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A Meshless Local Petrov-Galerkin (MLPG) Approach for 3-Dimensional
Elasto-dynamics

Z. D. Han1 and S. N. Atluri2

Abstract: A Meshless Local Petrov-Galerkin (MLPG)
method has been developed for solving 3D elasto-
dynamic problems. It is derived from the local weak
form of the equilibrium equations by using the gen-
eral MLPG concept. By incorporating the moving least
squares (MLS) approximations for trial and test func-
tions, the local weak form is discretized, and is inte-
grated over the local sub-domain for the transient struc-
tural analysis. The present numerical technique imposes
a correction to the accelerations, to enforce the kinematic
boundary conditions in the MLS approximation, while
using an explicit time-integration algorithm. Numerical
examples for solving the transient response of the elastic
structures are included. The results demonstrate the ef-
ficiency and accuracy of the present method for solving
the elasto-dynamic problems; and its superiority over the
Galerkin Finite Element Method.
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1 Introduction

Understanding and controlling structural dynamic re-
sponse are of great importance, due to their practical
applications, especially for impact, contact and pen-
etration problems. Some explicit dynamic FE-codes
have been developed as commercial engineering analysis
tools, for simulations of such structural- dynamics prob-
lems. However, the FEM still has several drawbacks for
the simulation, including the quality of the mesh refine-
ment, the element type and order, the hourglass control
and so on. Although it has been reported that the simple
elements have achieved considerable success for explicit
dynamic analysis, the simulation of impact, contact and
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penetration problems require a much higher accuracy in
stresses, which can not be achieved by using the sim-
ple elements. Moreover, for higher order elements, the
row-sum method of lumping the mass results in zero or
negative corner masses.

In contrast, the meshless local Petrov-Galerkin (MLPG)
approach has become very attractive, as a promising
method for solving 3D problems. The MLPG concept
was presented in Atluri and Zhu (1998). The main ad-
vantage of this method over the widely used finite ele-
ment methods is that it does not need any mesh, either
for the interpolation of the solution variables or for the
integration of the weak forms. It has been developed
as a general framework for solving partial differential
equations, by Atluri and colleagues [Atluri(2004)]. The
MLPG approach has been applied for 2D and 3D do-
main solutions [Atluri and Zhu (1998), Atluri and Shen
(2002a,b), Li, Shen, Han and Atluri (2003), Han and
Atluri (2004), Sellountos and Polyzos (2003), Sladek,
Sladek and Zhang(2003)], and for boundary integral
equations, as the MLPG/BIE method[Atluri, Han and
Shen (2003), Han and Atluri (2003a,b)]. After many pi-
oneering research studies were successfully carried out
for 2D problems, the MLPG methods are becoming more
attractive for solving 3D problems, because of their dis-
tinct advantages over the element-based methods. The
representative 3D works include the papers of [Li, Shen,
Han and Atluri (2003), Han and Atluri (2004)] for 3D
elastic problems by using MLPG domain methods, and
[Han and Atluri(2003b)] for 3D elastic fracture prob-
lem by using MLPG/BIE methods. With a simpler man-
ner for defining the local sub-domains, over the scat-
tered pointed for 3D problems as shown in Han and
Atluri(2004), it becomes much easier to handle the lo-
cal integrals over the intersection of the local sub-domain
and the global boundary of the arbitrary 3D solution
domain. It makes the MLPG method more practical
for solving 3-D problems. In addition, it has been re-
ported that the MLPG methods give better accuracy with
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lesser CPU time and lesser system resources, than the
element-based methods [Atluri and Shen (2002a,b), Han
and Atluri (2004)]. It makes the MLPG method to be
more efficient, in solving large-scale dynamic problems.

The study in this paper represents a recent effort to de-
velop a 3-D explicit method for solving elasto-dynamic
problems by using the MLPG approach. Although some
problems can be simplified as the 2-D ones, there are
many problems of significance which cannot be de-
scribed by a two-dimensional geometry, such as the yaw
and oblique impacts, contact and penetrations, as well as
fragmentation. The present work can easily be enhanced
to analyze the large plastic deformations in such non-
linear problems. The present method is based on the lo-
cal symmetric weak form (LSWF), along with the use of
the MLS approximation, in which the shape functions are
constructed at the local scattered points with the higher
order continuities, which yields more continuous stress
fields. One of the major disadvantages of the MLS is that
the shape functions do not possess the Kronecker delta
property, which makes it difficult to impose the kinematic
boundary conditions. However, it becomes easier to han-
dle the kinematic boundary conditions in the dynamic
cases, if explicit time-integration schemes are used. A
simple procedure for treating the kinematic boundary
conditions in transient dynamic problems is presented in
the present paper. It renders the present MLPG method to
be even more efficient for solving the dynamic problems,
than the static ones [as compared to the FEM], because
no matrix inversion is required in the explicit scheme.
The local sub-domains are constructed at the local scat-
tered points, with the use of the local polyhedrons, as
presented in Han and Atluri (2004).

