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Radial Basis Function and Genetic Algorithms for Parameter Identification to
Some Groundwater Flow Problems

B. Amaziane1, A. Naji2, D. Ouazar3

Abstract: In this paper, a meshless method based on
Radial Basis Functions (RBF) is coupled with genetic
algorithms for parameter identification to some selected
groundwater flow applications. The treated examples are
generated by the diffusion equation with some specific
boundary conditions describing the groundwater fluctu-
ation in a leaky confined aquifer system near open tidal
water. To select the best radial function interpolation and
show the powerful of the method in comparison to do-
main based discretization methods, Multiquadric (MQ),
Thin-Plate Spline (TPS) and Conical type functions are
investigated and compared to finite difference results or
analytical one. Through two sample problems in ground-
water flow, we demonstrate the computational capac-
ity of RBF in simulating time dependent problems and
the possibility of simultaneous estimation of multiple
groundwater parameters computational feasibility when
it is coupled to simple Genetic Algorithms (GAs). Per-
formance of variously based RBF is compared.

keyword: meshless methods, radial basis functions,
multiquadric, conical, genetic algorithm, groundwater
flow.

1 Introduction

The application of numerical methods to solve ground-
water governing partial differential equations (PDEs) is
common since the advent of computers. Many tech-
niques such as finite difference, finite element, boundary
element and finite volume have been used extensively for
modelling and simulation issues. All these domain dis-
cretization based methods rely on local interpolation by
using special appropriate mesh structure. Grid genera-
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tion is very often carried out through third party soft-
ware that might not be affordable by the end users and
often require special training for users for working on
such software. These methods offer certainly the best
alternative solution of PDEs as they are soundly based
on good mathematical and physical background and con-
cepts. However, they require intensive data preparation
and are time consuming even with the use of highly ad-
vanced grid generators, especially for 3D analysis, where
constant remesh of the domain are required.

Element free/meshless methods have been developed re-
cently to overcome these drawbacks. The literature
abounds on these topics and many variants of meshless
methods do exist [Lin and Atluri (2001); Belytschko, Lu,
and Gu (1994); Cheng, Golberg, Kansa, and Zammito
(2003)]. Here we will restrict ourselves to a specific class
of RBF based meshless technique.

Duing the past decade radial basis function, which is one
of the meshless schemes, is growing and gaining popular-
ity in science and engineering communities [Chen, Breb-
bia, and Power (1999); Cheng, Golberg, Kansa, and Za-
mmito (2003); Cho, Golberg, Muleshkov, and Li (2004);
Wong and Hon (2000); Kansa (1990a,b); (Kansa and
Hon(2000); Li, Cheng, and Chen (2003)]. The tech-
nique is based on a set of points and selected radial func-
tions. Its implementation is straightforward compared to
other methods (domain discretization methods, boundary
element method), and simplify tremendously input data
preparation and avoids any meshing.

In this paper, the radial basis function technique is inves-
tigated to solve some selected time dependent groundwa-
ter flow problems:

• predicting drawdown based on known aquifer pa-
rameters (1D example), [Wang and Anderson
(1982)],

• solving two-dimensional groundwater fluctuation in
a leaky confined aquifer system near open tidal wa-
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ters (2D example), [Zhongua and Jiao (2001)].

The technique is first developed for direct simulation and
three type of radial functions have been used and their re-
sults are compared to the finite difference method. Then
it is coupled with Simple Genetic Algorithm (GAs) for
parameter identification of storativity, transmissivity of
the aquifer and leakance for 2D analysis.

The paper is organized as follows. In the next section
a brief description of groundwater flow problem types
and definition of physical statement of the problem are
given. Then a brief introduction of Kansa’s method is
given in section 3. GAs with the formulation of the ob-
jective function are presented in section 4. Finally, we
present two numerical examples to validate our proposed
approach.

