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Lamb Wave Interaction with Delaminations in CFRP Laminates
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Abstract: In this paper, we investigate Lamb wave in-
teraction with delamination in an infinite carbon fiber re-
inforced plastics (CFRP) laminate by a hybrid method.
The infinite CFRP laminate is divided into an exterior
zone and an interior zone. In the exterior zone, the wave
fields are expressed by wave mode expansion. In the
interior zone, the wave fields are modeled by the finite
element method (FEM). Considering the continuity con-
dition at the boundary between the exterior and interior
zones, the global wave fields can be calculated. Lastly,
numerical examples show how a delamination in the lam-
inate influences the mode conversion of different incident
wave modes.

keyword: Lamb Wave, Delamination, CFRP Lami-
nates, Finite Element Method, Wave Function Expansion

1 Introduction

Recently, considerable work has been focused on the de-
velopment of smart structures. Smart structures can self-
sense and self-process the environment information so
that such structures offer new possibilities for a charac-
terization of structures in the future. Carbon fiber rein-
forced plastics (CFRP) with surface bonded or embed-
ded thin piezoceramic patches used as sensors and/or
actuators are very attractive for designing smart struc-
tures. [Gabbert and Tzou (2001)] The main advantages
of such structures are i) its light weight, high stiffness and
high strength of material, which results from a tailored
anisotropic layered design, and ii) its sensing and actuat-
ing capability which enables such structures to adaptively
react to changing environmental conditions. But during
manufacturing and also during operating such structures
often inevitable imperfections can be observed in the
smart piezoceramic CFRP laminates, such as local con-
centrations of fibers or epoxy, delaminations, debond-
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ing of active ceramics, local fiber cracks, voids, inclu-
sion etc. [Pohl, Mook, and Michel (2000), Gabbert and
Cao (1999)] In extension to conventional non-destructive
evaluation methods (NDE), the smart material them-
selves can be used to monitor and to detect such dam-
ages and imperfections. Such real-time health monitor-
ing techniques can increase the reliability of smart struc-
tures, reduce the operational costs and offer many unique
opportunities to assess the structural integrity. There are
some kinds of health monitoring method for smart piezo-
ceramic CFRP laminates, such as electrical impedance
spectroscopy, Lamb wave techniques etc. [Pohl, Mook,
and Michel (2000)] From all of these methods, Lamb
wave method seems to be the most attractive method
for health monitoring in smart piezoceramic CFRP lam-
inates. Lamb waves are one kind of guided waves that
propagate in thin plates, which are also called plates
modes. There are a finite number of symmetrical or
anti-symmetric Lamb wave modes at a given frequency-
thickness product, which are called S0, S1,. . . , Sn and A0,
A1, . . . , Am. These Lamb waves modes have different
phase velocity and group velocity. The integrated piezo-
ceramic patches can actuate and sense ultrasonic Lamb
waves propagating in the plane of CFRP laminates. The
ultrasonic Lamb wave can propagate for a long distance
so that the lamb wave method is suitable for global health
monitoring of smart structures. Furthermore, ultrasonic
Lamb waves are very sensitive to delamination, which
are typical defects in smart CFRP laminates. [Kundu,
Karpur, Matikas, and Nicolau (1996)] For quantitative
evaluations by Lamb wave techniques, it is important to
investigate Lamb wave interaction with delamination. As
a first step in this paper infinite CFRP laminates are in-
vestigated.

The wave scattering due to defects in plates has re-
ceived considerable attention in the literature. Pao and
Mow [Pao and Mow (1973)] used the wave function ex-
pansion method to investigate the diffraction of elastic
wave by a circular hole in an infinite isotropic plate.
But the wave function expansion method is only suit-
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able for simple boundaries, such as circular or elliptical
holes etc. Abduljabbar [Abduljabbar, Datta, and Shah
(1983)] presented a hybrid method combining the finite
element method and the wave expansion method to solve
the scattering of SH waves by arbitrarily shaped cracks
in isotropic plates. Doyle [Doyle (1997)] presented the
spectral super-element method, which is similar with the
hybrid method presented by Abduljabbar, [Abduljabbar,
Datta, and Shah (1983)] to analyze the incident longitu-
dinal wave interaction with a transverse crack in a plate.
Karumasena et al. [Karunasena, Liew, and Kitiporn-
chai (1995)] extended the hybrid method to investigate
the wave scattering by normal edge cracks in composite
plates. Up to now, the investigation of Lamb wave re-
flections and transmissions caused by delaminations in
CFRP laminates has not been reported in literatures.

