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Assessment of VOF Strategies for the Analysis of Marangoni Migration,
Collisional Coagulation of Droplets and Thermal Wake Effects in Metal Alloys

Under Microgravity Conditions

Marcello Lappa1

Abstract: A possible approach for the investigation of
a number of aspects related to the processing of immis-
cible alloys, made possible by recent progress in both
fields of moving boundary (VOF) methods and speed of
computers, is discussed. It can capture in a single nu-
merical treatment and without limiting assumptions both
macroscopic information (i.e. the macrophysical prob-
lem, heretofore treated in terms of population dynam-
ics) and microscopic details (i.e. the microphysical prob-
lem, heretofore treated within the framework of bound-
ary integral methods and/or under the assumption of non-
deformable drops). The role played by coalescence in
changing the Marangoni migration velocity is discussed
together with the possible influence of thermal wake ef-
fects for small and large values of the Prandtl number.
Some prototype preliminary (very heavy) simulations are
used for a better representation of some still unexplored
or overlooked aspects.

keyword: Microgravity, Volume of Fluid method,
Marangoni effects, Metal alloys.

1 Introduction

Currently the principal area of interest concerning the
case of alloys under microgravity conditions deals with
a special group of metals (and their organic and transpar-
ent surrogates) known as ”immiscible alloys” (see, e.g.,
the authoritative discussions in Ratke, 1993).

When an immiscible alloy is cooled, it demixes into two
melts of different compositions and densities (the so-
called minority and majority phases). Failure to obtain
uniform dispersions of the minority phase through the
majority phase in space as well as on the ground is usu-
ally referred to as ”the phase separation problem”; some-
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times this topic is also referred to as ”coarsening of the
dispersion” (where phase separation stands for spatial
separation of the phases; the thermodynamic counterpart
of the process, i.e. the origin of decomposition in fact is
a well-known and essentially understood chemical phe-
nomenon since at least the mid 30th of the last century).

The spatial problem is influenced by a number of pos-
sible phenomena related to droplets dynamics and mo-
tion: nucleation and ensuing growth, sedimentation and
Marangoni migration, shape deformation, agglomeration
and coagulation, etc.

Owing to the experimental difficulties in investigating
the fluid-dynamics of non-transparent liquids (metal al-
loys are opaque) a number of mathematical models and
methods have appeared over the last years for numer-
ical/theoretical analysis of these aspects when they are
disjoint or partially combined.

For instance, the occurrence of coalescence or non-
coalescence of colliding droplets was initially investi-
gated within the framework of the lubrication theory
(e.g., Davis, Schonberg and Rallison, 1989). The hydro-
dynamic force resisting the relative motion of two un-
equal drops was determined for Stokes flow conditions
and in the absence of surface Marangoni effect. The
drops were assumed to be in near-contact and to have suf-
ficiently high interfacial tension that they remain spher-
ical. The role played by the thermal Marangoni effect
in determining the pressure increase in the lubrication
film between the drops was considered later by Monti,
Savino, Lappa and Tempesta (1998), Monti, Savino, Pa-
terna and Lappa (2000), and Lappa (2004).

The shape of droplets was assumed undeformable in
these analyses. In reality, the related interaction can
cause drops’ deformations even in the case of negligi-
ble convective transport and can also substantially alter
the migration and sedimentation velocities (owing to de-
formation and ”wake” effects).
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Axi-symmetric thermal wake interaction of two bubbles
in a uniform temperature gradient at large Reynolds (Re)
and Marangoni (Ma) numbers was studied by Balasubra-
manian and Subramanian (1999). In this landmark anal-
ysis shape deformation was neglected and results were
obtained in the limit as Re → ∞ (potential flow theory).

The literature on the thermocapillary motion of de-
formable drops is quite limited in contrast to a some-
what related problem concerning the interaction of drops
undergoing a buoyancy driven motion. For the lat-
ter case numerous recent studies revealed a rich vari-
ety of interaction patterns of deformable drops depend-
ing on the Bond number and the initial configuration of
the system (see, e.g., Manga and Stone, 1993; Rother,
Zinchenko and Davis, 1997; Lavrenteva and Nir, 2003).
The deformation and motion of two interacting droplets
were investigated by these authors in the framework of
boundary-integral techniques (with mesh adaptation and
stabilization) applicable to the case of slow viscous mo-
tion (for the state of the art see, e.g., Zinchenko, Rother
and Davis 1997; Bazhlekov, Anderson and Meijer, 2004).