2 Groundwater flow problem types

The major purposes of computer modelling for ground-
water flow are to analyze the aquifer system and assess
the impacts of a selection of possible strategies. First,
a suitable conceptual model is constructed based on the
information gained from site and observation survey, ex-
perimental measurements, topographic and climatic data
that will deliver a good hydrogeological understanding of
the key flow processes of the system. Unfortunately how-
ever, the modelling is very often based on limited data
and a large number of assumptions and the results should
be used with great caution. The ability of providing an
increasingly accurate representation of the groundwater
system increases with time, resources, and the technical
expertise available and applied.

A mathematical model is a set of governing equations,
which, subject to certain assumptions, quantifies the
physical processes active in the aquifer system being
modelled.

Parameter identification is of fundamental issue in the
modelling of groundwater systems as many of these pa-
rameters are difficult to measure directly, and that most
of the subsurface is inaccessible, [Carrera and Neuman
(1986); Sun (1997)].

Methods that have been previously used on the inverse
groundwater problem typically range from guesswork,
which is referred to as trial and error calibration, to var-
ious attempt of different levels of sophistication at auto-
matic calibration.

The computational difficulties associated with the esti-
mation of these parameters are related to ill-posedness
of this inverse problem, spatial distribution sparseness of
observations and inherent measurement errors.

In this paper, we will restrict ourselves to some time-
dependent groundwater flow models [Bear and Verruijt
(1987)] for material survey [Wang and Anderson (1982);
Zhongua and Jiao (2001)], and direct as well as inverse
problems assessment.

The main governing equation is summarized below [Bear
and Verruijt (1987); Wang and Anderson (1982)]:

S
∂h
∂t

= T (
∂2h
∂x2 +

∂2h
∂y2 )+L(hz −h) (1)

subject to some initial and boundary conditions. Herein
h denotes the hydraulic head, S the storage coefficient, T
the transmissivity and L the leakance as discussed in one
section of the paper.

3 Radial basis functions formulation

After the success of the radial basis function in the ap-
proximation of surface and scattered data, the technique
have been further extended to solving partial differential
equations in the early 1990 by Kansa [Kansa (1990a,b)].
Then, many developments and applications of such tech-
nique have been followed (see, e.g., [Buhmann (2000);
Chen, Brebbia, and Power (1999); Cheng, Golberg,
Kansa, and Zammito (2003); Cho, Golberg, Muleshkov,
and Li (2004); Wong and Hon (2000); (Kansa and
Hon(2000); Schaback and Wendland (2000)] and the ref-
erences therein.)

The following radial basis functions

ϕ(r) = (r2 +c2)(2n+1)/2 multiquadric,

ϕ(r) = (r2 +c2)−(2n+1)/2 inverse multiquadric,

ϕ(r) = e−β2r Gaussian

ϕ(r) = r2n log(r) polyharmonic splines

are widely used in the RBF formulation and also in the
integral equation.

The governing partial differential equations are of the
type:

Ah = f in Ω, and Bh = g on ∂Ω (2)
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where A is an arbitrary differential operator (which is
a Laplace operator for our case) and B is an operator
imposed for boundary conditions, that can be Dirichlet,
Neumann, or Robin type.

Following Kansa’s RBF collocation scheme [Kansa
(1990b)], the application of collocation radial ba-
sis functions to boundary value problem 2 start by
first selecting a set of boundary collocation points
{(x1,y1), ..., (xb,yb)} and interior collocation points
{(xb+1,yb+1), ..., (xd+b,yd+b)}. The unknown solution h
of the problem can be expressed as

h(x,y) =
d+b

∑
j=1

α jϕ j(x,y)+
N

∑
j=d+b+1

α jPj(x,y) (3)

where {α j}d+b
1 are unknown coefficients to be deter-

mined. ϕ j(x,y) = ϕ(r) is the radial basis function and
r denotes the distance between the two points (x,y) and
(x j,y j). The polynomials Pj are the basis of the space
of 2-variant polynomials of order not exceeding q and
N −b−d = (q+1)!/(2!(q−1)!).