In the paper the Lamb wave interaction with a delam-
ination in an infinite CFRP laminate is investigated by
the hybrid method combining analytical and numerical
methods. For this purpose the infinite CFRP laminate is
divided into two zones, which are called exterior zone
and the interior zone. In the exterior zone wave fields
are expressed analytically by the wave mode expansion
method. In the interior zone, the wave field is approxi-
mated by the finite element method. Taking into account
the continuity conditions at the boundaries between the
exterior and interior zones, the global wave fields can be
calculated. Lastly, numerical examples are presented to
show the delamination influences the mode conversion
of the different incident wave modes. The numerical re-
sults may be helpful to better understand and to apply
the Lamb wave techniques experimentally to monitor the
integrity of smart piezoceramic structures.

2 The Hybrid Method

Consider an infinite CFRP laminate consisting of several
unidirectional fibrous composites laminaes of the same
material rigidly bonded at their interfaces, combinations
of only 0◦ and 90◦ layups are allowed. Here one global
coordinate system with the origin at the upper surface of
CFRP laminate are introduced, where x coincides with
the fiber direction of upper surface of the CFRP lami-
nate and y coincide with the thickness direction of lami-
nate. In the following the hybrid method is presented to
analyze the reflection and the transmission of harmonic
plane strain waves if delaminations occurs in CFRP lam-
inates. Here it is assumed that delamination of length a is

located at x = 0, y = y0 in the CFRP laminate (see Fig.1).
The incident Lamb wave propagates from x = ∞ along
the negative x axis. The laminate is divided into two
types of zones: i) the exterior zones A and B which in-
cludes the reflected wave zone and the transmitted wave
zone, and ii) the interior zone of length (x1 + x2), where
x1 and x2 are greater than one half of the delamination
length a.

2.1 Wave function expansion in the exterior zone of
the CFRP laminate

2.1.1 The reflected wave zone and the incident wave
zone

In the exterior zone of the CFRP laminate we consider
that the laminate consists of several unidirectional lam-
inaes, each laminae is modeled as an orthrotropic mate-
rial. In each laminae, the constitutive equation is given
by
⎡
⎣ σxx

σyy

σxy

⎤
⎦ =

⎡
⎣ C11 C12 C13

C21 C22 C23

C31 C32 C33

⎤
⎦

⎡
⎣ εxx

εyy

γxy

⎤
⎦ , (1)

where σi j and εi j are the stress and strain components.
γxy = 2εxy. The strain is denoted by

εxx =
∂ux

∂x
,εyy =

∂uy

∂y
,γxy =

∂ux

∂y
+

∂uy

∂x
, (2)

where ux and uy are the displacement components along
the x and the y axis, respectively, which satisfy the mo-
tion equations.

C11
∂2ux

∂x2 +C22
∂2ux

∂x2 +(C12 +C33)
∂2uy

∂x∂y
= ρ

∂2ux

∂t2 , (3)

(C12 +C33)
∂2ux

∂x∂y
+C22

∂2uy

∂y2 +C33
∂2uy

∂x2 = ρ
∂2uy

∂t2 . (4)

Formal solutions for the motion equations can be sought
in the following form

(ux,uy) =
4

∑
q=1

(1,Wq)U1qeik(x+αqy)−iωt, (5)

where i =
√−1, k is the x component of the wave num-

ber, ω is the circular frequency, α is an ratio of the wave
number components along the y and x direction which
can be derived from Eq. (3) and (4), U1 is the unknown
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Figure 1 : Delamination of composite laminate

amplitude of displacement ux, W is the ratio of the am-
plitude of displacement uy and ux.

Assumed that the interface between the different lami-
naes is rigidly and bonded and the both surfaces of CFRP
laminate is traction free and adopting the global matrix
formulation [Lowe (1995)] for the infinite CFRP lami-
nate and the eigenvalue problem can be written as

[K] Q = 0, (6)

where Q =
[
U1

1,U2
1, ...U

n
1

]T
is the amplitude vector of

displacement ux of CFRP laminate.