From the foregoing it is evident that current understand-
ing is primarily limited to the motion of single drops
and bubbles, or at most two interacting drops and bub-
bles, which are often assumed to remain spherical (a limit
which requires that that interfacial tension forces are
large compared to viscous and pressure forces). More-
over, all the studies dealing with the boundary integral
method and deformable drops are still limited to the case
of very viscous flow (Re →0).

Initial progress on the simulation of ensembles of
droplets has been made by combining theoretical results
available for neighboring drops (discussed in the text
above) with economical multipole techniques previously
used in multiparticle conductivity (Zinchenko, 1994). On
such a philosophy are based the so-called ”population
methods” (see, e.g., the recent contributions by Wu, Lud-
wig and Ratke, 2003 and Zinchenko and Davis, 2003).

With these methods, drops (a large number) are assumed
to be in relative motion due to either gravitational sed-
imentation or thermal Marangoni migration. They are
treated as isolated, microscopic quantities compared to
field variables like temperature. Possible collisions are
predicted using a ”trajectory analysis” to follow the rel-
ative motion of pairs of drops. When the drops become
sufficiently close, they are assumed to interact with each
other due to hydrodynamic disturbances. This hydrody-

namic disturbance is modeled in the light of information
obtained by means of a separate microscopic approach to
the problem (e.g., lubrication theory or boundary integral
methods).

Such a philosophy allows a simple and efficient treatment
of the problem from a computational point of view and
has been applied successfully to situations in which the
physical phenomena of interest have a large length scale
with respect to the average droplet size. However, the
applicability of these methods is limited to the case of
very viscous flows.

With regard to all these numerical techniques and the
possible approaches discussed in this introduction, it
should be pointed out that quasi-steady (very viscous) or
non-viscous models are often very idealized conditions,
and that a fully transient not simplified analysis would be
necessary in order to properly describe and interpret the
effective behavior of drops in real experiments and pro-
cesses. Despite of the aforementioned excellent analy-
ses, an out-standing need is for new scientific approaches
not affected by any simplification of the governing equa-
tions, applicable to the case of low, high, as well as in-
termediate values of the Reynolds number, and allowing
the treatment of multiple drops and related interplay, de-
formation and coalescence from a ”local” point of view
without resorting to dual-scale models.

The present article intends to demonstrate how a moving-
boundary (VOF) method is able to predict drops interac-
tion and deformations as well as collision and coagula-
tion events in the presem of temperature gradients, with
Marangoni effects and with or without gravity present
over a wide range of conditions. These methods and
existing computers have only recently been made suffi-
ciently powerful to meet these objectives, including fully
three-dimensional simulations of multiple drops. In the
last part of the paper some prototype applications are
briefly commented with emphasis on aspects still over-
looked by the scientific community (like the effect of the
Prandtl number) and on the intrinsic potentialities of the
proposed numerical approach.

2 VOF - Volume of Fluid Method and moving drops

Historically, pioneering work on VOF (Volume of Fluid
or Volume of Fraction, also known as Volume Tracking)
methods goes back to Noh and Woodward (1976), but
with Hirt and Nichols (1981) and their SOLA-VOF code,



Assessment of VOF Strategies 53

the method became widely used.

As discussed by Rider and Kothe (1998), however, these
techniques yet possess solution algorithms that are too
often perceived as being heuristic and without mathemat-
ical formalism. Part of this misperception lies in the dif-
ficulty of applying standard hyperbolic PDE (partial dif-
ferential equations) numerical analysis tools, which as-
sume algebraic formulations, to methods that are largely
geometric in nature (hence, the more appropriate term
volume tracking). To some extent the lack of formalism
in volume tracking methods, manifested as an obscure
underlying methodology, has impeded progress in evolu-
tionary algorithmic improvements and application in par-
ticular to the case of immiscible metal alloys.

Despite some results being available for the case of rising
(1g conditions) and interacting bubbles (Esmaeeli and
Tryggvason, 1998, 1999), in fact, the numerical simula-
tion of these aspects in the case of drops sedimenting due
to gravity or migrating owing to Marangoni forces can
still be regarded as an open task. Despite the widespread
use of these methods, VOF-based simulations dealing
with these particular aspects are still very rare in lit-
erature (rare and excellent efforts have been provided
by Gueyffier, Li, Nadim, Scardovelli and Zaleski, 1999;
Han and Tryggvason, 1999; Mehdi-Nejad, Mostaghimi
and Chandra, 2003 for the case of droplet sedimenta-
tion; and Haj-Hariri, Shi and Borhan, 1997 for the case
of Marangoni migration).

The present section is devoted to the introduction of a
general purpose VOF method able to deal with drop mo-
tion due to density difference under normal (or residual)
gravity as well as to face with the Marangoni migration
phenomena (or both cases). In the light of the above dis-
cussion particular care is devoted to formalism.