After selecting used radial basis functions, the equation
(3) is substituted in equation (2) to yield the following
system:

d+b

∑
j=1

α jAϕ j(xi,yi)+
N

∑
j=b+d+1

α jAPj(xi,yi)

= f (xi,yi) for i = b+1, ...,b+d (4)

d+b

∑
j=1

α jBϕ j(xi,yi)+
N

∑
j=d+b+1

α jBPj(xi,yi)

= g(xi,yi) for i = 1, ...,b (5)

d+b

∑
j=1

α jPi(x j,y j) = 0 for i = 1, ...,N−b−d (6)

Then the coefficients {α j}N
1 constitute the solution of the

system (4), (5) and (6).

Although the matrix resulting from this formulation is
not symmetric, the technique can be applied successfully
to a problem with Dirichlet condition. In case of a mixed
Neumann condition the method is much less accurate at
nodes on and adjacent to the Neumann boundary. This is
one of the main numerical disadvantages of the Kansa’s
method [Kansa (1990b)]. To overcome this drawback,

improved schemes were proposed in [Fedoseyev, Fried-
man, and Kansa (2002)], [Fornberg, Driscoll, Wright,
and Charles (2002)], [Larsson and Fornberg (2002)].
Their strategy is based on an additional arbitrary set of
nodes adjacent to the boundary and located inside or out-
side the domain.

In the case of steady state problem, as it was investigated
in this paper, the technique can be applied after the use
of the finite difference scheme, specially the θ-weighted
method, for approximating the time derivative. So in
each time step n the treated problem is as follows:

hn −hn−1

= ∆tθ(
T
S
�2 hn − L

S
hn)

+∆t(1−θ)(
T
S
�2 hn−1 − L

S
hn−1)+∆t

L
S

hz (7)

where 0 ≤ θ≤ 1, and ∆t is the time step. The used nota-
tion hn and hn−1 are h(x,y, tn) and h(x,y, tn−1) computed
at tn and tn−1 respectively.

Rearranging the system (7) we get the following system

(1+∆tθ
L
S
)hn −∆tθ

T
S
�2 hn

= (1−∆t(1−θ)
L
S
)hn−1 +∆t(1−θ)

T
S
�2 hn−1 +∆t

L
S

hz

(8)

After time discretisation, the RBF method can then be
applied each time when the head is needed. So, at each
time n, the head is approximated by:

hn(x,y) =
m

∑
j=1

αn
jϕ(r j)+αn

m+1x+αn
m+2y+αn

m+3 (9)

where m is the number of used collocation nodes and
r j is the Euclidean distance between the points (x,y)
and (x j,y j). To know the value of hn, the coefficients
(αn

1,α
n
2, ...,α

n
m+3) have to be determined. Substituting (9)

into (8), and applying the resulting equation to each node
and using the three extra equations

m

∑
j=1

αn
j =

m

∑
j=1

αn
jx j =

m

∑
j=1

αn
jy j = 0,

we obtain an algebraic system Aα n = bn to be solved at
each time step tn.
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4 Genetic algorithms and problem formulation

4.1 Genetic algorithms

The genetic algorithm method is becoming one of the
most popular technique in the optimization domain. It
is based on the process of biological evolution [Hol-
land (1979); Michalewicz (1994)], and has been widely
applied for parameter identification in many engineer-
ing fields, especially in water resources, see [Gorelick
(1983); Ouazar and Cheng (1999)]. More sophisticated
GAs such as messy [Halhal, Walters, Ouazar, and Savic
(1997)] are not discussed in this paper.

