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Green’s First Identity Method for Boundary-Only Solution of Self-Weight in BEM
Formulation for Thick Slabs

Youssef F. Rashed1

Abstract: The present paper develops a new tech-
nique for treatment of self-weight for building slabs in
the boundary element method (BEM). Due to the use
of BEM in the analysis, all defined variables are pre-
sented on the slab boundary (mesh is defined only along
the slab boundary). Self-weight, however, is usually de-
fined over slab domain, hence domain discretisation is
required, which spoils the main advantage of the BEM.
In this paper a new method is presented to transform
self-weight domain integrals to the boundary for such
slabs. The proposed method is based on using the so-
called Green’s first identity. All new kernels for gener-
alized displacements, stress-resultants, and tractions are
derived and listed explicitly. The present formulation is
implemented into computer code and several examples
are tested. Results are compared against results obtained
from other numerical method to prove the accuracy and
validity of the present formulation.

keyword: Boundary element method, self-weight,
plate bending, slabs, Green’s first identity.

1 Introduction

Typical structural analysis of building floors involves
many types of self-weight and superimposed loading.
These loading are structurally modelled as uniform pres-
sure over the overall plate domain. In finite element
method (FEM) models of structures, such loading can
be modelled easily as pressure over domain elements.
In the boundary element method (BEM) modelling, on
the other hand, the technique requires the discretisation
of the floor boundary only. Therefore treatment of self-
weight loading requires additional discretisation of the
plate domain leading to similar mesh as that of the FEM
.Hence the boundary-only discretisation advantage of the
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BEM is spoiled.

Many researchers have considered transforming self-
weight domain integrals to the boundary to avoid the
additional domain discretisation. Vander Weeën (1982)
used Green’s second identity or the first term of the mul-
tiple reciprocity method to avoid such domain integrals.
El-Zafrany et al. (1994) transformed such integrals using
strain function representation of the displacement funda-
mental solution, which is equivalent to the use of the op-
erator decoupling technique or the Helmholtz representa-
tion of a function. Wen et al. (1999) used alternative nu-
merical integration in polar coordinates to treat domain
integrals in boundary way. The formulation of Wen et
al. (1999) needs transforming the origin to each collo-
cation point on the boundary, which can be regarded as
numerically inefficient. Recently Rashed (2000) treated
such problem using particular integrals, which is not gen-
eral method. A summary of such techniques is given by
Brebbia and Rashed (2003).

The present paper is concerned of using a new method
to treat self-weight domain loadings using the applica-
tion of Green’s first identity theory. The main advan-
tage of using the present technique is the simplicity of
the transformed kernels and it guarantees smoothness of
the derived boundary integrals. All necessary kernels are
derived and given in explicit form for further use. The
proposed method is implemented into computer code and
two examples are tested. The results are compared to tra-
ditional domain integral formulation of the BEM and also
to results obtained from the FEM.

2 Problem definition

The boundary integral equation for an arbitrary plate
governed by the Reissner theory can be written in ma-
trix form as follows:

[H]{u}= [G]{t}+{Q} (1)

where [H] and [G] are the well-known boundary element
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influence matrices and {u} and {t} are the vectors of
the boundary generalized displacements and tractions re-
spectively. The vector {Q} is the vector of domain load-
ing which is represented by three values for each collo-
cation node, i.e.:

Qi(ξ)

=
∫
Ω

[
Ui3(ξ,X)− ν

(1−ν)λ2Ui j, j(ξ,X)
]

q(X)dΩ (2)

Where Ui j is the expression of the fundamental solution
for the displacement (see Vander Weeën (1982)), i=1,2
to represent rotational terms and i=3 to represent the de-
flection term. The symbols ν, λ denote Poisson’s ratio
and the shear factor respectively. Equation 2 is written in
terms of two-point notation, where ξ, X denote the source
and the field point respectively. The point X is domain
point. q is the plate self-weight and assumed constant. In
this paper the indicial notation is used.

In order to evaluate the integral in Eq.2, the domain Ω
has to be discretised to cells and hence it is computed nu-
merically using certain number of Gauss points (G.PT.).
This paper concerns with transforming this integral to the
boundary.

The second term of the integral in Eq.2 can be directly
transformed to the boundary as follows:

q
ν

(1−ν)λ2

∫
Ω

Ui j, j(ξ,X)dΩ

= q
ν

(1−ν)λ2

∫
Γ

Ui j(ξ,x)n j(x)dΓ (3)

where n j(x) are the component of the normal at the point
x. The first term of the integral in Eq.2, can be treated
using Green’s first identity as follows:∫
Ω

Ui3(ξ,X)dΩ =
∫
Ω

Gi3θ,θ(ξ,X)dΩ

=
∫
Γ

Gi3θ(ξ,x)nθ(x)dΓ (4)

Where the new kernels Gi3θ, will be computed in the next
section.