2.1 The variable material properties approach

The classical VOF formulation (see the authoritative
overviews of Rudman, 1997; Rider and Kothe, 1998 and
Scardovelli and Zaleski, 1999) relies on the fact that for
each additional phase added to the model, a variable
is introduced: the volume fraction of the phase in the
computational cell. In each control volume (computa-
tional cell), the volume fractions of all phases must sum
to unity. The fields for all variables and properties are
shared by the phases and represent volume-averaged val-
ues, as long as the volume fraction of each of the phases
is known at each location. Thus the variables and prop-

erties in any given cell are either purely representative
of one of the phases, or representative of a mixture of
the phases depending upon the volume fraction values.
Hereafter, for the sake of simplicity the case of interest
for the purposes of the present analysis is considered (i.e.
only two immiscible phases). If the volume fraction of
the phase (1) in the cell is denoted as φ, the following
three conditions are possible:

φ = 0 (the cell is empty of the fluid (1))

φ = 1 (the cell is full of the fluid (1))

0 < φ < 1 (the cell contains the interface between the
fluids)

Based on the local values of φ, the appropriate properties
and variables are assigned to each control volume within
the computational domain. If χ denotes the generic fluid
property (e.g., density ρ, dynamic viscosity µ, thermal
conductivity λ, specific heat coefficient Cp, etc) the cor-
responding value in each cell is given by:

χ = χ1φ+χ2(1−φ) (1)

this means that the concept of mixed properties is used to
interpret the cells containing multiple fluids.

Accordingly, a single momentum equation is solved
throughout the domain and the resulting velocity field is
shared among the phases, i.e. the governing equations
are written for whole computational domain and the dif-
ferent phases are treated as a single fluid with variable
material properties:

∇ ·V = 0 (2)

∂(ρV)
∂t

=

−∇p−∇ · [ρVV ]+∇ · [µ(∇V +∇V T)]+F g +F σ

(3)

∂ρCPT
∂t

= [−∇ · (ρCPV T )+∇ · (λ∇T )] (4)

where the source terms in eq. (3) take into account grav-
ity (Fg) and surface tension (Fσ) effects respectively.

The phase variable is advected according to a simple
transport equation:

Dφ
Dt

=
∂φ
∂t

+V ·∇φ = 0 (5)
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Interfaces are tracked in volume tracking methods by
evolving fluid volumes forward in time with solutions of
this advection equation.

Since at any time in the solution, exact interface loca-
tions are not known (i.e. a given distribution of volume
data does not guarantee a unique interface), interface ge-
ometry must be inferred, based on local volume data and
the assumptions of the particular algorithm, before inter-
faces can be reconstructed. The reconstructed interface is
then used to compute the volume fluxes necessary to in-
tegrate the volume evolution equation (5) above, i.e. for
better computation of the convective contribution V ·∇φ
(these aspects are discussed in section 2.3).

This approach is also known as single region formulation
since there is not any need (from a computational point
of view) to distinguish the different phases, i.e. to use
different computational domains. Along these lines, the
reader should be informed of the fact that from a gen-
eral point of view, two broad strategies exist to deal with
interface calculation. One is to use deformable meshes
based on a finite volume or finite element representation
or body-fitted co-ordinates. The other strategy is to keep
the mesh fixed, and to use a separate procedure to de-
scribe the position of the interface. From this perspective,
the main advantage offered by fixed uniform grids is the
great simplicity they afford in the treatment of the bulk
fluid regions, away from the interfaces. A further advan-
tage of fixed-grid methods is to avoid the re-meshing that
may be necessary whenever interface motion deforms the
grid exceedingly.

2.2 The continuum surface force and stress models

The surface tension model used herein is the Continuum
Surface Force (CSF) proposed for the first time by Brack-
bill, Kothe and Zemach (1992). With this model, the ad-
dition of surface tension effects to the VOF calculation
results in a source term in the momentum equation, i.e.
Fσ in eq. (3).

Surface tension arises as a results of attractive forces be-
tween molecules in a fluid. Consider an air bubble in
water, for example. Within the bubble, the net force on
a molecule due to its neighbors is zero. At the surface,
however, the net force is radially inward, and the com-
bined effect of the radial components of force across the
entire spherical surface is to make the surface contract,
thereby increasing the pressure on the concave side of the
surface. The surface tension is a force, acting only at the

surface, that is required to maintain equilibrium in such
instances. It acts to balance the radially inward inter-
molecular attractive force with the radially outward pres-
sure gradient force across the surface. In regions where
the two fluids are separated, but one of them is not in
the form of spherical bubbles, the surface tension acts
to decrease the area of the interface. The explanation is
basically the same in the case of a liquid-liquid system
formed by immiscible fluids.