The following discussion begins with the local symmet-
ric weak form of elasto-dynamics, in Section 2. The dis-
cretization and the numerical implementation, along with
a novel idea for the enforcement of the kinematic bound-
ary conditions are presented in Section 3. Numerical ex-
amples for 3D elasto-dynamic problems are given in Sec-
tion 4. Then paper ends with conclusions and discussions
in Section 5.

2 Local symmetric weak-forms (LSWF) of elasto-
dynamics

Consider a linear elastic body in a 3D domain Ω, with a
boundary ∂Ω. The solid is assumed to undergo infinitesi-
mal deformations. The equations of balance of linear and

angular momentum can be written as:

σi j, j + fi −ρai = 0; σi j = σ ji; (),i ≡ ∂
∂ξi

(1)

where σi j is the stress tensor, which corresponds to the
displacement field ui, the acceleration field is ai; and fi is
the body force. The corresponding boundary conditions
are given as follows,

ui = ui on Γu (2a)

ti ≡ σi jn j = t i on Γt (2b)

where ui and t i are the prescribed displacements and trac-
tions, respectively, on the displacement boundary Γ u and
on the traction boundary Γ t , and ni is the unit outward
normal to the boundary Γ.

The strain-displacement relations are:

εkl =
1
2
(uk,l +ul,k) (3)

The constitutive relations of an isotropic linear elastic ho-
mogeneous solid are:

σi j = Ei jklεkl = Ei jkluk,l (4)

where

Ei jkl = λδi jδkl +µ(δikδjl +δil δjk) (5)

with λ and µ being the Lame’s constants.

In the local Petrov-Galerkin approaches, one may write a
weak form over a local sub-domain Ωs, which may have
a arbitrary shape, and contain the a point x in question,
as shown in Figure 1. A generalized local weak form of
the differential equation (1) over a local sub-domain Ω s,
can be written as:
∫

Ωs

(σi j, j + fi −ρai)vidΩ = 0 (6)

where ui and vi are the trial and test functions, respec-
tively.

By applying the divergence theorem, Eq. (6) may be
rewritten in a symmetric weak form as:
∫

∂Ωs

σi jn jvidΓ −
∫

Ωs

(σi jvi, j − fivi +ρai)dΩ = 0 (7)
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Figure 1 : a local sub-domain around point x

Imposing the boundary conditions in (2), one obtains

∫
Ls

tividΓ +
∫

Γsu

tividΓ +
∫

Γst

tividΓ

−
∫

Ωs

(σi jvi, j − fivi −ρai)dΩ = 0 (8)

where Γsu is a part of the boundary ∂Ωs of Ωs, over which
the essential boundary conditions are specified. In gen-
eral, ∂Ωs = Γs ∪ Ls, with Γs being a part of the local
boundary located on the global boundary and L s being
the other part of the local boundary which is inside the
solution domain. Γ su = Γs ∩ Γu is the intersection be-
tween the local boundary ∂Ωs and the global displace-
ment boundary Γu; Γst = Γs∩Γt is a part of the boundary
over which the natural boundary conditions are specified.

Therefore, a local symmetric weak form (LSWF) in lin-
ear elastodynamics can be written as:

∫
Ωs

σi jvi, jdΩ−
∫

Ls

tividΓ −
∫

Γsu

tividΓ

+
∫

Ωs

ρaividΩ =
∫

Γst

t ividΓ +
∫

Ωs

fividΩ (9)

It requires the special treatment for the essential ( kine-
matic) boundary conditions in the MLPG method for the
static problems, because the displacement field along the
boundary is not only dependent on the boundary nodes
also those inside the solution domain. This topic has been
well studied for static problems, by using both the modi-
fied collocation method and the penalty method [Zhu and
Atluri (1998)]. However, the kinematic b.c can be simply

treated by reconditioning the accelerations, if explicit al-
gorithms for the time integration are used. This method
is detailed in the next section.

