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Numerical Prediction of Dynamically Propagating and Branching Cracks Using
Moving Finite Element Method
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Abstract: Phenomena of dynamic crack branching are
investigated numerically from a macroscopic point of
view. Repetitive branching phenomena, interaction of
cracks after bifurcation and their stability, bifurcation
into two and three branches were the objectives of this re-
search. For the analysis of dynamic crack branching, re-
cently we developed moving finite element method based
on Delaunay automatic triangulation [Nishioka, Furu-
tuka, Tchouikov and Fujimoto (2002)]. In this study this
method was extended to be applicable for complicated
crack branching phenomena, such as bifurcation of the
propagating crack into more than two branches, multi-
ple crack bifurcation and so on. The switching method
of the path independent dynamic J integral, which was
developed for the case of simple two cracks branching
phenomena, demonstrated it’s excellent applicability also
for the case of complicated crack branching. The simu-
lation results are discussed with consideration to the ex-
perimental findings.

keyword: Dynamic crack bifurcation, dynamic frac-
ture, crack propagation and arrest, moving finite element
method, dynamic J integral, fracture prediction criteria,
multiple branching.

1 Introduction

When dynamic fracture occurs in brittle materials and
constructions it is rarely takes place as a propagation of
a single crack. Conversely very often, single crack bifur-
cates into two or more cracks, which propagate simulta-
neously. Some of them branch again, others propagate as
a single crack or arrest. Several propagating cracks in-
teract and influence each other. The prediction of brittle
fracture is very important problem in dynamic fracture
mechanics. The accurate prediction of such complicated
failure process is extremely important not only for aca-
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demic interest, but also for safety design of constructions
or for controllable dynamic destruction.

The dynamic crack bifurcation problem still remains as
one of the most important unsolved problems in dynamic
fracture mechanics. The problem of governing condi-
tion of dynamic crack branching is investigated in our
recent experimental studies [Nishioka, Kishimoto, Ono
and Sakakura (1999a, 1999b)]. The experiments on dy-
namic crack branching phenomena in Homalite-911 and
Homalite-100 revealed, that the energy flux per unit time
into a propagating crack tip or into a fracture process
zone governs the dynamic crack branching. Other ex-
perimental investigations on evaluation of dynamic crack
branching by method of caustics have been also per-
formed recently [Nishioka, Matsumoto, Fujimoto and
Sakakura (2003)].

There are some difficulties that must be overcome to per-
form accurate numerical simulation of dynamic crack
bifurcation. In previous studies, the authors [Nish-
ioka, Furutuka, Tchouikov and Fujimoto (2002)] devel-
oped a moving finite element method based on Delau-
nay automatic triangulation [Sloan and Houlsby (1984),
Taniguchi (1992)], which satisfied the numerical require-
ments for simulation of two branches dynamic crack
bifurcation phenomena. In present work this method
is extended to simulate the dynamic crack branching
into more than two branches, propagation of interact-
ing cracks, multiple crack branching phenomena etc. In
this method, the moving singularities at the tips of dy-
namically propagating cracks are treated accurately; even
complicated fracture path is carefully generated and the
fracture parameters, such as dynamic J integral and dy-
namic stress intensity factors are accurately evaluated
even immediately after the bifurcation.

The propagation direction of each individual crack is
controlled by local symmetry criterion. According to this
criterion it was possible to find the propagation direction
for two or three branches even immediately after crack
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Figure 1 : Specimen geometry

bifurcation. For crack growth predicting a unique depen-
dence of dynamic fracture toughness on the crack speed
only is assumed. For predicting of branching instant, at
which dynamically propagating crack bifurcates, the crit-
ical amount of energy flux per unit time into a process
zone is assumed.

2 Experimental Measurements

The experimental investigations of dynamic crack
branching [Nishioka, Kishimoto, Ono and Sakakura
(1999a, 1999b); Nishioka, Matsumoto, Fujimoto and
Sakakura (2003)] were performed with major point of
interest in under what conditions the crack branch-
ing occurs. In these experiments transparent material
Homalite-911 was used. The material properties are
as follows: Young’s modulus E=2.15GPa, Poisson ratio
ν=0.38 and mass density ρ=1281 kg/m 3. The geometry
of a typical specimen used for fast crack branching test
is shown in Fig.1. In the experiments crack initiates from
a blunt notch, which length was set as 23mm from upper
end of the specimen. The notch-root diameter is about

Figure 2 : Loading equipment

0.5 mm.