If Q has non-trivial solution, the determinant of [K] must
be zero. The solution of the eigenvalue problems results
in the different wave numbers ki and the corresponding
displacement mode shape ϕi, where the real ki represents
the propagating Lamb wave modes and the non-real ki

represents the non-propagating Lamb wave modes.

To ensure that the reflected waves produce bounded dis-
placements and stresses throughout the CFRP laminate,
the admissible wave numbers k must be those real roots
with positive group velocity and those non-real roots with
Im(k) > 0. A total of M number of roots k are ordered
as follows: real roots are ordered firstly in decreasing or-
der of their magnitude; non-real roots are ordered next
in the ascending order of magnitude of their imaginary
parts. If a complex k is encountered, which is not purely
imaginary, the negative complex conjugate −k is also in-
cluded.

The reflected waves in the zone A (see Fig. 1) can be
approximately expressed by a summation of the first M1

Lamb wave modes.

qr(x,y) =
M1

∑
m=1

Amϕm(km,y)exp(ikmx)exp(−iω t),

x > x1, (7)

where Am is the magnitude of the mth reflected wave
mode, qr (x,y) = [ux (x,y) ,uy (x,y)]T is the displacement
vector, ϕm is the mth displacement mode shape of the
corresponding displacement. The factor exp (−iω t) is
omitted in the following analysis.

The stress components in the infinite CFRP laminate
caused by the reflected waves are denoted by

pr(x,y) =
M1

∑
m=1

Amψm(km,y)exp(ikmx), x > x1, (8)

where pr (x,y) = [σxx (x,y) ,σxy (x,y)]T is the stress vec-
tor, σxx (x,y) and σxy (x,y) are the stresses along the x
and y axis, respectively, ψm (km,y) is the mth stress mode
shape of the corresponding stresses.

After discretization along the boundary B1, the bound-
ary displacements of the reflected wave can be expressed
approximately by the nodal displacements as

qr(x1,y) = NQr(x1), (9)

where N is shape function, which is determined by the fi-
nite element type used in the interior zone, and Qr (x1) =[

qr (x1,y1)
T qr (x1,y2)

T · · · qr (x1,yN1)
T ]

is the
vector of the nodal displacements along the boundary B1,
which can be expressed as

Qr(x1) = G1D1(x1), (10)
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with

G1 =

⎡
⎢⎢⎢⎣

ϕ1 (k1,y1) ϕ2 (k1,y1) · · · ϕM1 (k1,y1)
ϕ1 (k1,y2) ϕ2 (k1,y2) · · · ϕM1 (k1,y2)
...

...
. . .

...
ϕ1 (k1,yN1) ϕ2 (k1,yN1) · · · ϕM1 (k1,yN1)

⎤
⎥⎥⎥⎦

and D1(x) =
[ A1 exp(ik1x1) A2 exp(ik2x1) · · · AM1 exp(ikM1x1) ]T .

The forces at boundary nodes are denoted by

Pr(x1) = F1D1(x1), (11)

where Pr (x1) =
[ Fr(x1,y1)T Fr(x1,y2)T · · · Fr(x1,yN1)T ]T

is the nodal force vector along the boundary B1, with

F1 =

⎡
⎣∫

B1

Nψ1 (k1,y1)dy
∫
B1

Nψ2 (k2,y2)dy

· · ·
∫
B1

NψM1 (kM1,yN1)dy

⎤
⎦ .

The displacements and forces at boundary nodes for the
pth incident wave can be expressed by

Qin(x1) = Ain
p G1p(−kp)exp(−ikpx1), (12)

Pin(x1) = Ain
p F1p(−kp)exp(−ikpx1), (13)

where G1p and F1p are the pth column of G1 and F1,
respectively, after replacing the wave number kp by its
negative value.

2.1.2 The transmitted wave zone

The transmitted wave in zone C can also be written in the
above given form as

qt (x,y) =
M2

∑
m=1

Bmϕm(−km,y)exp(−ikmx), x < x2.

(14)

After discretization along the boundary B2, the displace-
ments and forces at the boundary nodes are written as

Qt(x2) = G2D2(x2), (15)

Pt(x2) = F2D2(x2), (16)

with Qt (x) =
[ qt(x2,y1)T qt(x2,y2)T · · · qt(x2,yN2)T ],
G2 =⎡
⎢⎢⎢⎣

ϕ1(−k1,y1) ϕ2(−k1,y1) · · · ϕM2(−k1,y1)
ϕ1(−k1,y2) ϕ2(−k1,y2) · · · ϕM2(−k1,y2)
...