In practice, the well-known Young-Laplace equation can
help the reader to understand the origin of the source term
in eq. (3) modeling surface tension forces. Consider for
instance the case where the surface tension is constant
along the surface and where only the forces normal to
the interface are present. The pressure jump across the
surface depends on the surface tension coefficient σ and
the surface curvature as measured by two radii in orthog-
onal directions R1 and R2:

p2 − p1 = σ
(

1
R1

+
1

R2

)
(6a)

i.e.

∆p = σK (6b)

where K is the curvature.

In the light of the foregoing arguments, the surface ten-
sion can be written simply in terms of a pressure jump
across the surface. This force, in turn, can be expressed
as a volume force in eq. (3) using the divergence theo-
rem or a similar artifice to replace the surface force with
a volume force. The end of the story is that the inter-
facial surface forces can be incorporated as body forces
per unit volume in the momentum equations rather than
as boundary conditions. Instead of a surface tensile force
boundary condition applied at a discontinuous interface
of the two fluids, a volume force can be used which acts
on fluid elements lying within a transition region of fi-
nite thickness. This also means that the CSF formulation
makes use of the approach that discontinuities can be ap-
proximated, without increasing the overall error of ap-
proximation, as continuous transitions within which the
fluid properties vary smoothly from one fluid to the other
over a distance of O(h), where h is a length comparable
to the resolution of the computational mesh. Surface ten-
sion, therefore, is felt everywhere within the transition
region through the volume force included in the momen-
tum equations. A similar mathematical treatment is pos-
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sible for the contribution related to surface tension gradi-
ents along the interface (Marangoni stress).

It is known in fact that the expression for the stress jump
f , across the interface is given by (see the elegant formal-
ism of Haj-Hariri, Shi and Borhan, 1997):

f =
[

σKn̂− ∂σ
∂T

(
I − n̂n̂

) ·∇T

]
(7)

where n̂ is the unit vector perpendicular to the fluid/fluid
interface, K is the curvature and I is the identity matrix:

n̂ =
∇φ
|∇φ| = (α,β) (8)

K = −∇ · n̂ =
1
|n|
[

n
|n| ·∇ |n|−∇ ·n

]
(9)

The surface force per unit interfacial area, should be
added in the momentum equation as f δ where δ is the
Dirac-pulse function used to localize the force explic-
itly at the interface. Using some theoretical artifices (as
previously discussed) it can formally be replaced by its
volume-distributed counterpart, F, which satisfies

∞∫
−∞

F(s)ds =
∞∫

−∞

f (s)δ(s)ds (10)

where (s) is a level-set function denoting the normal dis-
tance from the interface (the interface corresponds to
s=0) and δ(s) is the Dirac delta function with its singular-
ity on the interface. Rigorously speaking, f is not defined
for non-zero s and must be extended appropriately (e.g.,
it can be assigned a value of zero for nonzero s because
of the presence of the delta function). A comparison of
the two integrals in eq. (10) suggests F=f·δ(s). Although
this expression is of little value in its present form, much
can be gained from it if a mollified delta function is used,
consistent with the smearing of the interface. Recogniz-
ing that

∞∫
−∞

δ(s)ds =
∞∫

−∞

n̂ ·∇φds = 1 (11)

the mollified delta function can be defined as |∇φ| which,
in turn, leads to F=f|∇φ|.
Thus the second source term in eq. (3) reads:

Fσ =
[

σ K n̂− ∂σ
∂T

(
I− n̂n̂

) ·∇T

]
|∇φ| (12)

where, as previously discussed in the light of the Young-
Laplace equation, the first term in the square parenthesis
is the normal stress contribution responsible for the shape
equilibrium in perpendicular direction, whereas the sec-
ond is the Marangoni shear stress along the surface that
can be responsible for the Marangoni migration phenom-
ena.

It is important to highlight how reliable computation of
both K and n̂ is not easy and special care must be devoted
to such computation. Usually the unit normal-vector re-
sults from the gradient of a smoothed phase field φ (the
so-called mollification).

The smoothed VOF function can be computed for in-
stance by convolving φ with a B-spline of degree l
(Brackbill, Kothe and Zemach, 1992). The smoothed
VOF function is given by:

�

φi, j =
9

16
φi j +

3
32

(φi j+1 +φi j−1 +φi+1 j +φi−1 j)

+
1

64
(φi+1 j+1 +φi+1 j−1 +φi−1 j+1 +φi−1 j−1) (13)

This formula may be applied iteratively by multiple
passes through the mesh for increased degrees of smooth-
ing.