Two sets of displacement-controlled loads were applied
to the specimen through two pairs of loading pins as
shown in Fig.2. First, the some load P2 was applied
to the lower loading system and held constant. It pro-
duces a strong tensile stress field to supply enough en-
ergy into the propagating crack tip for crack branching.
Then the upper loading system was gradually loaded by
the L shape jigs as shown in Fig.2, until dynamic crack
propagation occurred. The crack tries to bifurcate near
the lower loading line. Examples of the high-speed pho-
tographs of the caustic patterns, which were recorded in
the experiments, using a high-speed camera (with max-
imum framing rate two million frames per second) are
shown in Fig.3. Measuring the crack-tip positions in each
frame each crack propagation history was described by a
polynomial curve. Then, differentiating the polynomials
with time, the crack velocities were determined. From
dimensions of the caustics patterns in photographs the
experimental K values can be obtained by the method of
caustics.
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Figure 3 : High-speed photographs of dynamic fracture

3 Numerical Procedures

3.1 Moving Finite Element Method

Recently, for modeling of the crack propagation many
innovative techniques have been developed, such as:
the cell method [Ferretti (2003)], the novel non-

hypersingular time-domain traction boundary element
method [Zhang and Savaidis (2003)], the symmetric
Galerkin boundary element method [Han and Atluri
(2002)], the material point method [Nairn (2003)].

To simulate the crack propagation by the finite element
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(a) (b) (c) 

Figure 4 : An example of automatic mesh generation (a) exterior boundary points, (b) specified interior points, (c)
generated mesh pattern

method, two different concepts of computational model-
ing can be considered, i.e., the stationary element proce-
dure (or fixed element procedure), and the moving el-
ement procedure. [Nishioka and Atluri (1986), Nish-
ioka (1994, 1997)]. Due to some disadvantages of
the fixed element procedure we used the moving ele-
ment procedure, which allowed us to accurately model
the dynamically propagating [Nishioka, Tokudome, Ki-
noshita and Nishida (1998); Nishioka, Tokudome and
Kinoshita (2001)] and branching crack [Nishioka, Furu-
tuka, Tchouikov and Fujimoto (2002)].

In this study for mesh generation we used the modified
Delaunay automatic triangulation [Taniguchi (1992)],
which requires only exterior, interior boundary points
and specified interior points (if they are necessary)
(Fig.4). In consideration of the stress singularity each
propagating crack tip is always surrounded by the speci-
fied interior points.

At the Delaunay automatic mesh generation stage the two
surfaces of crack path have common nodal points, and
the crack surfaces are described by element boundaries.
In order to distinguish both surfaces of crack after De-
launay automatic mesh generation, dual nodes setting on
crack path is used, so that, the nodal points with the same
coordinates are have different numbers if there are ly-
ing on opposite crack surfaces. Therefore, the total num-
ber of nodal points increases and the element-nodes rela-
tions are changed. During crack propagation, when crack
length is increased more than certain value, new nodal

points are placed on crack path behind the group of sur-
rounding interior points. Furthermore, only an area of the
group of specified interior points with its neighborhood
is actually re-meshing during crack propagation, the rest
of the mesh pattern is remaining fixed for more accuracy
of analysis.

For the time integration of the finite element equation
of motion the Newmark method is used. To fulfill the
unconditionally stable condition the Newmark’s parame-
ters are chosen to be β=1/4 and δ=1/2 [Bathe and Wilson
(1976)]. For further details about time integration proce-
dures please refer to [Nishioka, Furutuka, Tchouikov and
Fujimoto (2002)].

3.2 Evaluation of Fracture Mechanics Parameters

In this study, to evaluate various fracture mechanics pa-
rameters for a dynamically propagating and branching
cracks the path independent dynamic J integral derived
by Nishioka and Atluri (1983) is used.