...
. . .

...
ϕ1(−k1,yN2) ϕ2(−k1,yN2) · · · ϕM2(−k1,yN2)

⎤
⎥⎥⎥⎦ ,

F2 =

⎡
⎣∫

B2

Nψ1 (k1,y1)dy
∫
B2

Nψ2 (k2,y2)dy

· · ·
∫
B2

NψM2 (kM2,yN2)dy

⎤
⎦ ,

D2(x) = [B1 exp(ik1x2) B2 exp(ik2x2)
· · · BM2 exp(ikM2x2)]

T .

2.2 Finite element approximation of the interior zone

Because of complicated geometry, the wave fields in the
interior zone B containing the delamination are difficult
to express by wave functions. One of significant advan-
tages of the conventional finite element is their model-
ing of the complicated geometries. So the finite element
method is applied to model the wave fields in the inte-
rior zone. In this paper the delamination is assumed to
be a crack with traction free surfaces. According to the
virtual work principle the finite element approximation
results in the following formulation

δQ
T
[S]Q−δQ

T
BPB = 0, (17)

where QT =
[
QT

I ,QT
B1

,QT
B2

]T
is the global nodal dis-

placement vector, QI is the interior nodal displacement
vector, QB1 and QB2 are the nodal displacement vec-
tors along the boundary B1 and B2, respectively, PT

B =[
PT

B1
PT

B2

]T
is the nodal force vector at the boundary

B1 and B2, and the matrix S is written as

S = K−ω2M =

⎡
⎣ SII SIB1 SIB2

SB1I SB1B1 SB1B2

SB2I SB2B1 SB2B2

⎤
⎦

with the global stiffness matrix K and the global mass
matrix M of the finite-element-discretized interior zone,
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respectively. With S, Eq. (14) can be written as

SIIQI +SIB1 QB1 +SIB2 QB2 = 0, (18)

SIB1 QI +SB1B1 QB1 +SB1B2 QB2 = PB1 , (19)

SIB2 QI +SB2B1 QB1 +SB1B2 QB2 = PB2 . (20)

2.3 The Global solution

Considering the following boundary condition at the
boundary B1 and B2, respectively,

Q B1
= Q in(x1)+Q r(x1), (21)

PB1 = Pin(x1)+Pr(x1), (22)

QB2 = Qt(x2), (23)

PB2 = −Pt(x2) (24)

and substitutionof Eqs. (10-11),(15-16), and (21-24) into
(18-20) yields

A11D1(x1)+A12D2(x2) = C1, (25)

A21D1(x1)+A22D2(x2) = C2, (26)

with

A11 =
[
SB1B1 −SB1 I (SII)

−1 SIB1

]
G1 −F1,

A12 =
[
SB1B2 −SB1 I (SII)

−1 SIB2

]
G2,

A21 =
[
SB2B1 −SB2 I (SII)

−1 SIB1

]
G1,

A22 =
[
SB2B2 −SB2 I (SII)

−1 SIB2

]
G2 +F2,

C1 = Pin (x1)−
[
SB1B1 −SB1I (SII)

−1 SIB1

]
Qin (x1) ,

C2 =
[
SB2B1 −SB2 I (SII)

−1 SIB1

]
Qin (x1) ,

which can be written in a short form as

AD = C (27)

with

A =
[

A11 A12

A21 A22

]
,

DT =
[

DT
1 (x1) DT

2 (x2)
]T

,

CT =
[

CT
1 CT

2

]T
.

After D is known by solving Eq.(27) the amplitudes Am

and Bm can be obtained from D1 (x1) and D2 (x1) in
Eqs.(10) and (16).

