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Numerical Analysis of Parameters in a Laminated Beam Model by Radial Basis
Functions

Y. C. Hon1 , L. Ling2 and K. M. Liew3

Abstract: In this paper we investigate a thermal driven
Micro-Electrical-Mechanical system which was origi-
nally designed for inkjet printer to precisely deliver small
ink droplets onto paper. In the model, a tiny free-ended
beam of metal bends and projects ink onto paper. The
model is solved by using the recently developed radial
basis functions method. We establish the accuracy of the
proposed approach by comparing the numerical results
with reported experimental data. Numerical simulations
indicate that a light (low composite mass) beam is more
stable as it does not oscillate much. A soft (low rigidity)
beam results in a higher rate of deflection, when com-
pared to a high rigidity one. Effects caused by the values
of physical parameters are also studied. Finally, we give
a prediction on the optimal time for the second current
pulse which results in maximum rate of second deflec-
tion of the beam.

keyword: Micro-Electrical-Mechanical system, Ther-
mal driven, Radial Basis Functions method

1 Introduction

Micro-Electro-Mechanical-System (MEMS) is an inte-
gration of mechanical elements, sensors, actuators, and
electronics on a common silicon substrate through the
utilization of micro-fabrication technology. The dimen-
sions of MEMS devices are usually in micrometer scale
whose design and manufacturing processes require the
use of electrically-driven motors smaller than the diame-
ter of a human hair. Studies of the complicated mechan-
ical, thermal, biological, chemical, optical, and mag-
netic phenomena are particularly challenging for quan-
titative analyses and modelling. During the last decade,
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intensive research studies in MEMS have enabled many
fruitful developments in the design, construction, and
fabrication of the MEMS devices. For instance, the
micro-accelerometer for crash air-bag deployment sys-
tem and the active suspension system for automobiles;
the micro-valves, micro-pumps and micro-actuators for
fluidic transport, mixing and particle filtering; the micro-
mirror switches and the snapping micro-switches for ra-
dio frequency have increased tremendously the portabil-
ity and applicability of electronic and electrical products;
and the human blood pressure monitors and the polymer
micro-fluidic chips have been widely adopted for medi-
cal diagnostics and drug discovery.

The main structure of many components like micro
switches and micro mirrors can be simplified as a 1D-
beam or a 2D-plate mode which consists of fourth-order
differential equations. To further simplify the model,
Huang, Liew, and et al. (2001) used a lumped model
composed of mass, spring and damp to study the beam
structure (called ”bridge”) in the micro switch. In their
work they designed a static electromechanical model for
the residual stress effect to predict the stiffness and pull-
in voltage. They also used a nonlinear dynamic model
that captured the essential characteristics of the bridge
to predict the switching speed and the Q-factor. Younis,
Abdel-Rahman, and Nayfeh (2003) proposed a macro
model for microbeam-based MEMS by discretizing the
distributed-parameter system using a Galerkin proce-
dure into a finite-degree-of-freedom system, consisting
of ordinary differential equations (ODEs) in time. Their
model considered moderately large deflections, dynam-
ics loads and coupling between mechanical and electri-
cal forces. The model successfully predicted the pull-in
voltage, natural frequencies and pull-in time. Bochobza-
Degani and Nemirovsky (2002) proposed a pull-in model
of two degrees of freedom to model the pull-in parame-
ters of electrostatic actuators. Their model is more ac-
curate than the traditional one-degree-of-freedom one.
On the topic of system-level simulation, Endemano,
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Desmuillez, and Dunnigan (2002) proposed an analyt-
ical torque model to describe the electrostatic actuator.
The model is included into system level simulation of a
micromotor by hardware description language-analogue
mixed signal (VHDL-AMS).

Most MEMS models require solving differential equa-
tion in several coupled energy domains and complicated
actuation mechanism. Due to the lack of suitable nu-
merical and analytical methods, most of the MEMS de-
sign processes, however, are still performed in a primi-
tive trial-and-error fashion. These methods normally re-
quire several modifications before MEMS devices are
finally modeled. This results in an inefficient and in-
effective production cycle for commercial product de-
velopment. Developments in advanced numerical tech-
niques and simulation tools will definitely be beneficial
to MEMS design and production processes.