3 New equivalent boundary kernels

The main idea of this paper is to represent the fundamen-
tal solution term inside the domain integral of Eq.2 in

terms of the gradient of another functions to allow the ap-
plication of the Green’s first identity theory as presented
in Eq. 4. In order to compute the tensor Gi3θ, the follow-
ing relationships can be easily proven and can be used in
such representation:

[
r2r,αr,θ

3

]
,θ

= rr,α (5)

[
λ2r3r,θ

4

]
,θ

= λ2r2 (6)

[
ln(λr)r r,θ

2
− rr,θ

4

]
,θ

= ln(λr) (7)

[
ln(λr)r2r,α r,θ

3
− r2r,αr,θ

9

]
,θ

= rr,α ln(λr) (8)

[
ln(λr)λ2r3r,θ

4
− λ2r3r,θ

16

]
,θ

= λ2r2 ln(λr) (9)

Using the former relationships, the expression of the fun-
damental solution can be represented as follows:

Uα3 =
1

8πD
(2ln(λr)−1) rr,α (10)

=
1

8πD

([
2ln(λr)r2

3
− 5r2

9

]
r,α r,θ

)
,θ

(11)

= Gα3θ,θ (12)

and

U33

=
1

8πD(1−ν)λ2

[
(1−ν)λ2r2(ln(λr)−1)−8ln(λr)

]
(13)

=
1

4πD(1−ν)λ2(
r,θ

[
8(1−ν)(4ln(λr)−5)λr3− r(2ln(λr)−1)

] )
,θ
(14)

= G33θ,θ (15)

Therefore the required tensor kernels can be obtained by
applying Eq.4, as follows:

Gα3γ =
1

8πD

[
2ln(λr)r2

3
− 5r2

9

]
r,αr,γ (16)
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G33γ

=
r,γ

4πD(1−ν)λ2[
8(1−ν) (4ln(λr)−5) r3λ2 − r (2ln(λr)−1)

]
(17)

4 New kernels at internal points

The previous section treated the kernels associated with
boundary values. In this section the kernels required for
computation of stress resultants at internal points are de-
rived. The integral identities for bending moments and
shear forces at internal point ξ is given by Vander Weeën
(1982):

Mαβ(ξ)

=
∫

Γ(x)

Uαβk(ξ,x)tk(x)dΓ(x)−
∫

Γ(x)

Tαβk(ξ,x)uk(x)dΓ(x)

+q
∫

Γ(x)

[
Gαβ3(ξ,x)− ν

(1−ν)λ2Uαβθnθ

]
dΓ(x)

+
ν

(1−ν)λ2 qδαβ (18)

Q3β(ξ)

=
∫

Γ(x)

U3βk(ξ,x)tk(x)dΓ(x)−
∫

Γ(x)

T3βk(ξ,x)uk(x)dΓ(x)

+q
∫

Γ(x)

[
G3β3(ξ,x)− ν

(1−ν)λ2U3βθnθ

]
dΓ(x) (19)

Where Uiβk, Tiβk are relevant kernels for the boundary
displacements and tractions (Vander Weeën (1982)). The
new kernels Gαβ3 and G3α3 can be computed from suit-
able stress-resultant-generalized displacement relation-
ship to give (Vander Weeën (1982)):

Gαβ3 =
D(1−ν)

2

(
Gα3n,β +Gβ3n,α +

2ν
1−ν

Gγ3n,γ δαβ

)

(20)

G3α3 =
D(1−ν)

2
λ2 (Gα3n +G33n,α) (21)

Substituting from Eq.16 and Eq.17 into Eq.20 and Eq.21
to give:

Gαβ3 =
r

144π
{(1−ν) [5−6ln(λr)]

(
nβr,α +nαr,β

)
+δαβr,n [23−5ν−12ln(λr)(1+ν)]
−12r,αr,βr,n(1−ν)

}
(22)

G3α3 =
1

144π
{nα [18(2ln(λr)−1)

+144(λr)2(1−ν) (5−4ln(λr))
]

+r,αr,n
[
36+(λr)2(1−ν) (859−1146ln(λr))

]}
(23)

5 Numerical testing (comparison to domain integral
formulation)

A computer code was developed to implement the
present formulation. Quadratic boundary elements are
used together with constant internal cells. In this section
the formulation presented in the paper is tested against
domain integral formulation of the BEM. The effect
of changing the number of cells and Gauss integration
points are studied.

A square plate of side length 4 m is studied. The plate is
clamped from all sided and has thickness of 0.2. The
Young’s modulus is taken equal to 2.1×106 t/m2 and
Poisson’s ratio is taken 0.16. Each plate side is discre-
tised using 4 quadratic boundary elements. Discontinu-
ous elements are employed at corners to cope with the
discontinuity in the traction. The plate is analyzed under
domain loading of –1 t/m2 to represent the self-weight.
The analysis is carried out several times:

1. Using the traditional domain integration formulation:
by changing the number of domain cells: 1, 2, 4, 8,
16 and 32. In this case the number of Gauss integra-
tion points are fixed to 4 G.PT.