For further details on these aspect see, e.g., the excel-
lent works of Rider and Kothe (1998) and Gueyffier, Li,
Nadim, Scardovelli and Zaleski (1999).

To summarize:

Fσ =
[

σKn̂− ∂σ
∂T

(
I− n̂n̂

) ·∇T

]∣∣∇φ̂
∣∣ =

σK

⎡
⎣ ∂

�
φ

∂x
∂
�
φ

∂y

⎤
⎦− ∂σ

∂T

[
1−αα αβ

βα 1−ββ

]

·
[

∂T
∂x
∂T
∂y

]
·

√√√√(∂
�

φ
∂x

)2

+

(
∂

�

φ
∂y

)2

(14)

where

α =
∂

�

φ
∂x

/

√√√√(∂
�

φ
∂x

)2

+

(
∂

�

φ
∂y

)2

,

β =
∂

�

φ
∂y

/

√√√√(∂
�

φ
∂x

)2

+

(
∂

�

φ
∂y

)2

and
�

φ is the mollified phase field variable.
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The treatment of the source term Fg taking into account
gravity is relatively simple if compared with the corre-
sponding effort provided for the modeling of Fσ.

In fact the first source terms in eq. (3) simply reads:

F g = −ρg = −(ρ1 φ+g2(1−φ)) (15a)

and since, according to the Boussinesq hypothesis (βT

being the thermal expansion coefficient)

ρi = ρi0 [1−βTi (T −To)]→
F g = −ρg = − [ρ1o φ+ρ2o(1−φ)]+
[ρ1oβT1 φ+ρ2oβT2 (1−φ)] (T −To) (15b)

where the first and the second terms in the square paren-
thesis can be responsible for sedimentation owing to dif-
ferent density of the phases (e.g., ρ1o > ρ2o) and for pos-
sible onset of buoyant convection (in non-isothermal con-
ditions), respectively.

Gravity can manifest itself in the process of drop sedi-
mentation in fact in two ways. It has a direct effect on
the drop velocity through buoyancy and in a more sub-
tle (but not necessarily insignificant) way through natu-
ral convection in the surrounding liquid. This convection
can directly affect drop motion and also alter the temper-
ature gradients at the interface.

As anticipated, the main advantage of the above formu-
lation is the topological simplification resulting from the
incorporation of the interfacial jump conditions into the
bulk equations. This eliminates the rather involved task
of generating grids for the interior and exterior domains
which must be tracked and reconstructed after each iter-
ation step. With the VOF formulation discussed above, a
single grid can be generated without regard for the actual
shape of the moving drop. However, as anticipated, a re-
construction technique is required. Different procedures
can be used in principle to reconstruct the interface (see
the next section).

2.3 Interface reconstruction techniques

The φ-field is the only phase information stored in VOF
methods. Approximate interface locations are found
from a so-called interface reconstruction. This is needed,
as anticipated, for advecting φ, for determining the lo-
cal propertied (density, viscosity, etc.) and for better
graphical representation. In earlier versions, usually
called SLIC (Simple line Interface Method) after Noh

and Woodward (1976), interfaces were approximated
with either a horizontal or vertical line in each cell. Cer-
tainly, such a reconstruction appears rather crude. Nev-
ertheless, it has been used in many versions up to the
present day, and many reasonable simulation results were
obtained.

The SLIC method approximates interfaces as piecewise
constant, where interfaces within each cell are assumed
to be lines (or planes in three dimensions) aligned with
one of the logical mesh co-ordinates. The Hirt-Nichols
(h-n) scheme, as used in the sola-vof code (Hirt and
Nichols, 1981), is a variation of the piecewise constant
method (piecewise constant/“stair-stepped” approxima-
tion). In piecewise constant/stair-stepped methods, inter-
faces are also forced to align with mesh co-ordinates, but
are additionally allowed to “stair-step” (align with more
than one mesh co-ordinate) within each cell, depending
upon the local distribution of discrete volume data.

A notable feature of the SLIC method is that its volume
fluxes can be formulated algebraically, i.e. without need-
ing an exact reconstructed interface position. The volume
fluxes can be expressed as a weighted sum of upwind and
downwind contributions, depending upon the orientation
of the interface relative to the local flow direction. For
this case interface reconstruction is used only for visual-
ization purposes.

