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Simulation of Thin Film Delamination Under Thermal Loading

L. Chernin1 and K.Y. Volokh1,2

Abstract: The conventional approach to analysis of
thin film delamination is based on the consideration of
the film, which is subjected to residual stresses arising
from the thermal mismatch between the film and the sub-
strate, within the framework of the classical fracture me-
chanics and the structural buckling theories. Such con-
cepts as the energy release rate and the stress intensity
factors are crucial in this case.

A different approach to analysis of thin film delamination
considers the effect of the compliant interface between
the film and the substrate. This compliant interface is
described by the traction-separation constitutive law.

In the present work, a framework for modeling delami-
nation of thin films is described in accordance with the
latter ’decohesion’ approach. The film is modeled as a
geometrically nonlinear elastic beam attached to a rigid
substrate with a cohesive layer of zero thickness. The co-
hesive layer is described by normal and tangential trac-
tions and corresponding displacement jumps. An expo-
nential ’softening’ constitutive law relates tractions and
displacements of the cohesive layer. Such formulation
allows for studying nucleation, propagation and arrest of
local delaminations – edge cracks and blisters. This is in
contrast to the traditional approach of the classical frac-
ture mechanics where stress analysis is separated from a
description of the actual process of material failure.

Finite element analyses are carried out for the qualitative
study of the influence of different parameters of the thin
film and the cohesive layer as well as different thermal
loads on delamination behavior of the film-substrate sys-
tem. The results of the analysis show that the stability
of the delamination propagation depends mainly on the
shape of the thermal load and less on the distribution of
the cohesive surface strength along the film. The loca-
tion of the nucleation of the film separation is essentially
sensitive to the combination of the cohesion properties
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of the film/substrate interface and the thermal load shape
and fewer to the film geometrical defects. It is found
that the interior blisters – the arrested delamination pro-
cesses – are created only for special cases of the film and
cohesion property combinations, otherwise the unstable
interior delaminations or edge cracks take place. The
material imperfection of the film – the inhomogeneous
thermal expansion coefficient distribution along the film
increases or decreases the effect of the thermal load on
the film response and has a little effect on the film de-
lamination process.

1 Introduction

Thin films occur in a wide variety of applications – wear-
resistant coatings in metal-cutting tools, polymer coat-
ings in optical devices, ceramic thermal barrier coatings
in the high-temperature machinery – to list a few. They
are used in electronic, aircraft, optic, and automobile in-
dustries. Delamination, i.e. debonding between the film
and substrate is a typical failure mode of the coatings.
In this case local internal blisters (also called buckles or
wrinkles) and edge cracks nucleate and propagate. This
has a detrimental effect on the coated device and, in the
case of thermal coating, can initiate an abrupt damage of
the machinery.

The interest in the delamination phenomenon has been
growing in the last quarter of the twentieth century; many
scientists have investigated this phenomenon in different
areas, and many researches were done (Hutchinson and
Suo, 1992; Hutchinson, 2001). It began, probably, with
the work of Kachanov (1976, 1988), who computed the
critical load for the growth of a thin circular delamina-
tion in an axisymmetrically compressed plate on the ba-
sis of the linear post-buckling equations. Shield et al.
(1992, 1994) investigated the buckling of a stiff elastic
layer bonded to an elastic half-space under a transverse
compressive plane strain. Sheinman et al. (1998) stud-
ied a single delamination on a one-dimensional model
of a composite laminate structure including the delami-
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nation growth during pre- or post-buckling phases with
a wide range of parameters, like imperfection, location
of delamination, length-to-thickness ratio etc. More re-
cently, Frostig and Sokolinsky (2000) analyzed the effect
of a pre-existing crack on the buckling behavior of sand-
wich panels with transversely flexible cores. The effect
of a finite interfacial compliance on the stability of a thin
layer bonded to a substrate was investigated by Bigoni et
al. (1997). The dynamic 2D simulations of delamination
failure of thin composite plates subjected to low-velocity
impact are given by Geubelle and Baylor (1998). Alfano
and Crisfield (2001) gave the finite element approach to
the delamination analysis of laminated composites using
interface elements and interface damage law. In paral-
lel with the general work on delamination a more spe-
cific research on the delamination of thin films was per-
formed. Evans and Hutchinson (1984) studied the de-
lamination and spalling of compressed films and coatings
using a combination of elastic fracture mechanics and
post-buckling theory of plates. More recently, Evans and
Hutchinson (1995) overviewed on the different failure
modes, like delamination and cracking of brittle layers,
thermomechanical fatigue of metallic constituents and
interface decohesion, that occur in thin films and mul-
tilayers due to residual stress, both thermal and “intrin-
sic” including stress redistributions and relaxations, plas-
tic dissipation, friction, cyclic load and layer thickness
effects. Choi et al. (1999) investigated various delam-
ination types of thermal barrier coatings and thermally
growth oxide layers including single layer film delam-
ination, “large” and “small” delaminations of multilayer
films. Gioia and Ortiz (1997) studied the buckling-driven
delamination mechanism in the compressed thin films
leading to forming of blisters that appear when some area
of the film buckles away from the substrate.