2. Using the traditional domain integration formulation:
by changing the number of Gauss integration points:
4, 8, 10, 20, 40 and 60. In this case only one domain
cell was used to represent the domain loading.

3. Using the present formulation without domain cells
and with only 4 G.PT.

The deflection, bending moments, and shear forces at
points A (center point X=0, Y=0) and B (located at the
center of the first quadrant of the plate, X=3 m, Y=3 m)
are plotted in figs. (1) to (5). It can be seen that the
present formulation produces accurate results with only
4 G.PT to compute boundary integrals. The accuracy of
the present formulation is similar to using at least 40-60
G.PT with one domain cell, or using at least 16 to 32
domain cells.
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Figure 1 : Deflection (m) at point A.
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Figure 2 : Bending moment (m.t./m) at point A.
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Figure 3 : Deflection (m) at point B.
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Figure 4 : Bending moments (m.t./m) at point B.
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Figure 5 : Shear force (t/m) at point B.

6 Curved slab application (comparison to the finite
element method)

The former example demonstrated the accuracy of the
present formulation against traditional domain integral
computation. In this example the accuracy of the present
formulation is tested against the results of the FEM.

The shown slab in fig. (6) is analyzed using the BEM
based on the present formulation and analyzed another
time using the FEM. The slab is of 0.25 m thickness and
clamped along GH, HI, IJ, JD, whereas it has free edge on
the circular boundary DEFG. The slab is supported also
on two columns (0.4×0.4m) inside the domain. Columns
are of length 3m and 3m at the levels below and above
the slab and are fixed at their ends. Young’s modulus
was taken 2.1×106 t/m2 and Poisson’s ratio is taken 0.2.
The slab is analyzed under domain loading of 1.1 t/m2 to
represent both self-weight and live load.

In the FEM analysis, the 4-node rectangular thick plate
element was used. Curved boundary of the slab is
approximated using straight lines. The element size
adopted is about 0.4×0.4 m. Triangular elements are
used to fit along the circular boundary. Columns are
modeled using skeletal frame element connected to the
slab at single node.

In the present BEM analysis, the plate is discretised us-
ing 26 boundary elements. Discontinuous elements are
used only at corners: H, I, J to model discontinuous trac-
tions at these points. Columns are modeled using two
internal cells with suitable axial and rotational stiffness.
The self-weight and live load on the slab is treated using
the derived boundary integrals in the present work.

Table 1 demonstrates the column reaction bending mo-
ments and axial forces obtained from the FEM and the
present BEM models. Results for the deflections, ro-
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Table 1 : Column reactions for the curved slab

 Present BEM FEM 

Bending moment Mx (m.t.) 5.68 5.54 

Bending moment My (m.t.) 6.40 6.28 

Axial force (t) 25.81 27.24 
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Figure 6 : The considered curved slab.

tations, bending moments, twisting moments and shear
forces in X and Y direction along the line B-B are plot-
ted as shown in figs. (7) to (12) respectively. It can
be seen that the results of the present formulation are in
good agreements with those obtained from the FEM. The
observed difference in the deflection, rotation and shear
results is due to:
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Figure 7 : Deflections of the curved slab.
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Figure 8 : Rotation of the curved slab.
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Figure 9 : Bending moment Mxx of the curved slab.

1. The FEM treats the plate as discretised structure,
whereas BEM models the plate as continuum. This
affects the results of the deflection and rotation.

2. The difference in modeling the column: in FEM the
column is treated as skeletal frame connected to the
plate at single node, whereas in the BEM the col-
umn is modeled using its actual cross section. This
affects the result of the shear, especially in the vicin-
ity of the column.

These modeling differences lead to more accurate results
obtained from the BEM.
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Figure 10 : Bending moment Myy of the curved slab.
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Fig. (11): Twisting moment Mxy of the curved slab. 

Figure 11 : Twisting moment Mxy of the curved slab.
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Figure 12 : Shear force of the curved slab.

7 Conclusions

The present work develops a technique to treat self-
weight in the BEM for plates using boundary integrals.
This new development allows the analysis of slabs us-
ing the BEM with boundary-only discretisation. Green’s

first identity was used in the developments of the new
equivalent boundary integrals. Kernels necessary for the
present transformation were derived and given in explicit
form. The developed formulation was tested using two
examples: clamped square plates, and curved cantilever
slab. Results are compared to traditional BEM formula-
tion using domain cells, and FEM. It was shown that the
accuracy of the present formulation is very accurate even
with few number of Gauss integration points. Also it can
easily model curved boundaries without any approxima-
tions. It has been also demonstrated that the BEM using
the developed formulation can accurately models struc-
tures as continuum leading to more accurate and realistic
results.
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