For most numerical analyses, considering dynamically
propagating crack in an elastic solid, the global-axis
components of the dynamic J integral (J ′) can be eval-
uated by the following expression:

J′k =
∫

Γ+Γc

[(W +K)nk − tiui,k]dS

+
∫

VΓ

[(ρüi − fi)ui,k −ρu̇iu̇i,k]dV (1)

where ui, ti, fi,nk and ρ denote the displacement, traction,
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body force, outward direction cosine, and mass density,
respectively. W and K are the strain and kinetic energy
densities, respectively, and (),k = ∂()

/
∂Xk. The integral

paths Γε,Γ and the Γc shown in Fig.5 denote a near-field
path, far-field path and crack surface path, respectively.
VΓ is the region surrounded by Γ, while Vε is the region
surrounded by Γε.

Figure 5 : Definition of integral paths

The crack-axis components of the dynamic J integral can
be evaluated by the following coordinate transformation:

J
′0
l = αlk(θ0)J′k, (2)

where αlk is the coordinate transformation tensor and θ0

is the angle between the global X1 and the crack axis x0
1.

For the elastodynamically propagating crack with veloc-
ity C the dynamic J integral can be related to the instan-
taneous stress intensity factors as in [Nishioka and Atluri
(1983)]:

J
′0
1 =

1
2µ

{AI(C)K2
I +AII(C)K2

II +AIII(C)K2
III} (3)

J
′0
2 = −AIV (C)

µ
KIKII (4)

where µ is the shear modulus, and AI (C)−AIV (C) are
functions of crack velocity C and given in [Nishioka and
Atluri (1983)].

The dynamic J integral has following salient features:

(i) It physically represents the dynamic energy release
rate G [Nishioka and Atluri (1983)].

(ii) For the far-field path, it has the property of the path-
independent integral [Nishioka and Atluri (1983)].

(iii) For the near-field path, it is practically invariant with
the shape of the infinitesimal near-field path [Nish-
ioka (1994)].

(iv) The dynamic J integral includes the static J integral
for elastostatic fracture problems.

(v) The near-field path can be taken as the boundary of a
fracture process zone (if it is known a priori).

To accurately evaluate the inplane mixed-mode stress in-
tensity factors from the dynamic J integral values, the
component separation method [Nishioka (1994)] was
proposed. If the energy release rate G or the crack-axis
component is obtained by Eq.(2), the formulae of the
component separation method can be expressed as:

KI = δI

{
2µJ

′0
1 β2

AI(δ2
I β2 +δ2

IIβ1)

}1/2

= δI

{
2µGβ2

AI(δ2
I β2 +δ2

IIβ1)

}1/2

(5)

KII = δII

{
2µJ

′0
1 β2

AII(δ2
I β2 +δ2

IIβ1)

}1/2

= δII

{
2µGβ2

AII(δ2
I β2 +δ2

IIβ1)

}1/2

(6)

Some of the features of the component separation method
are: (i) mixed-mode stress intensity factors can be evalu-
ated by ordinary non-singular elements, and (ii) the signs
of KIand KII are automatically determined by the signs
of δI and δII , respectively.

Because of difficulty in setting far-field integral path sep-
arately for each just bifurcated crack tip, a switching
method of the path independent dynamic J integral was
proposed [Nishioka, Furutuka, Tchouikov and Fujimoto
(2002)]:

J′k =
∫

Γ+ΓC

[(W +K)nk − tiui,k]sdS

+
∫

VΓ

[{(ρüi − f )ui,k −ρu̇iu̇i,k}sdV

+σi jui,ks, j − (W +K) s,k]dV (7)
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where Γ is a far-field integral path, that encloses all
branched crack tips and s is a continuous function de-
fined in VΓ (Fig.6).

For calculation of the dynamic J integral for certain crack
tip the s function is set as s=1 for the point at that crack
tip and for the points in whole domain VΓ and s=0 for the
points at the others crack tips. Equation (7) made possi-
ble accurate evaluation of the dynamic J integral compo-
nents for interacting branched crack tips.

Figure 6 : Integral path for branched crack tips

3.3 Fracture Path Prediction Criterion

Many propagation-direction criteria have been proposed
before. They can be divided into two groups: explicit
prediction theories and implicit prediction theories. An
explicit prediction theory predicts the propagation direc-
tion satisfying the postulated criterion based on a phys-
ical quantity for the current crack tip. Contrary, an im-
plicit prediction theory seeks the propagation direction
that satisfies the postulated criterion based on physical
quantity after the crack is advanced with a small crack-
length increment. It is known that in general the implicit
prediction theories are more accurate, although an iter-
ative process usually is needed to find the propagation
direction.