3 Dynamic analysis

3.1 Numerical discretization of the LSWF

To solve the local symmetric weak form in Eq. (9),
a local approximation is required and the moving lease
squares approach is used in the present study [Atluri and
Zhu (1998)]. With the MLS, the distribution of function
u in Ωs can be approximated as,

u(x) = pT (x)a(x) ∀x ∈ Ωs (10)

where pT (x) = [p1(x), p2(x), ... , pm(x)] is a monomial
basis of order m; and a(x) is a vector containing coef-
ficients, which are functions of the global Cartesian co-
ordinates [x1,x2,x3], depending on the monomial basis.
After minimizing a weighted discrete L2 norm, one may
obtain the approximation from the nodal values at the lo-
cal scattered points, as [Atluri and Zhu (1998)]

u(x) = ΦΦΦT (x)û ∀x ∈ ∂Ωx (11)

where ΦΦΦ(x) is the so-called shape function of the MLS
approximation. In the present study, these shape func-
tions are applied to approximate both the displacement
and acceleration fields.

We apply the local symmetric weak form in Eq. (9)
on the local 3D sub-domain Ωs, centered on each nodal
point x(I). By taking the shape function of node I in Eq.
(11), Φ(I)(x), as the test function, and choosing the local-
domain to be the same as the support domain of the node,
Eq. (9) can be simplified for u(I)

i as:
∫

Ωs

σi jΦ
(I)
, j dΩ−

∫
Γsu

tiΦ(I)dΓ +
∫

Ωs

ρaiΦ(I)dΩ

=
∫

Γst

tiΦ(I)dΓ +
∫

Ωs

fiΦ(I)dΩ (12)

in which the following condition has been used:

Φ(I)(x) = 0 f or ∀x ∈ Ls (13)

3.2 Enforcement of essential (kinematic) boundary
conditions

It is well known that the MLS approximation gives
the shape functions based on the virtual nodal values,
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which do not possess the Kronecker delta property. The
compactly-supported radius basis functions (CRBF) may
construct the shape functions with such a property. How-
ever, it has been reported [Han and Atluri(2004)], that
the shape functions from the CRBF are non-continuous
when the CRBF is used locally. In addition, the fields on
the boundary, where kinematic b.c are prescribed, are not
only dependent on the nodal values located on the bound-
ary but also on those inside the solution domain. They
are also not linear between the boundary nodes. From
the numerical point of view, if the kinematic boundary
conditions are enforced strictly along the entire essential
boundary, it will introduce too many constraints to the
internal nodes. It makes the structure much stiffer. In
the present study, the standard collocation method is en-
hanced for the explicit dynamic analysis.

For the nodes which belong to the essential boundary,
i.e., u(I)

i ∈ Γsu, one may take the Derac’s delta function as
the test function and obtain the corresponding local weak
form from Eq. (9), as the standard collocation method, as

ui(x(I)) = ui(x(I)) (14)

which can be used to enforce the initial essential bound-
ary conditions. Therefore, one may set the corresponding
accelerations â to be zero for the nodes belong to the es-
sential boundary. Similar equations can be written for the
accelerations as,

ai(x(I)) = 0 (15)

or in the matrix form

HT · â = 0 (16)

After orthogonalizing the matrix H, Eq. (16) can be writ-
ten in an equivalent form as

GT · â = 0 (17)

and the matrix G satisfies

GT ·G = I (18)

where I is the identity matrix.

One may re-write the system equations in the matrix
form after the local weak form in Eq. 3.2 is numerically
integrated over each local sub-domain [Han and Atluri
(2004)], as

M · â+K · û = f̂ (19)

where the mass matrix, M, is diagonal when the node
mass is lumped. With a general explicit time-integration,
the accelerations are obtained from Eq. 3.3 as,

â
′
= M−1 · (f̂−K · û) (20)

With the consideration of the essential boundary condi-
tions in Eq. (17), the accelerations can be corrected to
enforce the essential boundary conditions, as

â = â
′ −G ·GT · â ′

(21)

3.3 Time integration

The Newmark β method [Newmark (1959)], well known
and commonly applied in computations, is used in the
present study to integrate the governing equations in
time. With the use of Eq. (21) to determine the accel-
erations, the displacements and velocities are calculated
from the standard Newmark β method, as

ut+∆t = ut +∆t vt +
∆t2

2
[(1−2β)at +2βat+∆t ]

vt+∆t
c = vt +∆t [(1−γ)at +γat+∆t ] (22)

For zero damping system, this method is unconditionally
stable if

2β ≥ γ≥ 1
2

(23)

and conditionally stable if

γ≥ 1
2
, β ≤ 1

2
and ∆t ≤ 1

ωmax
√

γ/2−β
(24)

where ωmax is the the maximum frequency in the struc-
tural system.