The simple genetic algorithms works with a design fam-
ily representing a population of individuals. Each ele-
ment of the population, called chromosome, is given as
a number of binary strings (0110...01) placed end to end
and representing the design variable in its binary form.
Within an evolution iteration three basic genetic opera-
tors are applied to produce stronger individuals for sim-
ple genetic process which are: selection, crossover and
mutation. The length of the string is given by the preci-
sion required to evaluate the corresponding design vari-
able.

Starting by a random selection of an initial population,
the objective function value (fitness) of each solution (in-
dividual) must be computed before the application of any
genetic operators. The solution of higher values are con-
sidered as the best parent who can give birth to a best
child in maximization problem and vise versa in the min-
imization one. The next generation is that of reproduc-
tion and the new generation is again taken as parents for
other new generations. The process is considered as ter-
minated when convergence is detected or when the spec-
ified maximum number of generations is reached. As
the maximum value of the objective function value is not
known only a maximum number of iterations is specified
to stop the process and the best chromosome within these
iterations can be selected as the optimum solution of the
problem.

The main steps required to build up a GA for an optimiza-
tion process are summarized in seven steps, i.e. Coding,
String formation, Initial population, Fitness evaluation,
Reproduction, Crossover, Iterative process and termina-
tion rule. For most real-world problems, these pseudo-
optimal solutions are still much better than those that
could be obtained using less robust methods. The GA
must have some control parameters such as population

size, (n)-usually 4 to 100, and probabilities for apply-
ing genetic operators, e.g. crossover probability (Pcross)-
usually 0.5 to 1, and mutation probability (Pmut)-usually
0.01 to 0.1.

Herein, this strategy is applied for identification of
aquifer parameters which are storativity, transmissivity
and leakance using RBF method for solving direct prob-
lems.

4.2 Objective function minimization

The objective of the parameter identification problem in
the field of groundwater is to determine some aquifer pa-
rameters such as the transmissivity S, the storativity T
and leakance or specific leakage L [Carrera and Neu-
man (1986)], [Gorelick (1983)]. The determination of
these parameters can be done by formulating an objec-
tive function based on some knowledge of measurement
data value of the head h at a specific points p inside the
domain. These engineering measurements can be done
at any specific time t∗ and since it is assumed that the pa-
rameters do not vary with time and they just depend on
space, their values at any point of the domain are still the
same during the time process. So, the genetic algorithm
scheme can be coupled with radial basis function only at
time step t∗. Then, the objective function for the param-
eter identification inverse problem, can be defined in the
following way:

min
1
2

p

∑
j=1

(hcom(x j,y j, t∗)−hmes(x j,y j, t∗))2 (10)

where hmes(x j,y j, t∗) and hcom(x j,y j, t∗) are the given en-
gineering measurements and computed head values at
time t∗. The parameter S,T and L are considered as the
design variables for such problem.

5 Numerical experiments

In order to demonstrate the applicability and efficiency of
the adopted coupling technique of radial basis function
and genetic algorithms, two examples (1D and 2D) of
known analytical solution are used. The one-dimensional
example deals with the prediction of drawdown based
on known aquifer parameters. The two-dimensional ex-
ample concerns groundwater flow in a leaky confined
aquifer system near open tidal water. The results are
obtained by using three kind of radial functions: Mul-
tiquadric, Thin-Plate Spline and Conical functions and
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Figure 1 : Problem statement for drawdown prediction example.

then compared with the finite difference and analytical
results [Zhongua and Jiao (2001)].

The modelling of these problems has been carried out in
two steps: In the first one, the examples are solved as a
direct problem by assuming that all involved parameters
are known. The efficiency of RBF algorithm is illustrated
and compared with the finite difference and/or analytical
solution, for one and two dimensional cases. In the sec-
ond step, some parameters arising in the flow equation
such as storativity and transmissivity are considered as
unknowns and only values of the head at some specific
points are given by engineering measurements at some
given times. For the one dimensional case, the rearrange-
ment of the governing equation allows us to consider the
problem as one parameter determination only. While for
two dimensional case, one, two or three parameters are
to be determined. In this case the RBF technique is cou-
pled with GAs at the time of measurement to find out the
optimum values of the parameters.