Most of the works on thin film delamination follow the
conventional fracture mechanics approach where stress
analysis is separated from a description of the actual pro-
cess of material failure. The cornerstone of the classi-
cal approach to fracture mechanics of Griffith-Orowan-
Irwin is a mathematical crack within linear elasticity. The
stress field at the tip of the crack is singular and the coef-
ficients of the asymptotic expansions of the stress field
near the crack tip – Stress Intensity Factors – are the
main players in the Linear Elastic Fracture Mechanics.
Generalized fracture considerations allowing for the ma-
terial nonlinearity in the vicinity of the crack tip are also

based on the SIF concept. Successful application of the
classical fracture mechanics to a wide range of engineer-
ing materials represents a significant progress beyond the
classical strength-of-materials approach which tends to
ignore the initiation and growth of crack-like flaws as the
ultimate cause of structural failure. However, the estab-
lished theory of fracture mechanics has serious limita-
tions in several aspects. For example, in thin film de-
vices, plastic flow in metal layers is often severely con-
strained by the neighboring structure, causing the plas-
tic dissipation part of the overall fracture energy to be
a strong function of the device geometry. When this is
the case, the fracture toughness – a critical value of SIF
– becomes length scale dependent and can no longer be
regarded as an intrinsic material property. The nonphys-
ical stress singularity at the crack tip does not appear in
a different approach to fracture pioneered by Barenblatt
(1959). The idea is to describe fracture as a material sep-
aration across a surface. It appears by name of the Cohe-
sive Zone Model in the modern literature. The cohesive
zone is a surface in a bulk material where displacement
discontinuities occur. Thus, continuum is enhanced with
discontinuities. The latter requires an additional consti-
tutive description. Equations relating normal and tangen-
tial displacement jumps across the cohesive surfaces with
the proper tractions define a specific CZM. There is a
plenty of proposals of the ‘cohesive’ constitutive equa-
tions, for example, Barenbaltt (1959); Dugdale (1960);
Needleman (1987); Rice and Wang (1989); Tvergaard
and Hutchinson (1992); Xu and Needleman (1994); Ca-
macho and Ortiz (1996); Geubelle and Baylor (1998);
Chandra et al. (2002); Foulk et al. (2000); Mohammed
and Liechti (2000); Needleman (1987); Rahulkumar et
al. (2000); Stroud et al. (2002); Givoli (2004); Li and
Siegmund (2004). All these models are constructed qual-
itatively as follows: tractions increase, reach a maximum,
and then approach zero with increasing separation. This
scenario is in harmony with the intuitive understanding
of the rupture process. Needleman (1987) introduced the
cohesive zone models in computational practice. Since
then CZMs are used increasingly in finite element simu-
lations of crack tip plasticity and creep; crazing in poly-
mers; adhesively bonded joints; interface cracks in bima-
terials; delamination in composites and multilayers; fast
crack propagation in polymers and etc. Crack nucleation,
propagation, branching, kinking, and arrest are a natu-
ral outcome of the computations where the discontinuity
surfaces are spread over the bulk material.
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Figure 1 : The model of a thin film attached to a rigid substrate.