2.4 The energy flux

The time average values of energy flux associated with
the nth reflected or mth transmitted propagating Lamb
wave mode through the cross section of the plate, caused
by the pth incident Lamb wave mode, can be defined as

Ir
pn = ω|An|2

∫ H

0
Im(ψn(y)ϕn(y))dy, (28)

It
pm = ω|Bm|2

∫ H

0
Im(ψm(y)ϕm(y))dy, (29)

Iin
p = ω|Ain

p |2
∫ H

0
Im(ψp(y)ϕp(y))dy. (30)

Define the proportion of incident energy transferred into
the nth reflected Lamb wave mode and the mth transmit
Lamb wave mode Er

pn and Et
pm as

Er
pn = Ir

pn/.Iin
p , (31)

Et
pm = It

pm/.Iin
p . (32)

The percentage error in energy balance ε can be defined
as

ε = 100

(
1+∑

n
Er

pn −∑
m

Et
pm

)
. (33)

3 Examples

In the following, an infinite cross-ply [0,90◦]S CFRP
laminate with a delamination, are used to test the above
given approach. The cross-ply laminate has four layers.
Each layer has the same thickness and material constants.
The elastic constants of each of the layers of the laminate
[Nayfeh (1995)] are

C11/C33 = 155.43/7.48,

C12/C33 = 3.72/7.48,

C13 = C23 = 0,

C22/C33 = 16.34/7.48.

The frequency and the wave number are normalized as

Ω = ωH

/√
C33

/
ρ, K = kH,

where ρ is the density and H is the thickness of the CFRP
laminate.
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Table 1 : Er
pn and Et

pm and ε for the cross-ply laminate with delamination length a/H = 1 at Ω = 9.1
r
pmEHy0

p

A1 A2 A3 S1 S2 S3
A1 -0.0066 -0.0066 -0.0001 -0.0000 -0.0000 -0.0000
A2 -0.0051 -0.0184 -0.0018 -0.0000 -0.0000 -0.0000
A3 -0.0000 -0.0002 -0.0469 -0.0000 -0.0000 -0.0000

S1 -0.0000 -0.0000 -0.0000 -0.0295 -0.0082 -0.0033

S2 -0.0000 -0.0000 -0.0000 -0.0139 -0.0221 -0.0014

S3 -0.0000 -0.0000 -0.0000 -0.0049 -0.0027 -0.0255
p t

pmE
A1 0.9545 0.0175 0.0139 0.0000 0.0000 0.0000 0.08
A2 0.0199 0.8837 0.0673 0.0000 0.0000 0.0000 0.38
A3 0.0149 0.0789 0.8653 0.0000 0.0000 0.0000 -0.63

S1 0.0000 0.0000 0.0000 0.8983 0.0141 0.1030 -5.6

S2 0.0000 0.0000 0.0000 0.0119 0.8726 0.0854 -0.72

50.

S3 0.0000 0.0000 0.0000 0.0266 0.0755 0.8438 2.1

For the finite element approximation of the interior zone,
eight-node rectangular finite elements with quadratic
shape functions are used. For the analysis the com-
mercial available finite element software ‘COSAR’ was
applied. [Berger, Gabbert, Köppe, and Seeger (2000),
COSAR] Based on the substructure technique of this
software the systems matrices of the boundary nodes are
calculated. These matrices are available via a data inter-
face for any application outside the finite element soft-
ware.

4 Computational Results

The dispersion curves for the cross-ply laminate are
shown in Fig.2. The solid line and the dash line repre-
sent the anti-symmetric Lamb wave mode and symmetric
Lamb wave mode, respectively.

In order to verify the accuracy of the numerical calcu-
lation a test case with a delamination length a = 0 in
Zone B is calculated firstly for the cross-ply laminates.
Because there is no defect in the laminates, the inci-
dent Lamb wave will be transmitted completely with-
out any reflection. The maximum computational error
of |1−Et

nn| is less than 0.1%. Table 1 show Er
pn and Et

pm
and the percentage error ε for cross-ply laminate respec-
tively at Ω = 9.1. Because of the structural symmetry
with respect to the middle plane of laminate, Table 1 in-
dicates that there is no coupling between the symmet-
ric Lamb wave mode and the anti-symmetric Lamb wave

Figure 2 : Dispersive curve for CFRP laminate

mode. The maximum error ε for the cross-ply laminate
is 5.6% . It is also concluded from Table 1 that Er

pn and
Et

pm satisfy the reciprocity relation [Karunasena, Liew,
and Kitipornchai (1995)] within the small errors, which
results in

Er
pn = Er

np, Et
pm = Et

mp.

