2Ep making it differ from the applied stress intensity.

_ _ The local energy release rate corresponds to the J-integral
Usmg_ Eq. (15), we can fu_rther express the Siz€ _Of the _g'l'ong an infinitesimal local contour enclosing just the
electric breakdown zone in terms of the electric intensity. tip. The local fields are dominated by the local

a . . . '
factor,K{", under the small yielding condition as intensity factors. Thus, Eq. (18) holds. Substituting Eq.

(36) into Eq. (18) gives the local energy release rate as

(K& i 1 2
"~z \28) B4 2385 = i (K ekl @
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whereJé,'g3 indicates the local J-integral based on the stripe DB model, the local stress intensity factor is given by
dielectric breakdown model. As expected, Eq. (37) I'Sé'_)DB = Kc(,a) +eKéa), whereas the local stress intensity
identical to Eg. (201) in the previous work (Zhang anfﬁétor is given bk L. = 11+ €2/(MK)] - (K@ (@)
= : +eK
Gao 2004) for a semi-infinite impermeable crack. J Wops | /(M) (Ko e )

in the PS model. Clearly, the ratio KU s the
If we re-express the local energy release réig, derived Kﬁ’PS/ o8

(1) /() ;
from the PS model (Gao et al 1997), i.e., Eq. (39) M€ s that dlps/Jpg, as shown in Eq. (39).
Gao et al. paper in terms of the applied stress intensity
factor and the applied electric intensity fact@,[r,'s) takes 3 CONCLUDING REMARKS

the form of .
The present work reports the DB model for an electri-

1 e 2 cally impermeable crack with a finite length. Although

ZJ(I) - (14 = K(a) K(a) ) 38 y 1Imp gtn. g
PS™M ( + MK) ( o e ) (38) the approach used in the present work differs from the
approach used in the previous work for a semi-infinite

Comparing Eq. (37) with Eq. (38), one finds permeable crack (Zhang and Gao, 2004), the derived re-

30 2 sults are the same as those reported in the previous work
% =1+ MK > 1 (39) when small yielding conditions are applied, which is ex-
Jos K pected. For the sake of explicitness, the analysis of the

. . . B model h n restri h f i -
This means that the PS model gives a higher value of tlﬁe odel has been restricted to the case of an imper

) eable crack. Theoretically, we shall be able to extend
local energy release rate than that derived from the y

model. However, Egs. (37) and (38) both indicate thah[e I.DB model to the cases of permeable c_racks an_d/or
mi-permeable cracks. The more challenging task is to

" o . ) . . Se
positive electric field will assist an applied mechanical . .

. . erimentally verify the DB model.
stress to propagate the impermeable crack if the Ioca[afl(10 y veriy

integral i failure criterion, whil [ .
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