In this work a one-dimensional model of a thin film at-
tached to a rigid substrate with a CZM is chosen in or-
der to simulate the qualitative film behavior for various
load and condition types. The problem formulation al-
lows for tracing nucleation, propagation and arrest of lo-
cal delaminations – edge cracks and blisters. The film
is considered as a geometrically nonlinear elastic beam
where cross-sections remain straight and not perpendic-
ular to the neutral axis after deformation – the nonlin-
ear Timoshenko beam. The CZM is described by nor-
mal and tangential tractions and corresponding displace-
ments. An exponential separation constitutive law relat-
ing tractions and displacements is introduced. Finite el-
ement analysis is carried out for the study of the influ-
ence of different parameters of the thin film and the co-
hesive layer as well as different thermal loads on delami-
nation behavior of the film-substrate system. The results
of the analysis show that the stability of the delamination
propagation depends mainly on the shape of the thermal
load and less on the distribution of the cohesive surface
strength along the film. The location of the nucleation
of the film separation is essentially sensitive to the com-
bination of the cohesion properties of the film/substrate
interface and the thermal load shape and fewer to the film
geometrical defects. It is found that the interior blisters
– the arrested delamination processes – are created only
for special cases of the film and cohesion property com-
binations, otherwise the unstable interior delaminations
or edge cracks take place. The material imperfection of
the film – the inhomogeneous thermal expansion coef-
ficient distribution along the film increases or decreases
the effect of the thermal load on the film response and
has a little effect on the film delamination process.

2 Methods

Analytical and computational settings for the mechanics
of the film-substrate system are developed in this section.

2.1 Problem formulation

The total potential energy of a thin elastic layer attached
to a rigid substrate and subject to prescribed tractions and
heating may be written in the following form:

ψ =
∫
V

W dV −
∫
S∗

φdS, (1)

where W is the strain energy per unit volume of the layer
including thermal strains; φ is the potential of the cohe-
sive surface between the layer and the substrate; S∗ is the
area of the contact between the layer and the substrate;
u is a displacement field obtained from the equilibrium
equations:

δψ(u) = 0. (2)

Eqs. (1) and (2) represent a particular case of the general
formulation for multilayers given by Volokh and Needle-
man (2002).

We restrict our consideration by one-dimensional prob-
lems of a beam-film attached to the substrate. In this case
the potential of the cohesive surface can be written as a
simplified Xu-Needleman (1994) potential:

φ = φn +φn

(
1+

∆n

δn

)
exp

(
−∆n

δn
− ∆2

t

δ2
n

)
, (3)

where φn is the work of separation; ∆n = n ·∆ and ∆t =
t ·∆ with n and t as the unit normal and tangent, respec-
tively, to the surface at the given point in the reference
configuration; ∆∆∆ is the displacement jump across the co-
hesive surface; φn is the separation work

φn = σmaxδn exp(1), (4)

where σmax designate the normal strength of the cohe-
sive surface, while δn is the corresponding characteristic
lengths.
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Figure 2 : (a) Normal traction, Tn, and displacements,
∆n; (b) Traction-separation law for the normal traction,
Tn, as a function of the displacements, ∆n, when ∆t ≡ 0.

The cohesive surface tractions are obtained by differenti-
ating potential φ:

Tn =
∂φ
∂∆n

=−φn∆n

δ2
n

exp

(
−∆n

δn
− ∆2

t

δ2
n

)
, (5)

Tt =
∂φ
∂∆t

= −2
φn∆t

δ2
n

(
1+

∆n

δn

)
exp

(
−∆n

δn
− ∆2

t

δ2
n

)
. (6)

The variation of Tn with ∆n when ∆t ≡ 0, and the variation
of Tt with ∆t when ∆n ≡ 0 are given in Figures 2 and
3 accordingly. The maximum value of Tn (= σmax) is
attained at ∆n = δn, and the maximum value of |Tt | (=
τmax) is attained at |∆t|= δn/

√
2.