Figure 3 shows Er
11, Et

11, Er
1∗ , and Et

1∗ for the different
delamination length in the cross-ply CFRP laminate with
y0

/
H = 0.5. Here p,n,m = 1 represents the A0 mode
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(a)                                                                    (b) 

(c )                                                                      (d) 

Figure 3 : Proportions of energy for the first incident antisymmetric lamb wave for different delamination length in
crossply CFRP laminate

of Lamb waves, and p,n,m = 2 represents the S0 mode
of Lamb waves and Ep∗ is the sum of the proportion of
the pth incident energy transferred into the other higher
Lamb wave mode except A0 and S0. Four cases for the
delamination length a

/
H = 1, a

/
H = 2, a

/
H = 5, and

a
/

H = 10 are considered here. Figures show that un-
til Ω reaches the cut-off frequency ΩA1 of A1 mode of
Lamb waves, there is much more reflection for the four
cases for the incident A0 mode of Lamb waves. Espe-
cially for a

/
H = 1.0 of the delamination length, nearly

95 percent of incident Lamb wave energy is transfer are
transferred into the reflected A0 mode at a specific fre-
quency range. But after Ω reaches the cut-off frequency
of the A1 mode of Lamb waves, little reflection exists for
four cases of delamination length and nearly all of en-
ergy is transferred into the transmitted lamb wave. Most
of the transmitted lamb wave energy is focused on the A0

mode and other energy will be transferred into the higher
anti-symmetric lamb wave mode. From the above, it is
concluded that the frequency range [0,ΩA1], is sensitive
to delamination for the incident A0 mode.

Er
22 , Et

22 ,Er
2∗, and Et

2∗ for the different delam-
ination length in the cross-ply CFRP laminate with
y0

/
H = 0.5 are shown in Fig. 4. It is seen from Fig.4

that when the frequency is smaller than the cut off fre-
quency Ωs1 of the S1 mode of Lamb waves, all of the
incident S0 lamb wave will be transferred into the trans-
mitted S0 Lamb wave. When the frequency is greater
than Ωs1, there will be strong reflection for the incident
S0 Lamb wave and nearly 40 percent energy will be trans-
mitted into higher symmetric Lamb wave in some fre-
quency range. That is to say, the incident S0 Lamb wave
is sensitive to delamination only when the frequency is
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(a) (b)

( c)                                                                        (d) 

Figure 4 : Proportions of energy for the first incident symmetric lamb wave for different delamination length in
crossply CFRP laminate

greater than Ωs1.

Er
11, Et

11,Er
12, and Et

12 for the different delamination
position in the cross-ply CFRP laminate with a

/
H = 1

are shown in Fig.5 respectively. Here the two cases
y0

/
H = 0.5 and y0

/
H = 0.75, are only considered. That

is to say, one delamination is in the interface between
the second layer and third layer and the other is in
the interface between the first layer and the second
layer. Because of non-symmetry for delamination posi-
tion y0

/
H = 0.75, it is seen that some energy of the inci-

dent A0 lamb wave is not transferred into symmetric lamb
wave mode until the frequency reaches ΩA1. Especially
in the higher frequency, more energy of the incident A0

lamb wave is transferred into the transmitted S0 mode.
So the delamination position influences greatly the mode

conversion.

Figure 6 shows Er
21 Er

22, Et
21, and Et

22 for the differ-
ent delamination position in the cross-ply CFRP lami-
nate with a

/
H = 1. Compared with Fig.5, it indicates

that Er
12, Er

21 and Et
21, Et

12 satisfy the reciprocity relation,
so the similar result about mode conversion with the in-
cident A0 lamb wave can be given.

5 Conclusion

In the paper, Lamb wave interaction with delamination in
an infinite CFRP laminate has been investigated by a hy-
brid method combining the finite element method with
wave mode expansion method. Numerical results indi-
cate that the A0 mode of Lamb wave is sensitive to the
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(d)(c)

(b)(a)

Figure 5 : Proportions of energy for the first incident antisymmetric lamb wave for different delamination position
in crossply CFRP laminate

delamination in the frequency range [0,ΩA1] and the S0

mode of lamb wave is sensitive to the delamination when
the frequency is greater than the frequency Ωs1. The
delamination position influences greatly the mode con-
version for the antisymmetric Lamb wave and symmetric
Lamb wave. The results show the potential applications
of Lamb wave techniques in health monitoring of smart
piezoelectric CFRP laminates. The continuation of this
work intends to investigate the Lamb wave propagation
in smart CFRP laminates actuated by surface or embed-
ded piezoceramics by hybrid methods.
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