More accurate reconstructions are possible with PLIC
(Piecewise Linear Interface Construction). The interface
is approximated by a straight line of arbitrary orientation
in each cell. Its orientation is found from the liquid dis-
tribution in the neighbor cells; given the volume fraction
of one of the two fluids in each computational cell and
an estimate of the normal vector to the interface, a pla-
nar surface is constructed within the cell having the same
normal and dividing the cell into two parts each of which
contains the proper volume of one of the two fluids.

This has several advantages: the fluxes of φ, with which
the phase field φ is updated, can be determined more
accurately, and essentially free of numerical diffusion.
Fluid properties can be allocated accurately. Finally the
straight lines also give a graphical representation of good
quality.

Fig. 1 shows reconstructed interfaces (shaded regions)
for a drop of arbitrary radius (continuous line) using the
SLIC and PLIC methods.
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Figure 1 : Reconstructed interfaces (shaded regions) for
a drop using the SLIC and PLIC methods. The piecewise
constant approximation in SLIC forces the reconstruction
to align with selected mesh logical co-ordinates, whereas
the piecewise linear approximation in PLIC allows the
reconstruction to align naturally with the interface. Num-
bers in the cells denote volume fractions. (a) SLIC recon-
struction. (b) PLIC reconstruction.

2.4 Discretization

The basic numerical algorithm for the solution of eqs. (2-
4) is the SMAC splitting method (see, e.g., Lappa, 1997,

2004). For the case under investigation it must be modi-
fied to take into account the fact that two phases with dif-
ferent density are present in the computational domain; it
consists of the following two steps:

V ∗ = V n +∆ t
1
ρn ·[−∇ · [ρVV ]+∇ · [µ(∇V +∇V T

)]
+F g +Ft

σ
]n

(16)

where Ft
σ =

[
− ∂σ

∂T

(
I − n̂n̂

) ·∇T
]
|∇φ|,

V n+1 = V ∗ +∆ t
1
ρn

[−∇ p+F p
σ
]n

(17)

where F p
σ = [σK n̂] |∇φ|

and the elliptic equation reads:

∇ ·
[

1
ρn ∇p

]
=

1
∆t

∇ ·V ∗ +∇ ·
[

1
ρn FP

σ

]n

(18)

During each time step, the intermediate velocity field V*
is calculated from eq. (16), and used to obtain the pres-
sure through an iterative solution of (18). Subsequently,
the new pressure distribution is used in eq. (17) to ad-
vance the velocity field to the next time step.

Once the new velocity field, Vn+1 , is determined, the
phase variable is advected according to eq. (5) and the in-
terface reconstruction technique used; this step provides
the new distribution φn+1.

Then, the temperature field is updated by using explicit
Euler time-marching in eq. (4):

T n+1 =
{[ρCPT ]n +∆t [−∇ · (ρCPVT )+∇ · (λ∇T )]n}

[ρCP]n+1

(19)

3 Relevant examples and insights into the physics of
the spatial separation process

As a relevant example, equations (2-5) for the spatially
inhomogeneous population of drops in Fig. 2a have been
solved to predict spatial phase separation in the presence
of a temperature gradient for a dispersion of drops at
moderate concentrations, at which both migration and
coalescence are important (zero-g conditions). The ex-
ample demonstrates how the population of drops can be
simply reduced to a proper set of initial conditions for the
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a)

b)

c)

d)  

e)

f)

Figure 2 : Bismuth drops in a square container with side L= 1[cm] filled with Zinc melt, initially at T= 750 [K]. The
walls of the container are supposed to be cooled with a ramping rate of 1 [K/s] (zero gravity conditions).
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phase-variable φ (Fig. 2a) and the subsequent dynamics
at microscopic scale length can be captured in a natural
manner by the simulation (Figs. 2b-f). The case of Zn
(1) -Bi (2) system in particular is considered (Table 1).

Table 1 : Physical properties of the Zn (1) -Bi (2) system

Tm1 [K] 692.7 

Tm2 [K] 544.6 

ρ1 [Kg m-3] 6.61⋅103

ρ2 [Kg m-3] 9.87⋅103

ν1 [m
2 s-1] 0.49⋅10-6

ν2 [m
2 s-1] 0.136⋅10-6

Cp1 [J Kg-1K-1] 0.495⋅103

Cp2 [J Kg-1K-1] 0.145⋅103

λ1 [J m-1s-1K-1] 15.8

λ2 [J m-1s-1K-1] 58.1 

σ [dyne m-1] ≅6⋅104

σT[dyne m-1K-1] ≅10 

The container is a square cell with side L= 1[cm] filled
with the melt, initially at T= 750 [K]. The walls of the
container are supposed to be cooled with a ramping rate
of 1 [K/s]. The PLIC scheme is used for interface re-
construction.