Due to the influence of the external loads the thin film can
change its geometry and its parts can slide or rise from
the substrate. As a result of the geometrical changes the
cohesive surface tractions arise at the interface and re-
strict the separation of the film from the substrate. The
tangential traction across the cohesive layer increases
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Figure 3 : (a) Tangential traction, Tt , and displacements,
∆t; (b) Traction-separation law for the tangential traction,
Tt , as a function of the displacements, ∆t , when ∆n ≡ 0.

with growing normal displacements (for ∆n < δn) due to
the sliding of the film on the substrate in any direction.
After the traction reaches a maximum (when ∆n = δn),
it decreases and falls to zero (for ∆n > δn) permitting
a complete decohesion and simulating the creation of a
new free surface. When the film clings and tries to enter
the substrate the volume of the normal traction increases
very rapidly preventing the entrance. It is obvious, see
Eqs. (5) and (6), that both the normal and the shear trac-
tion, (Tn, Tt), depend non-linearly on the normal as well
as on the tangential displacement jump, (∆n, ∆t), across
the cohesive surface. The normal and the shear trac-
tion, (Tn, Tt), as a functions of the coupling between the
normal and the tangential displacement jump, (∆n, ∆t),
across the cohesive surface are presented in Fig.4.

The thin film is considered as a Timoshenko beam, which
is appropriate when the half-length of the deformation
wave is not less than the film thickness, and the strain
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Figure 4 : Variation of the normal and the shear cohesive
tractions, (Tn, Tt), with respect to the normal and tangen-
tial displacement discontinuities, (∆n, ∆t): (a) the shear
traction, Tt; (b) the normal traction, Tn.

energy takes the form:

W = 1/
2

∫
(EAε2 +EIχ2 +GAγ 2−2EAαT ε)dx, (7)

where E and G is the Young and shear modulus, respec-
tively; A is the cross-sectional area; I is the moment of
inertia; α is the coefficient of thermal expansion of the
film; and T is the thermal load. For small strains and
large rotations the strain measures may be written in the
form:

ε =
du
dx

+
1
2

(
du
dx

)2

+
1
2

(
dw
dx

)2

, (8)

χ =−dθ
dx

, (9)

γ =−θ+arcsin
dw
dx

, (10)

where u is an axial displacement; w is a transverse dis-
placement; and θ is the rotation of the beam cross-
section. The non-linear terms in the strain-displacement
relations allow excluding large rotations and translations.
Thus small strains are superposed on rigid body motions.
The latter approach is known as “co-rotational” (Crisfield
1991, 1997). Accounting for geometrical non-linearity is
crucial for performing non-linear delamination analysis.

2.2 Numerical implementation

The total energy given in Eq. (3.40) is discretized by
partitioning the beam-film uniformly into n elements and
index i designates an element or a node (the left edge of
the element) according to assumption that all unknowns,
(u,w,θ), are changed linearly within one element

ψ(u,λ) =
L
m

m

∑
i=1

(
(EI)i

2
χ2

i +
(GA)i

2
γ2

i

+
(EA)i

2
ε2

i −λ(EAαT )iεi−bφn[1+
∆ni +∆n i+1

2δn
]

exp

{
−∆ni +∆n i+1

2δn
−

(
∆ti +∆t i+1

2δn

)2
}

) , (11)

where (EI)i, (EA)i and (GA)i are the bending, axial and
shear stiffness of the i-th element accordingly; λ is a tem-
perature scaling parameter; L and b are the film length
and width, respectively; εi and γi are the axial and shear
strain, respectively, and χi is the curvature of the i-th ele-
ment that take the following form

χi =
θi−θi+1

L/m
, (12)

εi =
ui+1−ui

L/m
+

1
2

(
ui+1−ui

L/m

)2

+
1
2

(
wi+1−wi

L/m

)2

,

(13)

γ i = arcsin

(
wi+1−wi

L/m

)
− θi+1 +θi

2
, (14)

where ui and wi are an axial and transverse displacement,
and θi is the rotation of the i-th node.

The normal, ∆ni, and tangential, ∆ti, displacement jump
across the cohesive surface for the i-th element are

∆ni = wi, (15)
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∆ti = ui +
hiθi

2
, (16)

where hi represents the height of the i-th element.

Cohesive elements, which act like nonlinear springs, are
attached to the beam elements and simulate the surface
where failure is possible. These nonlinear springs resist
opening of the interface crack and sliding of the beam
on the substrate in accordance to the prescribed traction-
separation relations.