This method can be used in the predictor-corrector way.
After specifying the initial conditions, the time integra-
tions for each time increment can be done in the follow-
ing steps.

Step 1: predict the displacements and velocities

ût+∆t
c = ût +∆t v̂t +

∆t2

2
(1−2β)ât

v̂t+∆t
c = v̂t +∆t (1−γ)ât (25)

Step 2: predict the acceleration

ât+∆t
c1 = M−1 · (f̂t+∆t −K · ût+∆t

c )
ât+∆t

c2 = ât+∆t
c1 −G ·GT · ât+∆t

c1 (26)
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Step 3: correct the displacements and velocities

ût+∆t = ût+∆t
c +∆t2 βât+∆t

c2

v̂t+∆t = v̂t+∆t
c +∆t γât+∆t

c2 ] (27)

Step 4: correct the acceleration

ât+∆t
c3 = M−1 · (f̂t+∆t −K · ût+∆t )

ât+∆t = ât+∆t
c3 −G ·GT · ât+∆t

c3 (28)

The central difference scheme is used in the present study
by setting β = 0, γ = 1

2 . The corresponding time inte-
gration is be simplified into the fewer steps as,

ût+∆t = ût +∆t v̂t +
∆t2

2
ât

ât+∆t
c1 = M−1 · (f̂t+∆t −K · ût+∆t )

ât+∆t = ât+∆t
c1 −G ·GT · ât+∆t

c1

v̂t+∆t = v̂t +
∆t
2

[ât + ât+∆t ] (29)

The scheme is conditionally stable, from Eq. 4, if

∆t ≤ Tmin

π
(30)

where Tmin is the minimum system period.

In the present study, the impact load is simulated to
demonstrate the present MLPG method. A smaller time
step is required to track the transient response of solid
structures. Longitudinal wave speed is used to determine
the time step based on the minimum nodal distance.

4 Numerical Examples

Several problems in three-dimensional linear elasto-
dynamics are solved to illustrate the effectiveness of the
present method. The numerical results of the present
methods, as applied to problems in 3D elasto-dynamics,
specifically (i) a cantilever beam, (ii) a concentrated point
load on a semi-infinite space (Boussinesq Problem), are
discussed.

4.1 Cantilever beam

The performances of the present MLPG formulations are
also evaluated, using a three dimensional cantilever beam
under uniform tension and transverse loading, as shown
in Figure 2. The beam is modeled as the plane stress case
with E = 1×106, υ = 0.25, b = h = 2, and L = 24.

P

L

h

b

x

y

z

Figure 2 : A cantilever beam with an end load

This problem has been solved by Han and Atluri (2004)
in the static case. The results showed that the MLPG
methods gave accurate results even with a coarse nodal
configuration. As an extension of the static analysis, the
beam is modeled with a uniform nodal configuration with
a nodal distance, d, of 1.0, as shown in Figure 3. The
number of nodes is 225. For comparison purposes, FE
meshes are also constructed from the same nodal config-
uration by using the Hex 8 element for the commercial
FE code, NASTRAN.

Figure 3 : nodal configuration for a cantilever beam with
225 nodes (nodal distance d=1.0)

The first load is a uniform constant tension applied to the
free end of the beam. The problem is solved by using
the present MLPG method for the first 0.5 seconds, with
1000 time steps. The dynamic response is obtained and
shown in Figure 4, as a typical stationary structural vi-
bration. The same problem is also solved by using NAS-
TRAN. A good agreement is obtained while both results
are compared in Figure 4.

The MLPG is used to solve the problem of a beam under
the uniform constant transverse load. The dynamic re-
sponse during the first 5 seconds is simulated, using 5000
time steps. The results of the present MLPG method are
shown in Figure 5 with a gray stream line. It can be seen
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Figure 4 : Structural Response of a cantilever beam under a sudden uniform tension: nodal distance d=1.0, support
size R = 2.6
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Figure 5 : Structural Response of a cantilever beam under a sudden transverse load: nodal distance d=1.0, support
size R = 2.6
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Figure 6 : Structural deformation of a cantilever beam
under a sudden transverse load by using the present
MLPG method: nodal distance d=1.0, support size R =
2.6
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Figure 7 : A concentrated load on a semi-infinite space
(Boussinesq Problem)

that results agree well with those obtained by using NAS-
TRAN. Again, it shows a stationary structural vibration
in the transverse mode, with lower natural frequencies.
The transverse deformations at different times are shown
in Figure 6.