Figs. 2 show that all the Bismuth drops migrate towards
the center of the container due to ”Marangoni migration”
(among other things, these results could provide a possi-
ble theoretical justification for the experimental behavior
shown in Fig. 3).

It is known that on the ground, droplets coalescence
strengthens the mechanisms leading to phase separation
since heavier drops are formed with increased velocity of
sedimentation. As described by Stokes’ law, in fact, the
sedimentation velocity of the heavy droplets increases as
the square of the particle diameter, so big droplets set-
tle much more rapidly than small ones. When droplets
of different diameters and thus different sedimentation
velocity collide, they coagulate to form bigger droplets
which settle even more rapidly.

The present simulations show that also in the absence of
gravity the effect is similar; drops coalescence in space
leads to larger drops and this increases the velocity of
Marangoni migration owing to the increase of the inter-
face where the surface tension stresses act propelling the
drop (the reader may consider eqs. (20) and (21) as rep-
resentative of the effect of the radius on the Marangoni

Figure 3 : Examples of separation occurred during ra-
dial solidification processes in microgravity (from H.U.
Walter; ESA SP-219 1984, p. 47).

migration for the cases Ma→0 and Ma→ ∞: the migra-
tion velocity is proportional to R or to R3 for small or
large values of Ma respectively).

It is known (Young, Goldstein and Block 1959), in fact,
that in the limit of zero Marangoni number (i.e. with neg-
ligible convective transport effects) the droplet velocity
U within an unbounded fluid medium in the laboratory
co-ordinate frame is related to the uniform temperature
gradient ∂T/∂x by

US = −

⎡
⎢⎣ 2R ∂σ

∂T

∣∣∣
drop

µ2

(
λ1
λ2

+2
)(

3 µ1
µ2

+2
)
⎤
⎥⎦ ∂T

∂x
(20)

In this expression, ∂σ/∂Tdrop represents the variation of
interfacial tension with temperature at some reference
temperature (e.g., that at the center of the drop), µ2 and
λ2 are the viscosity and the thermal conductivity of the
external fluid, respectively. Equation (20) is valid as
long as the drop remains sufficiently small that convec-
tive transport of heat and momentum can be neglected
compared to molecular transport of these quantities, i.e.
for small values of the Reynolds number, 2ρ2USR/µ2, and
the Marangoni number, Ma=Re·Pr= 2USR/α2, where ρ2

and α2 denote the density and thermal diffusivity of the
external fluid, respectively, and Pr= ν2/α2.

In the limit as Ma→ ∞ the velocity of a drop is propor-
tional to the square of the temperature gradient and the
cube of the radius of the drop (Balasubramanian and Sub-
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ramanian (2000)):

US =
4 |σT |2 R3h(δ)

µ2
2

α1
α2

(
2+3 µ1

µ2

)2
(1+δ)2

(
∂T
∂x

)2

(21)

where δ =
√

α1
α2

λ2
λ1

and (h(δ)= 5.68 10−3 for δ=0; 6.42 10−3 for δ=0.5; 7.75
10−3 for δ=5; 8.26 10−3 for δ → ∞).

Between these two limiting situations, analytical rela-
tionships are not available and information about the phe-
nomena can be only provided by numerical methods such
as the VOF technique discussed in section 2.

The application of the present VOF method, however
goes beyond the possibility to estimate the migration ve-
locity for effective values of the Reynolds number or the
possibility to investigate how coalescence strengthens the
phase separation process. It can also provide interesting
information concerning the role played by the thermal
wakes produced beyond the drops.

As mentioned in the introduction, this problem has been
considered for the first time in the landmark study of
Balasubramanian and Subramanian (1999). Their anal-
ysis considered two bubbles moving in the direction of
the temperature gradient and assumed to interact axi-
symmetrically via the influence of the thermal wake of
the leading bubble on the trailing bubble. This analy-
sis is very important since it was proven that the thermal
wake of the leading bubble can induces a non-monotonic
temperature field on the surface of the trailing bubble.
The effective temperature gradient on the trailing bub-
ble is weakened and hence its migration speed is reduced
compared to the case when it is isolated.

Similar behaviors are also expected in the case of inter-
acting drops. The temperature gradient in the wake will
be weaker than the applied gradient. The thermal wake
field of the leading drop will wrap around the trailing
drop having a significant impact on its motion.

In the aforementioned landmark analysis shape deforma-
tion was neglected and results were obtained in the limit
as Ma→ ∞ within the framework of a potential flow the-
ory.