Nonlinear equation solvers allow for tracing the equilib-
rium path of the beam-film for the prescribed load. In
order to follow the equilibrium path in its state space it
is useful to introduce the column matrix of ’unbalanced
forces’, the tangent stiffness matrix, and the column ma-
trix of ’nodal loads’ accordingly

g =
∂ψ
∂u

= 0, (17)

K =
∂g
∂u

, (18)

q = −∂g
∂λ

. (19)

A variety of approaches exist for solving discrete Eq.
(17): Crisfield (1991, 1997); Keller (1992); Riks (1998);
Seydel (1994); Kouhia and Mikkola (1989); Magnusson
and Svensson (1998).

The basic procedure for tracing a monotonically in-
creasing or decreasing equilibrium path is the Newton-
Raphson algorithm:

Box 1:
1. Input: a point on the equilibrium path (u,λ,g,K,

q).
2. Load increment: λ← λ+dλ and updating g, K.
3. Computation: du = −K−1g.
4. Updating: u← u+du and updating g, K, q.
5. Go to step 2 if a convergence criterion is satisfied

or return to step 3 otherwise.

This algorithm is unable to treat points where the equilib-
rium path does not exist for increasing parameter λ. Arc-
length continuation is better suited to these situations:

Box 2:

1. Input: a point on the equilibrium path (u,λ,g,K,
q).

2. Arc-length increment: ds.
3. Predictor (initial guess): y = K−1q; dλ =

ds/
√

yT y+1; du = ydλ.
4. Updating: u← u+du; λ← λ+dλ and updating

g, K, q.
5. Corrector: δv = K−1q; δw = K−1g; δλ =
−(duT δw)/(duT δv); δu = δw+δλδv.

6. Updating: du← du+δu; u← u+δu;
dλ← dλ+δλ; λ← λ+δλ and updating g, K,
q.

7. Go to step 2 if a convergence criterion is satisfied
or return to step 5 otherwise.

It may be seen from Box 2, that the ‘arc-length param-
eter ds controls the advance along the equilibrium path
and that any turning point is readily treated. In contrast to
the Newton-Raphson procedure (Box 1) the first and sub-
sequent iterations are distinguished and called predictor
and corrector steps accordingly. Various predictors and
correctors have been proposed in the literature: Crisfield
(1997); Seydel (1994). It is possible, for example, to find
the corrector by applying the Newton-Raphson proce-
dure to some augmented system of nonlinear equations,
which include Eq. (2) together with some arc-length con-
straint. Such an approach is called ‘consistent’ by some
authors (Wriggers, 1995). In this sense, the algorithm
given in Box 2 is ‘inconsistent’. However, it was found
to be efficient in the present computations.

3 Results

In this section behavior of a thin metallic film is analyzed
under non-uniform thermal loads and non-uniform geo-
metrical and material characteristics of the film.

3.1 General remarks

The geometrical and material properties of the thin elas-
tic layer presenting a metallic film that have been varied
in the following range in simulations

E = 200 GPa, α = 10−6÷10−5 1/0C, ν = 0.3,

h = 0.1÷2 µm, L = 30÷60 µm, T = 102÷103 ◦C
(20)

where E is the Young modulus; α is the coefficient of the
thermal expansion; ν is the Poisson’s ratio; L and h are
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the length and height of the film; T is the temperature.
The film is assumed to be of the unit width.

The geometrical non-uniformity or the local geometrical
defects of the film are modeled by gradual changes in the
height of different parts of the film or of its whole length.
The material film non-uniformity is simulated by varying
the thermal expansion coefficient. The local defects and
strength non-uniformity of the cohesive layer are consid-
ered by gradual changes in the work of the film-substrate
separation.

The cohesive surface properties defining the strength of
the bond between the thin film and the substrate are cho-
sen as follows

φn = 0÷1
J

m2 , δn = 5 ·10−4 µm, σmax =
φn

eδn
,

τmax =
√

2e
φn

eδn
, J1C = φn, K1C =

√
EJ1C

1−ν2 , (21)

where φn is the work of separation per unit crack length
required to create the two crack surfaces; δn is the charac-
teristic length designating the value of the normal and the
tangential displacement jump, (∆n, ∆t), corresponding to
the maximal normal and shear traction, (Tn = σmax, Tt =
τmax), arising in the interface; σmax and τmax are the max-
imal normal and shear stress that the cohesive surface
can develop due to the film deformations; e designates
exp(1); J1C designates the strain energy release rate dur-
ing crack growth as calculated for a line crack using the
elasticity theory; and K1C represents the stress intensity
factor at the tip of the crack. Here a link to the LEFM is
made through the stress intensity factor.