In this study the propagation direction of each individual
crack is predicted accordingly to a local symmetry crite-

rion [Goldstein and Salganik (1974)], which falls into the
group of implicit prediction theories. The fracture path is
predicted in an iterative manner as follows. At a generic
time step n, as a first trial, the crack is advanced in the
tangential direction θ(i)

n (i=1) equal to a crack tip direc-
tion at the previous step n-1. If mode II stress intensity
factor KII is almost zero at the attempted crack-tip loca-
tion, the crack is advanced in this direction θ (i)

n . If the KII

value is not zero, the crack is tentatively advanced in the
direction of θ(i+1)

n = θ(i)
n + ∆θ and θ(i+2)

n = θ(i)
n −∆θ as

the next two trials. Each time the satisfaction of the cri-
terion at the trial crack tip location is checked. If the cri-
terion is not satisfied in both cases the next trial direction
is calculated accordingly to the square polynomial curve
fitting all KII values versus θ(i)

n (i=1,2,. . . ) of previous tri-
als. These procedures are repeated until the criterion is
satisfied for each propagating crack.

Furthermore, when using the local symmetry principle
it is possible to find propagation direction of each crack
immediately after bifurcation in case of two and three
cracks branching.

3.4 Crack Growth Prediction Criterion

In fast fracture mechanics, for dynamically propagating
cracks under quasi-static as well as dynamic loading con-
ditions, it has been suggested that

K = KD(T,C,Ċ, ...) (8)

where KD is the dynamic propagation fracture tough-
ness. Effects of crack acceleration and deceleration are
still not fully clarified and under investigation [Taka-
hashi and Arakawa (1987), Nishioka, Syano and Fu-
jimoto (2000)]. Furthermore, several works [Gates
(1980), Kalthoff, Beinert and Winkler (1981), Nishioka,
Kishimoto, Ono, Sakakura (1991a)] have reported the
geometry-dependence of KD.

According to the criterion given by Eq.(8), crack arrest
occurs when the stress intensity factor becomes smaller
than or equal to a critical value. This can be expressed as

K ≤ KD(0)≡ Kdyn
a ≡ KA (9)

where Kdyn
a or KA denotes the dynamic crack arrest

toughness. The superscript “dyn” is used to distinguish a
material property from the so-called static arrest tough-
ness Ka (Ksta

a ).
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In this study, we assume a unique dependence of dy-
namic fracture toughness on the crack tip speed only
[Dally, Fourney and Irwin (1985)]. For establishing
crack growth prediction criterion, we choused three ex-
perimental results, in which crack propagated straightly
without branching [Nishioka, Matsumoto, Fujimoto and
Sakakura (2003)]. The dynamic propagation toughness
KD(C) in each case was different. The KA value for each
experiment was different and was calculated by interpo-
lating KD(C) on C=0. Nominal dynamic stress inten-
sity factors are defined by KA for each experiment. A
phenomenological relation between nominal stress inten-
sity factor and nominal crack tip speed was derived from
three experimental results (see Fig.7).
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Figure 7 : Dynamic fracture toughness for Homalite-911
(C: crack tip speed, Cs: shear wave speed)

Using KA value for each of three experiments a phe-
nomenological relation shown in Fig.7 was obtained.

In the experiments, due to specimen geometry, as load
P1 was meant to just initiate crack, the lower loading P2

value was most influential on the crack propagation and
branching. For experimental lower loading P2 and initial
conditions of each experiment, calculating KQ – a mode
I stress intensity factor for the initial crack under quasi-
static loading for various upper loading P1, a relation be-
tween P2

/
P1 and KQ

/
KA was obtained (Fig.8).

Fracture initiation for static loading configurations is
strongly dependent on the initial crack tip radius. In this
study, we are basing on the experiments in which the ini-
tial notch-root diameter was about 0.5mm. Therefore, for
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Figure 8 : The relation between dynamic crack arrest
toughness KA, initiation quasi-static KQ and loading con-
ditions for used specimen geometry

initiation under quasi-static loading from a blunt notch,
the KI must reach some critical quasi-static stress inten-
sity KQ value, which is assumed as KQ = 1.75[Pa

√
m].