5.1 One dimensional case

5.1.1 Direct simulation

Consider first a hypothetical problem as illustrated in
Figure 1 [Wang and Anderson (1982)]. The example
is used to illustrate the solution of one-dimensional ex-
ample by predicting drawdown based on known aquifer
parameters. The aquifer head is controlled at the down-
stream boundary. The initial head in the aquifer at time

t = 0 is H1 = 16 m and at time t = 0, the head at the
downstream boundary is suddenly lowered to level H2
= 11 m. The change in boundary conditions implies that
the head in the aquifer immediately starts to fall and the
drawdown should be calculated.

The parameters T and S are the measures of the overall
ability of the aquifer to store and transmit water, respec-
tively. This one dimensional problem is governed by the
following PDEs:




S
∂h
∂t

(x, t) = T
∂2h
∂x2

(x, t) for 0 < x < 100; t > 0

h(0, t) = 16 for t ≥ 0
h(100, t) = 11 for t > 0

h(x,0) = 16 for 0 ≤ x ≤ 100

(11)

The steady state analytical solution of the problem is
available. It is simply a linear variation of the head
which constitutes an asymptote to time dependant solu-
tion. Using MQ-radial basis function, the obtained re-
sults are presented in Figure 2. The behavior of the head
at times t = 5mn,15mn and t = 25mn is illustrated and
the overall trend at infinity is converging to steady state
solution. The used values for time step ∆t,θ,T and S are
5mn,1,2×10−2m2 and 2×10−3 respectively. The over-
all solution behavior is in good agreement with the finite
difference method.
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Figure 2 : MQ-numerical solution of the hydraulic head for 1D test problem.

5.1.2 Inverse simulation

For the inverse simulation, the T and S parameters are
replaced by T /S, so we can have just one design variable
for this equation (11) to be determined. It is assumed
that the optimal value of T and S are the same given in
direct simulation. The genetic algorithm is then coupled
to radial basis function to find out this value. The applied
GAs parameters are given in Table 1, and the search do-
main of the ratio T/S, which is dimensionless variable,
is set to [1,20]. At each genetic algorithm iteration, the
problem (11) is solved until the time iteration of given
measurement heads, and then the objective function is
evaluated. The GAs process run until it exceeds the max-
imum number of iterations, which is set to 100 for this
example. The obtained optimum value for T/S is 9.9935
with a relative error 6.5×10−3.

Table 1 : Parameters for 1D and 2D inverse problems.

GAs parameter Value
Crossover probability Pc 0.5
Mutation probability Pm 0.02
Number of populations 5
Number of generations 100

5.2 Two dimensional case

In this example, the collocation RBF technique is ex-
tended to the solution of two-dimensional groundwater
fluctuation in a leaky confined aquifer system near open
tidal waters [Zhongua and Jiao (2001)]. The problem is
solved as a direct one with known aquifer parameters and
as an inverse, for parameter identification of aquifer cou-
pling RBF and GAs via known head values at some spe-
cific position.

5.2.1 Direct simulation

Groundwater in coastal areas is commonly disturbed by
tidal fluctuations. A two-dimensional analytical solu-
tion has been developed [Zhongua and Jiao (2001)] to
describe the groundwater fluctuation in a leaky confined
aquifer system near open tidal water under the assump-
tion that the groundwater head in the confined aquifer
fluctuates in response to sea tide whereas that of the over-
laying unconfined aquifer remains constant. It is impor-
tant to understand the response of groundwater to tidal
fluctuation of coastal water.