Numerical modeling and simulation for MEMS devices
involve knowledge of various disciplines such as me-
chanical, thermal, fluidic, electrical, magnetic, chemical
and optical engineering. Recently, the development of
Nano-Electro-Mechanical systems (NEMS), which are
thousand times smaller than MEMS, has given a sig-
nificant impact on medical, automobile, aerospace and
information technology areas [Kovacs (1998)]. Some
prospective applications of NEMS include random ac-
cess memory [Rueckes, Kim, Joselevich, Tseng, Che-
ung, and Lieber (2000)], super-sensitive sensors [Collins,
Bradley, Ishigami, and Zettl (2000)], and nano-tweezers
for miniaturized robotics [Kim and Lieber (1999)].

This paper is organized as follows: In Section 2, the
physical beam model is stated. The numerical formu-
lation for solving the model will be given in Section 3.
Numerical results are then given in Section 4 to verify
the efficiency and accuracy of the proposed method.

2 Physical Model

A beam composed of two materials, aluminum (Al) and
silicon dioxide (SiO2) in a ratio of 2:3, was manufac-
tured at Eastman Kodak with the overall dimensions
100µm× 20µm× 50µm, see Figure 1. A voltage pulse
of 10µs was applied to the beam heating it up to about
400K and resulting in a maximum rate of deflection of
about 0.2ms−1.

The model of this problem is divided into two main parts:

Heat Transport Due to the difference in thermal expan-

Aluminum

Oxide

Expand when heated Isopar fluid

Figure 1 : Laminated beam model.

sion coefficient of Al and SiO2, the laminated beam
will bend when a current is supplied. This generates
a certain amount of heat.

Beam Fluid Interaction When the beam is heated, its
motion is governed by a beam equation that satisfies
a total effective moment condition. The motion is
linear with respect to the applied temperature, at the
free end.

The model of the laminated beam was given in [Ross,
Biswanger, Bohun, Bridge, Ling, Noel, Saujani, Spirn,
and Ting (2000)] as follow:

The equations governing the heat flow are:

Isopar Fluid: ρ f cv f
∂u
∂t

= k f
∂2u
∂x2 ,

Silicon Oxide: ρoxcvox

∂u
∂t

= kox

∂2u
∂x2 , (1)

Aluminum: ρAlcvAl

∂u
∂t

= kAl

∂2u
∂x2 +Q.

Some of the thermal properties of Al, SiO2 and surround-
ing Isopar fluid4 is listed in Table 1. The boundary con-
ditions are determined by the empirical fact that temper-
ature is continuous and energy is conserved across the
interface boundaries. These conditions imply

θ(interface−) = θ(interface+),

k−
∂u
∂x

(interface−) = k+ ∂u
∂x

(interface+), (2)

at any interface. In addition, the boundary conditions at
infinity are given to be room temperature θ(x =±∞, t) =
300K. For a 10µs heating pulse, the resulting temperature
profiles are displayed in Figure 2. Since the conductivity

4 Isopar is the brand name for a synthetically produced Isoparaf-
finic fluid. Isopar fluids have exceptionally high purity and uni-
form composition. They are available in a wide range of evapora-
tion rates. Processing is stringently controlled to provide products
with extremely low odor, selective solvency, excellent stability, and
narrow distillation ranges.
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k of aluminum is so high, it can be assumed that the tem-
perature variation across the aluminum is zero and the
temperature of aluminum is spatially uniform. The tem-
perature of the aluminum layer, θAl in Figure 2(b), is of
central importance in the second part of this model.
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Figure 2 : Temperature profile as a 10µs heating pulse is
applied.

The motion of the beam is governed by the beam equa-
tion with both the drag and the viscosity of the fluid taken
into account,

(β+ρH)
∂2u
∂t2 = −D

∂4u
∂x4 −k

∂u
∂t

, x ∈ [0,L], t ∈ [0,T ], (3)

ρ cv k
Material (g cm−2) (Jg−1K−1) (Jcm−1s−1K−1)

Isopar Fluid 0.77 2.1 1E−3
Silicon Dioxide 3.4 0.7 1.38E−2

Aluminum 2.7 0.5 2.31

Table 1 : Thermal properties of Al, SiO2 and surround-
ing Isopar fluid.

where ρ is the weighted density, D is the composite flexu-
ral rigidity, P is the external pressure, H is the (uniform)
thickness of the beam, β and k are the damping coeffi-
cients.

The following initial conditions reflect that the beam
starts at rest and will not bent during motion:

u(x,0) = 0 =
∂
∂t

u(x,0).