The thin film behavior is analyzed by using the path fol-
lowing techniques considered in the previous section (see
Boxes 1, 2). These methods allow for analyzing very
complicated problems with high degree of non-linearity.
For example, the very sharp limit points and following
unload paths arising during the computations are traced
successfully (see Figs. 5 and 6).

The delamination of the film from the substrate is as-
sumed as the only failure mode. The interior film or sub-
strate failure is not considered in the present work.

Stable or unstable developments of the film delamination
can occur. The unstable delamination means entire de-
cohesion of the film in a dynamic mode because of the
instability of the static solution. The stable delamina-
tion means creation and gradual development of the edge
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Figure 5 : A typical case of the unstable delamination.
(a) The film under linearly varying thermal load; (b) The
horizontal displacement, u, of the free film edge as a
function of the temperature loading parameter λ.

cracks and nucleation of the local interior delaminations
– blisters. Two modes of delamination development are
possible: (a) the shearing delamination arising from the
ideal non-frictional sliding of a film along the substrate
and (b) the buckling of the film leading to the opening of
a crack – rising of a film part from a substrate.

The unstable delamination type is shown in Fig. 5. The
graph (Fig.5b) presents the horizontal displacement, u, of
the free end of the film, subjected to the conditions shown
in Fig.5a, as a function of temperature changes, T . All
sharp peaks appearing on the graph are limit points cor-
responding to the separation of a single finite element of
the film when the normal or the shear traction reaches the
maximum value: Tn = σmax or Tt = τmax. In the presented
case the shear delamination type takes palace when the
crack between the film and the substrate propagates due
to the sliding of the film on the substrate and the opening
of the crack does not occur (the film clings to the sub-
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Figure 6 : The case of the partial stable delamination
(the case of the blister creation). (a) The film under pre-
sented conditions; (b) The horizontal displacement, u, of
the film near the fixed edge as a function of the tempera-
ture loading parameter λ.

strate). It can be seen that the separation value of the ther-
mal load parameter λ of the first finite element (λ ≈ 7)
is higher than needed to gain decohesion of the second
(λ≈ 5.5), third (λ≈ 4), and so on elements. As a result
the separation of the film from the substrate is developed
dynamically after debonding of the first element.

In Fig.6 the case of partially stable/unstable delamina-
tion is presented. It can be seen that the debonding starts
unstably and jumps to a stable state. The stable delami-
nation is characterized by the increasing thermal load pa-
rameter, λ - Fig.6b. The competing conditions of mate-
rial and load non-uniformity are presented in Fig.6a. The
delamination process starts at the fixed right edge of the
film and after unstable propagation is arrested – increas-
ing temperature is needed for the subsequent separation
– what means creation of a blister. The qualitative be-
havior of the film under the conditions presented in Figs.

5 and 6 is shown in Figs. 7 and 8 respectively.

The unstable propagation of the delamination in the pre-
sented case can lead to the complete decohesion of the
beam due to the inertia. The latter requires dynamic anal-
ysis, which is beyond the scope of our work.

In simulations considered above and below the film is
partitioned in 30 elements of the equal length, if not de-
fined otherwise. The film length is L = 30 µm; the film
height is h = 2 µm.

Simulation results are presented for different values of
the material parameters in Figs. 7-11. The bold cohe-
sive layer designates perfect bonding. It disappears with
debonding. The symbol of the load incremental factor λ
is replaced by t emphasizing the thermal character of the
load. The delamination mode for various loading cases
is defined by analyzing the values of the load factor t de-
termined at various stages of debonding.

It is assumed that delamination can propagate in two dif-
ferent modes: (a) due to the sliding of the film on the
substrate, called shearing or Mode-II-like, where the tan-
gent traction of the cohesive surface reaches its maxi-
mum value and afterwards decreases to zero; and (b) due
to the opening of the crack between the film and the sub-
strate, called opening or Mode-I-like, occurring when the
normal traction increases to its maximum and afterwards
decreases to zero.