0

1

2

-0.3 0.0 0.3 0.6 0.9

Time (ms)

L
o

a
d

 P

Figure 8 : a pulse load

X

Y

Z

X

Y

Z

Figure 9 : a non-uniform nodal configuration for the
Boussinesq Problem (6862 nodes)

4.2 A concentrated load on a semi-infinite space
(Boussinesq problem)

The Boussinesq problem can simply be described as
a concentrated load acting on a semi-infinite elastic
medium with no body force, as shown in Figure 7.
This problem was solved by using MLPG/Heaviside [Li,
Shen, Han and Atluri (2003), Han and Atluri (2004)] and
MLPG/BIE [Han and Atluri (2003)b] with a static point
load. We solve this problem here with a short pulse load
(Figure 8), which lasts only for 0.3 milliseconds. This
example has been chosen , to demonstrate the capabil-
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Figure 10 : Transient vertical displacement along z-axis for the Boussinesq problem under a pulse load

ity of the present MLPG method to track the shock wave
propagation, when strong singularities are also present.
A quarter of a half sphere with a radius of 10 is used to
simulate the semi-infinite space, with the consideration
of the symmetrical boundary conditions. Young’s modu-
lus and Poisson’s ratio are chosen to be 1×10 6 and 0.25,
respectively. It is modeled with a nodal configuration,
as shown in Figure 9, containing 6862 nodes. It should
be pointed out that a finer nodal configuration is required
in the whole model, to track the shock wave, unlike the
coarser nodal configuration which can be used in the area
far away from the loading point, as in the static analysis.

The present MLPG method is used to simulate the tran-
sient response during the first 7 milliseconds with a time
increment of 0.01 millisecond. The transient responses
of the nodes along the Z-axis under the shock force are
shown in Figure 10, and those along the X-axis and Y-
axis in Figure 11 and Figure 12, respectively. It shows
clearly that how the energy is transmitted from the load-
ing point to the semi-half space. It can be seen that the
transient response of the nodes on the Z-axis occurs at
earlier times, than that of the nodes on the X and Y axes.
The shock wave propagations along the Z and X axes are
shown in Figure 13 and Figure 14 every 0.5 millisecond.
From Figure 13, the shock wave along the Z-axis reaches
the node at Z=6.78 at a time of 6 milliseconds. From Fig-

ure 14, the shock wave along the X-axis reaches the node
at X=4.10 at time 6 milliseconds, which is slower than
it along the Z-axis. The speeds of the shear and longitu-
dinal waves of the medium used in the present study are
632 m/s and 1092 m/s, respectively. For 6 milliseconds,
they propagate 3.79 and 6.55 meters, respectively. From
the results, a longitudinal wave is propagating along the
Z-axis and a shear wave along the X-axis, while the nu-
merical results show that these responses occur a little bit
ahead in time, because of the nodal support size for the
MLS.

From these results, it is seen that the present MLPG
method gives a good approximation to the transient
response, under the pulse loading, even when strong
singularities are present. Such pulse loads may oc-
cur during impact, contact and penetration events. In
the present study, no mesh is required, which avoids
the difficulties associated with mesh distortion for the
element-based methods, such as the conventional FEM.
The present MLPG method simulates the shock-wave
problem straightforwardly, without any special numeri-
cal techniques, such as reduced integration schemes for
avoiding shear-locking, stablizing viscosity (or so-called
hour glass control), and so on. In addition, the smoother
stress and strain fields can be calculated from the dis-
placements, which give better prediction for the possible
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Figure 11 : Transient vertical displacement along x-axis for the Boussinesq problem under a pulse load
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Figure 12 : Transient vertical displacement along y-axis for the Boussinesq problem under a pulse load
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Figure 13 : Transient vertical displacement along z-axis for the Boussinesq problem under a pulse load
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Figure 14 : Transient vertical displacement along x-axis for the Boussinesq problem under a pulse load
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crack initialization. With the use of the simpler node
adaptation procedures in the meshless methods, crack
propagations can be simulated, and fragmentation events
can be treated more easily.

5 Closure

A Meshless Local Petrov Galerkin (MLPG) method is
developed for 3D dynamic problems, based on the lo-
cal symmetric weak form (LSWF). The MLS is used for
constructing the shape functions at the scattered points.
Incorporating with the central difference scheme for
time integration, a numerical treatment is developed for
the enforcement of the kinematic boundary conditions,
which is very effective, computationally. The numeri-
cal examples show the capability of the present MLPG
method for simulating both the low frequency structural
responses, as well as the high-speed shock wave propaga-
tions. It can be concluded that the present MLPG method
has many distinct advantages, over the element-based
methods for the dynamic problems, especially for those
with the strong singularities, including contact, penetra-
tion, crack initiation and propagation.
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