The configuration of the aquifer system is shown in Fig-
ure 3. It consists of three layers: leaky confined aquifer,
semi-permeable layer and unconfined aquifer. It is as-
sumed that the shallow unconfined aquifer has a large
specific yield, which can effectively damp the tidal effect
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Figure 3 : Conceptual model of 2D groundwater flow in leaky confined aquifer system near open tidal water
[Zhongua and Jiao (2001)].

so that the tidal fluctuation in the unconfined aquifer is
negligible compared with that in the confined aquifer.

The Dirichlet boundary condition for equation (1) on the
inland side where x approaches infinity is h = h z. It states
that the tide has no effect far inland as x approaches in-
finity.

This two dimensional example has the following ana-
lytical solution in an infinite domain [Zhongua and Jiao
(2001)].

h(x,y, t)
= hz +A1 exp(−px−my)[

cos(a1t +b1y− a1S +b1mT
2pT

x+c1)
]

(12)

The problem has been solved using RBF and implicit
finite-difference numerical method in a truncated do-

main where the dimension is shown in Table 2. The
time step is 1h and the number of used scattered data
is 64 nodes on the boundary and 209 nodes inside the
domain. This is much less than the number of nodes
used in the FDM (30000). An unconfined aquifer with
constant groundwater head is supposed to exist on the
above of the treated confined one which causes the leak-
age between the two aquifers, with specific leakage being
L = 0.001. For other aquifer parameters, Table 2 shows
those based on the studies in Apalachicola Bay, Florida,
USA SUN. Concerning the boundary conditions and fol-
lowing [Zhongua and Jiao (2001)] a no-flow condition
are adopted at the boundaries with y = 0 and y = 50 km
and h = hz, h = hz +A1 exp(−my)cos(a1t +b1y+c1) for
outlet and inlet boundaries respectively. The initial con-
dition h = 0 is used everywhere. The obtained results
for the direct numerical mode (without optimization) are
presented in Table 3 for point x = 0.3 km and y = 10 km.
Note that from Table 3 the solution matches closely with
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Table 2 : Aquifer parameters used for 2D case [Zhongua and Jiao (2001)].

Tidal Parameter Value
Transmissivity T 700m2

Storativity S 0.002
Length in inland direction 3km
Length of coastal line 50km

Diurnal Amplitude at x = 0, A1 0.342m
Damping coefficient m1 5.48x10−6(1/m)
Tidal speed a1 -0.2618(1/h)

Separation constant b1 1.67x10−6(1/m)
Phase shift c1 0.0
Constant head hz 0.0001

Table 3 : Groundwater heads (m) at y = 10km and x = 0.3km.
Time Analytical RBF solution RBF solution RBF solution FDM

solution ( r5 function) (MQ-function) (TPS-function) solution
1 0.2210 0.1696 0.1730 0.1737 0.2155
2 0.2046 0.1870 0.1899 0.1892 0.2017
3 0.1742 0.1659 0.1680 0.1672 0.1730
4 0.1320 0.1272 0.1284 0.1278 0.1319
5 0.0808 0.0777 0.0782 0.0777 0.0816
6 0.0240 0.0222 0.0218 0.0215 0.0257
7 -0.0343 -0.0352 -0.0363 -0.0364 -0.0318
8 -0.0904 -0.0944 -0.0922 -0.0921 -0.0870
9 -0.1402 -0.1395 -0.1419 -0.1416 -0.1361
10 -0.1805 -0.1792 -0.1819 -0.1815 -0.1758
11 -0.2086 -0.2066 -0.2095 -0.2090 -0.2032
12 -0.2224 -0.2200 -0.2229 -0.2223 -0.2165

the analytical solution for all radial basis functions we
used. The results become accurate after the second time
iteration, which is more or less logical due to a truncated
domain, and a few nodes compared to FD are used. It can
also be explained by the use of zero initial condition at
the first iteration. We also noticed that the RBF solution
(for all used type of functions) are more accurate than
FD solutions. Comparing the applied radial basis func-
tions, we numerically notice that during the simulations,
Multiquadrics are somehow not easy to run since a suit-
able shape parameter must be selected and the shape free
parameter of Conical and Thin-Plate Spline made them
suitable for application. It was also tested, see Figures 4
and 5, that if the sources points are the same as the used
nodes points, the values of the head at the boundaries