In numerical analysis, first a certain load P2 and very
small load P1 is statically applied to both loading sys-
tems. Then KI , calculated for the initial crack tip, is com-
pared with the assumed KQ value. If KI is less than KQ,
upper load P1 is gradually increased until KI reaches KQ.
When value of KI becomes more or equal KQ, knowing
P2

/
P1 and KQ, the dynamic crack arrest toughness KA

for choused specimen is determined from curve in Fig.8.
At the static analysis under the fracture loads, the dis-
placements at the loading points were evaluated and these
were used as the prescribed displacement in the finite el-
ement model after crack initiation. For each individual
crack tip, crack speed is predicted by iteration process,
so that KI of crack tip propagating with velocity C is al-
ways equal KD (C) (Fig.7).

3.5 Crack branching criterion

The determination of crack branching instant (i.e. where
and when propagating crack bifurcates) is very impor-
tant problem in the dynamic fracture prediction studies.
Branched cracks are often observed in brittle materials
and structures. Many attempts have been made in or-
der to clarify the mechanism of crack branching. How-
ever the governing condition for dynamic cracks branch-
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Figure 9 : Deformed mesh pattern for straight crack propagation (P2=1.4kN)

ing had not been fully elucidated until our recent experi-
mental studies [Nishioka, Kishimoto, Ono and Sakakura
(1999a, 1999b)]. The experimental results revealed, that
the energy flux per unit time into a propagating crack tip
or into a fracture process zone, which can be expressed
as:

Φtotal = J′1 ·C, (10)

governs the dynamic crack bifurcation. In this study we
assumed crack branching to take place at a given criti-
cal Φc

total=550 [J/ms]. Furthermore, we suggested two
branching cases: into two and three branches.

4 Results

The input data, such as specimen geometry, material
properties, nodes number, values of critical fracture pa-
rameters, was set the same for all numerical examples,
except only load P2, which was set 1.4kN, 1.6kN, 1.8kN
and 2.0kN. In each loading case two possibilities of crack
bifurcation were suggested: two and three macro-cracks
branching.

In numerical simulations, first, the static analysis under
the fracture loads was performed. The displacements at
the loading points were evaluated and these values were
used as the prescribed displacement in the finite element
model after crack initiation. The time increment of ∆t =
2µs was used.

As the upper loading device can only “push” the load-
ing pins but not “pull”, the fixed boundary conditions at
the upper loading points in the numerical analysis may
lead to a spurious deformation behavior of the specimen.
Thus, the possibility of lack of contact of the L shape
jigs with the loading pins should be taken in account.
In present study, to solve this problem, the contact/non-
contact boundary conditions [Nishioka, Perl and Atluri
(1983); Nishioka and Atluri (1982); Nishioka, Furutuka,
Tchouikov and Fujimoto (2002)] are employed in the nu-
merical simulations.

The deformed mesh pattern for case of load P2=1.4kN
is shown in Fig.9. The initial number of elements and
number of nodes were 6756 and 3500 respectively.

The time variations of the dynamic stress intensity fac-
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Figure 10 : Variations of dynamic SIF, energy flux and crack velocity C for not bifurcated crack (P2=1.4kN)

tors, energy flux to the propagating crack tip per unit
time and predicted crack speed are plotted in Fig.10.
The Φtotal of propagating crack did not reached a criti-
cal value, so there was just a straight crack propagation
without bifurcation. After crack starts propagate the KI

value drops for about a half of KQ and then increases until
crack reaches lower loading line area. The crack propa-
gation speed was in interval 490-535m/s which is more
then 0.6Cs.

The deformed mesh patterns for load P2 equal 1.6kN,
1.8kN and 2.0kN are shown in Fig.11. Two types
of crack branching was assumed: into two and three
branches. For loading of 1.6kN and 1.8kN crack branch-
ing occurred only once. The location of crack branching
is closer to initial crack for larger lower loading. In case
of lower loading 2.0kN for both types a multiple crack
branching occurred. For case of two cracks branching
both of the cracks branched again symmetrically and did
not stop. For three branches case only a central crack
branched again. Finally for branching into three cracks
both sides cracks arrested and only a central crack con-
tinued propagation. Due to random mesh and piling of
calculations a slight asymmetry effects can be noticed.
Furthermore, the contact/non-contact problem for crack
surfaces was ignored in this study, so a small overlapping
can be seen for three branches case. For multiple three
branches case, shown in Fig.11(c), due to five crack tips
propagating simultaneously, the number of elements and
nodes increased exceedingly and was 20038 and 10378

respectively.