The boundary conditions of the film for all simulations
are chosen free-fixed that permit the creation and the de-
velopment of both the edge crack (the formation and the
spread of the free end delamination) and the blister (the
nucleation and the propagation of the fixed end delami-
nation).

The cohesive surface strength is regulated in all simula-
tions by the variation of the work separation value φn.
Also the coefficient of the thermal expansion α and the
film thickness are varied.

3.2 Simulation cases

The simulation cases for the thin film under thermal loads
are presented in Figs. 7-11.

We begin with the comparison of two cases of the non-
uniform thermal loading presented in Figs. 7a and 8a.
The difference is in the gradient of the thermal load. In
the former case the temperature increases from the free
edge to the fixed edge. In the latter case the temper-
ature decreases from the left to the right accordingly.
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Figure 7 : (a) Non-uniform heating of the film – unstable delamination; (b) Non-uniform heating of the film with
the non-uniform cohesive surface strength distribution and the film material imperfection – stable delamination with
the blister formation.

   a.      b. 

Shearing

Opening

Shearing

Shearing

1000

t = 1.682

t = 3.505

T (  C)

t = 0.899

t = 0.615

33.3
o

Shearing

Shearing

Shearing + Opening

Shearing

0.01

33.3

t = 0.546

t = 0.566

T (  C)

(J/m)

t = 0.533

t = 0.447

1000

1

o

n

Figure 8 : (a) Non-uniform heating of the film – stable delamination; (b) Non-uniform heating of the film with the
non-uniform distribution of the cohesive strength – stable delamination.
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Figure 9 : (a) Non-uniform heating of the film with the local defect of the cohesive surface – unstable delamination;
(b) Non-uniform heating of the film with the initial blister – stable delamination.
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Figure 10 : (a) Non-uniform heating of the film with the non-uniform distribution of the cohesive strength and the
thermal expansion coefficient – unstable delamination (b) Stabilization of the delamination in case (a) by allowing
for the vertical displacements at the right edge.
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Figure 11 : (a) Non-uniform heating of the film with the edge thinning – unstable delamination; (b) Non-uniform
heating of the film with the edge thinning – stable delamination

In both cases the crack nucleates at the free edge. Its
propagation, however, is unstable, i.e. dynamic, in the
case shown in Fig.7a, and its propagation is stable, i.e.
quasi-static, in the case shown in Fig.8a. The physical
reason for such difference is that all film elements in
Fig.7a are exposed to the larger thermal loads as com-
pared to the load at the free edge element where debond-
ing starts. Thus delamination propagates in a dynamic
mode in Fig.7a. On the contrary, all film elements in
Fig.8a are exposed to the lower thermal loads as com-
pared to the load at the free edge element where debond-
ing starts. Thus the rupture of the successive elements
requires the increase of the thermal load as shown in
Fig.8a.

It is very interesting that the unstable (dynamic) crack
propagation for the positive temperature gradient can be
’stabilized’ by the non-uniform distribution of the sepa-
ration parameter (separation work φn) along the cohesive
layer as shown in Fig.8b. Roughly speaking, the contact
between the film and the substrate is weak at the free edge
and it is getting stronger towards the fixed edge. In this
case the debonding starts at the free edge under the low
temperature (as compared to Fig.7a). However, the en-
ergy supplied to the crack tip in this case is not enough in

order to separate the successive element and the loading
parameter should be increased. The crack grows quasi-
statically in a stable mode.

The weak contact between the film and the substrate can
essentially affect delamination results. The case where
the weak cohesive zone shifts crack nucleation to the
right (fixed) edge of the film is shown in Fig.9a. The
crack propagates unstably, i.e. dynamically. This case is
sensitive to the specific parameters of the contact. A case
where the initial crack propagation is stable is shown in
Fig.9b. The initial blister at the fixed edge can grow sta-
bly up to a certain value of the thermal loading parameter.
Then the dynamic delamination takes place.

The case of the weakened contact between the film and
the substrate is complicated with the non-uniform distri-
bution of the coefficient of the thermal expansion α in
Fig.10. This leads to the delamination scenario where a
blister nucleates inside the film and not at the free edge.
Two cases of the unstable and stable blister propagation
are given in Fig.10a and Fig.10b, accordingly. The sta-
bilization of the blister in Fig.10b is achieved by allow-
ing for the vertical displacements at the fixed edge – the
moving fixed edge.