where a Neumann condition is imposed are not accu-
rate. To alleviate this difficulty, the sources points at the
boundaries with Neumann conditions are moved to out-
side the domain, as shown in [Fornberg, Driscoll, Wright,
and Charles (2002); Larsson and Fornberg (2002)], and
in a symmetric way of the inside nodes of domain near
that boundaries. But this position is an arbitrary choice
and it was remarked that any position outside the domain
not far from the boundaries does not affect the solutions
very much. The values of the head inside the domain
were also improved. In Figure 6, we present the ground-
water head distributions in leaky confined aquifer near
open water with one diurnal tide for three selected time
steps: t = 4,6 and 8 hours. The 3D plotted results are
obtained using Conical-type radial basis functions. In
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Figure 4 : Groundwater heads at y = 0 for t = 12h using Conical RBF for different source points.
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Figure 5 : Groundwater heads at y = 0 for t = 12h using MQ-RBF for different source points.

Figure 6, the groundwater head in the aquifer is repre-
sented in three time steps to illustrate changes with space
and time. They are in close agreement with the analytical
solution provided in [Zhongua and Jiao (2001)].

5.2.2 Inverse simulation

In the next numerical experiment, we consider an in-
verse problem. The storativity S and/or transmissivity
T and/or leakance can be considered as unknown pa-
rameters, whereas the design variables and the values of

the head at some specific point in the domain are given
as known engineering measurement data. These values
are assumed to be known at time t = 10h. The storativ-
ity and/or transmissivity and/or leakance are then com-
puted via GAs coupled with RBF algorithms, by mini-
mizing the objective function given by the equation (10).
Using the known value given in Table 2, the domain of
search of the parameter design are [500m2/h,800m2/h]
for transmissivity and [10−3,3 × 10−3] for storativity,
and [0,3×10−3] for the leakance. The GAs parameters
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Figure 6 : Spatial groundwater heads distribution for t = 4h, t = 6h and t = 8h.
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needed for the use of algorithm as probability of selec-
tion, mutation and crossover and also the number of pop-
ulation are given in Table 1. Ideal values of transmissiv-
ity, storativity, and/or leakance are found, they are:

• for simulation number 1 where leakance is kept
fixed to its true value 0.001, we obtain 722.5 and
2.005× 10−3 for transmissivity and storativity re-
spectively,

• for simulation number 2, we took the three parame-
ters as design variables and found 774.7, 2.3×10−3,
and 7.35× 10−4 for transmissivity, storativity, and
leakance respectively.

Notice that the differences observed between computed
and true values can be explained by the fact that simula-
tion runs stand for a finite domain approximating an infi-
nite one. Let us mention also that for simplicity, we have
considered GAs for parameter identification for problems
with constant coefficients but the same technique could
be applied to variable coefficient problems.

6 Concluding remarks

Through the two sample problems in groundwater flow,
we have demonstrated the computational capacity of
RBF in simulating time dependent problems and the pos-
sibility of simultaneous estimation of multiple ground-
water parameters computational feasibility when it is
coupled to simple GAs. The main advantage of the tech-
nique resides in the fact that it is straightforward to assess
and implement. Of course, one pays the price of possi-
ble ill-conditioning of the fully populated matrix, and the
trial and error in choosing constants involved in some
functions and the lack of universality of the method.
More numerical experiments and theoretical insight are
needed for better assessment of the method: investigating
especially domain decomposition technique (see, e.g.,
[Li and Hon (2004)]) for solving the ill-conditioning of
the matrix, the optimal choice of the involved shape pa-
rameter and the selection of better radial basis function
to deal with the accuracy of the solution for Neumann
boundary condition type, to name a few improvements.
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