The computed variations of input (E), strain (W), kinetic
(K) and fracture (F) energies with time for two and three
branches with load 1.6kN are shown in Fig.12. It should
be noted that in the present procedure, each of the quan-
tities E, W, K and F is calculated separately and directly.
Thus, the fact that W+K+F is almost equal to E at all
times is an inherent check on the accuracy of the calcu-
lation. It also can be seen that for three branches case the
fracture energy F is slightly larger than fracture energy
for two branches case.

Even immediately after crack branching the values of dy-
namic J integral were accurately calculated. The path in-
dependence of dynamic J integral for central branched
crack tip in case of 1.6kN loading is shown in Fig.13.

The dynamic stress intensity factors for (a) two and
(b) three branches with loading of 1.6kN are plotted in
Fig.14. Due to the local symmetry criterion choused for
path prediction, mode II stress intensity factors are al-
most zero for all propagating cracks throughout the anal-
ysis. The mode I SIF for central crack in Fig.14(b) is
much larger then KI of two others cracks, especially at
the final stage of simulations. Finally all cracks on sides
arrested, and only the central crack continued propagat-
ing.

The variations of energy flux to the propagating crack
tips per unit time for 1.6kN loading are plotted in Fig.15.
It can be seen, that when the energy flux for straightly
propagating crack becomes larger a critical value crack
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Figure 11 : Deformed mesh patterns for crack branching into two and three branches with different lower loading
(180µs)
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Figure 12 : Energy balance (P2=1.6kN)
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bifurcation occurred. In this loading case energy flux for
all branched cracks did not reach a critical value again,
so multiple branching did not occur. It also can be seen,
that a sum of energy flux for branched cracks is much
larger for three cracks branching at the early stage after
branching.
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Figure 14 : Variations of dynamic SIF (P2=1.6kN)

The energy flow through a contour Γ with normal vector
n j to the crack tip can be expressed as follows:

Φ = −
∫

Γ
ϕ jn jdS (11)

where

ϕ j = −C · [(W +K)δ1 j −σi jui,1] (12)
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Figure 15 : Variations of energy flux (P2=1.6kN)

The sign in Exp.(12) is chosen so that the vector ϕ j point-
ing toward the crack tip corresponds to an energy flux
into the crack tip. The orientation of the energy flux vec-
tor for whole specimen and in the vicinity of the prop-
agating cracks after bifurcation for loading case 2.0kN,
three branches type is shown in Fig.16. The energy flux
in front of central crack is oriented toward the propagat-
ing crack tip but in front of side cracks it is oriented to
a central propagating crack, especially for crack between
central crack and farthest left side crack. This explains
why finally all sides crack have arrested while central
crack continued propagating.

The simulation results (for loading 1.6kN) in comparison
with actually fractured specimens are shown in Fig.17.
The predicted fracture paths are very similar with exper-

Figure 16 : The orientation of the energy flux vector
(P2 = 2.0kN, multiple three branches)

imental ones. For three branches type as in experiments,
both side cracks have arrested while central crack con-
tinued propagating. For two branches type there was no
crack arrest.
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experiment prediction 

(a) two branches 

experiment prediction 

(b) three branches 

Figure 17 : Examples of fractured specimen and predic-
tion results

5 Conclusions

In this study, the moving finite element method based
on Delaunay automatic triangulation was further devel-
oped for the numerical simulation of complicated dy-
namic crack bifurcation phenomena, such as branching
into two or three branches and multiple branching (i.e.
each branch encounters branching and so on). Various
dynamic fracture parameters were accurately evaluated
by the switching method of the path independent dy-
namic J integral even immediately after crack bifurca-
tion.

The dynamic bifurcation phenomena observed experi-
mentally was successfully predicted by the numerical
simulations with conjunction of the local symmetry cri-
terion, the dynamic fracture toughness criterion and the
critical energy flux criterion.
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