Finally, the practically important case of the film imper-
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fection in the mode of the decreasing height has been
considered under the non-uniform temperature distribu-
tion (Fig.11). Again the stability or instability of the
crack propagation depends on the temperature gradient
like in the case considered in Figs.7a and 8a. The mode
of crack nucleation, however, may be affected by the im-
perfect height as shown in Fig.11a. In this case the crack
does not nucleate at the very edge. Instead a blister is
born close to the film free edge and then it propagates in
both directions.

3.3 Convergence of the finite element method

The simulations described in the previous subsection we
carried out for the 30 finite element model of the film.
The relatively coarse finite element mesh was used be-
cause of the numerical problems inherent in the delam-
ination simulation. These problems are the extremely
sharp limit points and the closeness of the different parts
of the equilibrium path as shown in Figs. 5 and 6. As
a result of that the numerical advance along the equilib-
rium path is exceptionally time-consuming.

In order to estimate the inaccuracy introduced by the
coarse mesh we considered the convergence of the re-
sults for the increasing number of elements in the case
of the film subjected to the uniform thermal load. The
critical thermal load equals 585 ◦C for the 30-element
uniform mesh when the dynamic delamination starts. It
is equal to 368 ◦C for the 60-element uniform mesh. The
critical temperature values corresponding to the delami-
nation nucleation with of 90 and 120 finite elements are
presented in Fig. 12. It is clear from these computa-
tions that the more coarse mesh tends to overestimate the
critical load as expected by the analogy with a linear fi-
nite element analysis. Nonetheless, the specific value of
the critical load is not very important for us because only
physically approximate model problem is considered. In-
deed, this is an idealized one-dimensional delamination
of a piece of a real film. The qualitative character of the
delamination is more important than the specific numeri-
cal magnitudes of thermal loads or displacements.

In order to check the influence of the mesh refinement on
the qualitative results of the delamination modeling we
performed a number of simulations on both coarse (30
elements) and finer (60 elements) meshes. The typical
result is shown in Fig.13. Though the qualitative behav-
ior is similar in both cases the finer mesh leads to more
flexible structure. Such comparison allows us to accept
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Figure 12 : The temperature values of the edge crack
delamination start in the case of the uniform heating of
the film with a different number of elements.

the qualitative results of the simulations on the coarse
mesh.

4 Conclusions

Qualitative analyses of the thin film delamination (Figs.
7-11) have been carried out on the grounds of the numer-
ical finite element simulations. The computations lead
to the following qualitative conclusions regarding delam-
ination behavior of the film for varying thermal loads,
bulk and interface material properties:

• Typically, crack nucleates at the free edge of the
film.

• The dominant mode of the thermal delamination of
the film is shearing (Mode-II-like-crack).

• The gradient of the thermal load can essentially af-
fect the type of the film delamination: it can lead
to the stable, i.e. quasi-static, or unstable, i.e. dy-
namic, propagation of the edge crack.

• The imperfect contact between the film and the sub-
strate can shift the delamination from the edge to the
internal area of the film, i.e. a blister is created.

• The imperfect contact between the film and the sub-
strate can lower the critical load of the crack nucle-
ation while transforming the dynamic crack propa-
gation in the quasi-static one.
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Figure 13 : (a) The free end displacements of the thin film with respect to the thermal load factor, t, for 30 ant 60
element cases; (b) The thin film model

• The non-uniform distribution of the thermal expan-
sion coefficient amplifies or reduces the critical ther-
mal load while it has a little effect on the film delam-
ination process as a whole.

• The film thinning at the free edge can lead to the
appearance of the unstable blister close to the edge.

Some specific conclusions can be made regarding the ar-
rest of the delamination propagation leading to the stable
blister creation:

• The strength of the cohesive surface can signifi-
cantly affect the blister formation phenomenon.

• The blister nucleation is possible only for some spe-
cific combinations of the film and interface proper-
ties with suitable thermal load shapes, in all other
cases the internal delamination advances dynami-
cally or the edge crack runs.
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