Since the beam is fixed and clamped at one end, x = 0,
we specify the boundary conditions as:

u(0, t) = 0 =
∂
∂x

u(0, t).

In addition, the following boundary condition assumes
that the beam does not have shear stress at the free end,
x = L:

∂3

∂x3 u(L, t) = 0.

Finally, since the beam is laminated, each of the layers
will expand at different rates when heated. This imbal-
ance in the strains of the various layers creates a moment
at the free end x = L satisfying the following boundary
condition:

∂2

∂x2 u(L, t) = ΓθAl(t), (4)

which is linear with respect to the applied temperature.

3 Radial Basis Functions Method

Finite difference method and finite element method are
widely adopted for the numerical modeling and simu-
lation of the MEMS analysis. One of the major disad-
vantages of these traditional computational methods is
their requirement on the generation of grids or meshes,
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which hinders their application to solve high dimen-
sional problems or problems under irregular domains.
The rapid development of mesh-free methods during the
last decade has recently overcome this mesh dependent
disadvantage. There are basically two types of mesh-
free methods: the Galerkin-based type that requires a
background mesh, for instance, the smooth particle hy-
drodynamics method [Gingold and Moraghan (1977)],
the diffuse element method [Nayroles, Touzot, and Vil-
lon (1992)], the hp-clouds method [Liszka, Duarte, and
Tworzydlo (1996)], the Meshless Local Petrov-Galerkin
[Atluri and Shen (2002)],[Atluri (2004)] the local bound-
ary integral equation [Zhu, Zhang, and Atluri (1998)];
and the collocation-based type that does not require a
background mesh, for instance, the Finite Point method
[Onate, Idelsohn, and Zienkiewicz (1996)], the radial
basis functions method [Chen, Ganesh, Golberg, and
Cheng (2002); Kansa (1990a,b); Hon (2002); Hon and
Schaback (2001); Shu and Yeo (2003, 2004); Wu and
Shu (2002)], the method of particular solution [Chen,
Muleshkov, and Golberg (1999); Golberg, Muleshkov,
Chen, and Cheng (2003)] and fundamental solution
[Chan and Chen (1996); Chen (1995a,b); Chen, Mar-
cozzi, and Choi (1999)], the differential quadrature
method [Bellman and Casti (1972); Shu and Richards
(1992); Shu (2000); Wu and Liu (2000)] and the point
interpolation methods [Liu (2003); Liu and Gu (2002)].

In this section, a numerical algorithm based on the Ra-
dial Basis Functions (RBFs) is developed for solving the
governing equation (3) in the beam model subject to the
given initial and boundary conditions. The idea of the
RBFs method is to interpolate an unknown multivariate
function f (x) ∈ R

n by a linear combination of the radial
basis functions φ(‖ x−x j ‖):

f (x)�
N

∑
j=1

α jφ(‖ x−x j ‖)+qm
n (x), (5)

where x j are N distinct data points in R
n and qm

n (·) is
a polynomial in R

n with degree up to m− 1. Micchelli
(1986) proved that when the N data points are all dis-
tinct, the resultant matrix for obtaining the undetermined
coefficients α j from a radial basis function interpola-
tion is always invertible. A direct collocation is then
performed by assuming that the representation (5) satis-
fies the given partial differential equations (3). From the
boundary conditions, a unique set of the undetermined
coefficients α j is obtained by solving the resultant sys-

tem of equations (refer to Franke and Schaback (1998)
and Wendland (1999) for the theoretical foundation of
this method).

In the computation of this paper, we choose m = 0 and
φ =‖ x−x j ‖7 to be the smooth spline of order 7.

3.1 Methodology

The beam model designed in the last Section 2 consists
of the following partial differential equation (PDE):

a1
∂2

∂t2 u(x, t)+a2
∂
∂t

u(x, t)+
∂4

∂x4 u(x, t) = 0, (6)

for (x, t) ∈ [0,1]2 with initial conditions (of a resting
beam)

u(x,0) = 0,
∂
∂t

u(x,0) = 0, (7)

and boundary conditions (at both ends of the beam)

u(0, t) = 0,
∂
∂t

u(0, t) = 0, (8)

∂2

∂t2 u(1, t) = Θ(t),
∂3

∂t3 u(1, t) = 0, (9)

where both the spatial and temporal variables, x and t,
have been normalized. The parameters contained in (6)
are related to those of the physical model (3) as

a1 =
L4(β+ρH)

T 2D
, a2 =

L4k
T D

.

The source function in (9) corresponds to (4) as

Θ(t) := L2 ΓθAl(t).

To discretize equation (6) in time, we simply take a cen-
tral difference approximation to the second partial order
time derivative and a forward difference approximation
to the first partial order time derivative of the function u
to obtain:

[
(a1 +a2dt)u+dt2 ∂4

∂x4
u

]
(x, t +dt) (10)

= (2a1 +a2dt)u(x, t)−a1u(x, t −dt),

where the fourth order spatial derivative of the function
u is evaluating at time t + dt. This higher order spatial
derivative will then be approximated by the radial basis
functions as follow.
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Given a set of data center {xi}N
i=1, the unknown solution

u(x, t +dt) of (10) is approximated by RBFs as:

u(x, t +dt) =
N

∑
i=1

αiφi(x), (11)

where φi(x) = φ(‖x−xi‖) is a radial basis functions eval-
uated at data center xi. Due to the differentiability of the
smooth spline φi used as the RBFs in (11), the fourth or-
der derivative of the unknown solution can be obtained
by

∂4

∂x4 u(x, t +dt) =
N

∑
i=1

αi
∂4

∂x4 φi(x).

Note that there are two boundary conditions on each side
of the beam to be satisfied. Furthermore, these boundary
conditions involve high order derivatives which normally
cause numerical oscillation. The use of smooth spline
of order 7 in our proposed method, however, does not
encounter any oscillation problem.

For the choice of data centers {xi}N
i=1, we use the follow-

ing function given in [Han and Liew (1999); Liew and
Han (1997)] to place the first N −4 data centers:

xi =
1
2

(
1−cos

(i−1)π
N −5

)
, i = 1,2, . . ., (N −4), (12)

in [0,1]. Following the idea of Liew, Teo, and Han
(1999), we define the last four data centers xN−3, . . .,xN

to be x1±δ and xN ±δ, where δ = 1
2(x2−x1), at each end

of the beam to obtain the final set of N data centers. This
choice of data set allows two extra degree of freedom
to collocate the PDE and the second boundary condition
imposed at both boundaries.

Collocating (6) at x j for j = 1,2, . . .,N −4 gives the fol-
lowing N −4 equations:

N

∑
i=1

[
(a1 +a2dt)φi(x j)+dt2 ∂4

∂x4 φi(x j)
]

αi

= (2a1 +a2dt)u(x j, t)−a1u(x j, t −dt).

Further collocation at the four boundary conditions re-
sults in the following 4 equations:

N

∑
i=1

αiφi(0) = 0,
N

∑
i=1

αi
∂
∂x

φi(0) = 0,

N

∑
i=1

αi
∂3

∂3x
φi(L) = 0,

N

∑
i=1

αi
∂2

∂2x
φi(L) = Θ(t +dt).

Parameter ρH D Γ
Value 1.560E-3 10.442 4.755E-2

Parameter Q β k
Value 3.774E7 1.3776E-3 123

Table 2 : Thermal properties of Al, SiO2 and the sur-
rounding Isopar fluid.

We now have a total of N equations for the N unknown
coefficients αi, i = 1,2, . . .,N. Once these coefficients αi

have been obtained, the beam position is given by (11) at
each time iteration. The time profile of the beam position
is then obtained by iterating the solution process until
t = 1.

4 Numerical Results

The solution of the heat equation (1) and boundary condi-
tions (2) are used to determine θAl(t), and therefore Θ(t).
This time dependent temperature is then imposed as a
boundary condition in (9). The parameters’ values used
are listed in Table 2.

The numerical algorithm given in Section 3 is then used
to compute the N coefficients αi at each time iteration.
We simply use N = 21 in our computation. For a 10µs
heating pulse (see Figure 2), the time profile of the mo-
tion of the laminated beam is displayed in Figure 3. A
comparison with the experimental data extracted from
[Ross, Biswanger, Bohun, Bridge, Ling, Noel, Saujani,
Spirn, and Ting (2000)] is also shown in Figure 4. It can
be observed that the numerical result agrees extremely
well with the experimental data. The maximum rate of
deflection is about 0.2ms−1.

To perform some parameters analysis, we assume that
all parameters take the values listed in Table 2.

It is displayed in Figure 5 the dynamic responses of
the beam at the free end to different values of applied
currents, from Q = 2E7 to 10E7, in the thermal equation
(1). The numerical result verifies the direct relationship
between the impulse and the amplitudes to the input
currents. Note that the applied currents do not cause
any apparent oscillation effect to the motion of the
beam. This suggests that this numerical simulation can
determine the maximum applicable current for a specify
material from its fixed melting temperature.
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Figure 3 : Profile of the laminated beam motion for the
10µs (t = 0.25) heating pulse.
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Figure 4 : Profile of the free end beam motion corre-
sponding to Figure 3 and experimental data.

Figure 6 shows the motion of the beam at the free end
under different value of the damping constant k. As
the friction increases, the deflection of beam decreases
and does not oscillate. The critical damping occurs at
k∗ ≈ 4E−4. This indicates that different thermal prop-
erty of the isopar fluid surrounding the beam should be
chosen according to the beam structure. In other words,
an ideal isopar fluid will cause a ”close-to-critical” damp-
ing effect to the beam.
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Figure 5 : Profile of the free end beam motion corre-
sponding to different voltage Q.
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Figure 6 : Profile of the free end beam motion corre-
sponding to different damping constant k.

Next, we vary the value of the composite mass B =
β + ρH. Figure 7 to Figure 9 show the deflection of
the beam for B = 5E−3, 3E−3, and 1E−3, respectively.
The numerical result indicates that a light (low compos-
ite mass) beam is more stable as it does not oscillate
much. The numerical deflection of the beam under dif-
ferent value of the composite flexural rigidity D shown in
Figure 10 to Figure 12 suggests that a soft (low rigidity)
beam results in a higher rate of deflection, when com-
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Figure 7 : Profile of the free end beam motion corre-
sponding to composite mass B = β+ρH = 5E−1.
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Figure 8 : Profile of the free end beam motion corre-
sponding to composite mass B = β+ρH = 3E−1.

pared to a high rigidity one. These numerical simulations
conclude that a lighter and softer beam is more preferable
in controlling the inkjet printer to precisely deliver small
ink droplets onto paper.

Finally, we assume that a second voltage pulse of 10µs
is applied to the beam for another delivery of ink. Due
to the thermal property of isopar fluid, the temperature of
the beam cannot exceed 400K. The beam has to be cooled
down after the first heating pulse. Once the heat supply
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Figure 9 : Profile of the free end beam motion corre-
sponding to composite mass B = β+ρH = 1E−1.
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Figure 10 : Profile of the free end beam motion corre-
sponding to composite flexural rigidity D = 100.

to the beam has been turned off, the amplitude of the
oscillation at the beam decreases as time increases. For
numerical demonstration, we let the beam cool down for
about 10µs (i.e., t = 0.25 in the normalized time) after the
first 10µs heating pulse. The second pulse is then applied
at t = 0.51, 0.52, 0.53, and 0.54 respectively. The result-
ing beam end motions are displayed in Figure 13. For
better illustration, we also display respectively the zoom
in figures of the starting and ending phases of the second
deflection in Figure 14. The maximum rates of deflec-
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Figure 11 : Profile of the free end beam motion corre-
sponding to composite flexural rigidity D = 10.
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Figure 12 : Profile of the free end beam motion corre-
sponding to composite flexural rigidity D = 1.
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Figure 13 : Profiles of the free end beam motion for two
10µs heating pulses.

tion resulting from these second heating pulses are +3%,
+5%, +3%, and −2% respectively of the first heating
pulse. This indicates that t = 0.52 is the best time to start
the second pulse. The best time for the second current
pulse is therefore the time when the beam reaches a local
minima, which is expected from the understanding of the
resonance phenomena.

5 Conclusion

In this paper we develop a computational method by us-
ing the radial basis functions, in particular, the smooth
spline, for the numerical solution of a beam model arising
from the studies of MEMS. In the model a free-end lam-
inated beam composed to two materials, aluminum (Al)
and silicon dioxide (SiO2), was supplied with a voltage
pulse of 10µs resulting at a temperature of about 400K
and a maximum rate of deflection of about 0.2ms−1. Nu-
merical simulations with respect to different values of pa-
rameters are investigated. Simulated results show good
match with the available experimental data. Furthermore,
the numerical simulations indicated that an ideal con-
struction of the laminated beam should be light in weight
and low in rigidity. The surrounding isopar fluid (i.e.,
the ink) should be viscous enough to provide a close-to-
critical damping effect to the beam. Finally, we predict
that the optimal time for a second current pulse is the
time when the beam reaches a local minima.
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Figure 14 : Zoom in of Figure 13.
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