Numerical simulations carried out herein for cases of
technological interest, show that, in practice, different
situations may arise according to the Prandtl number
(Pr=ν/α where ν and α are the kinematic viscosity and

Table 2 : Physical properties of the Ethyl-alcohol (1) -
Silicone-oil 1 [cs] (2) system

ρ1 [Kg m-3] 0.86⋅103

ρ2 [Kg m-3] 0.816⋅103

ν1 [m
2 s-1] 1.16⋅10-6

ν2 [m
2 s-1] 1.0⋅10-6

Cp1 [J Kg-1K-1] 2.11⋅103

Cp2 [J Kg-1K-1] 2.05⋅103

λ1 [J m-1s-1K-1] 1.8⋅10-1

λ2 [J m-1s-1K-1] 1.0⋅10-1

σ [dyne m-1] ≅5⋅102

σT[dyne m-1K-1] ≅1.5 

the thermal diffusivity of the majority phase respec-
tively).

If Pr is low (Pr<<1 in the case of liquid metals and semi-
conductors), thermal wake effects are generally negligi-
ble and the only mechanisms playing an effective role in
affecting the phase separation phenomena are Marangoni
motion of the drops and the coagulation events. This as-
pect is confirmed by the simulation for the case Zn-Bi
illustrated before.

For such case in fact, the temperature field is almost dif-
fusive. This is due to the fact that, owing to the large
thermal diffusivity of the materials, temperature distor-
tions induced by the motion of the drops are rapidly de-
stroyed (they are spread over large regions).

If large Prandtl number fluids are considered (transpar-
ent and/or organic liquids), on the contrary one can ex-
pect that thermal wake effects become important. Owing
to the small thermal diffusivity of these liquids, the dis-
tortion induced in the temperature field in fact should be
somehow ”frozen” with respect to the times with which
the drops migrate within the container.

To check this aspect some simulations have been carried
out in the case of an immiscible alloy of Silicone oil and
Ethyl-alcohol (Pr>>1, see Table 2).

Figs. 4 show the case of a single drop that migrates in the
absence of gravity (0g) towards the hot region owing to
thermocapillary effects.

Initially, the temperature profile is linearly stratified
(∂T/∂x=0.1 [K cm−1]), the drop (R=0.5 [cm]) is of Ethyl-
alcohol and the surrounding matrix is Silicone oil 1 [cs].
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Figure 4 : Drop of Ethyl alcohol (R= 0.5 [cm]) migrating in Silicone oil 1 [cs] under the effect of temperature
gradient ∂T/∂x=0.1 [K cm−1], microgravity conditions - Temperature field: (a) 4.2 [s], (b) 10.1 [s], (c) 16 [s], (d)
21.9 [s], (e) 27.8, (f) 33.7 [s] (level 1→T=0 [ ˚ C], level 30→T=0.6 [ ˚ C]).

The figures show that the temperature profile near the
front pole of the drop is highly distorted with respect
to the stratified temperature profile so that the drop does
not migrate as in an unbounded medium of infinite extent
subjected to a uniform temperature gradient.

Since the energy exchange by heat between the drop and
surrounding phase is very small (both the liquids have
small values of the thermal conductivity), the drop tends
to stay cold. Accordingly, the external isotherms en-

countered by the drop during the migration process do
not penetrate within the drop and fold over it. The drop
pushes the isotherms and constrains them in a narrow
thermal boundary layer surrounding the drop and having
a steep normal temperature gradient.

Figs. 4 also show how the external fluid creates a cold
wake that extends behind the drop and entrains the hot
region. This wake can be responsible for the aforemen-
tioned effects of thermal gradient weakening on a trailing
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drop.

4 Conclusions

In the present paper a numerical method able to handle
the spatial separation problem in immiscible alloys as
well as to elucidate the related mechanisms over a large
range of conditions has been carefully introduced. The
VOF strategy offers significant advantages with respect
to the other methods currently used in the investigation
of these topics, even if it still requires parallel (multipro-
cessor) computations and very long (often prohibitive)
simulation times.

The analysis has progressed with the aid and support of a
prototype application concerning the case of Zn-Bi, used
for a better representation of some mechanisms.

For non-homogeneous and concentrated dispersions of
deformable drops, Marangoni migration causes spatial as
well as temporal variation in the distribution of drops at
macroscopic scale. Superimposed on this are shape dis-
tortion, thermal wake effects and coalescence phenom-
ena at microscopic scale. The present analysis demon-
strates how the application of the VOF methods to these
problems can capture both the macro and micro-physical
problem in a single numerical treatment.

Additional studies are required to extend these meth-
ods to the case of electric and magnetic fields (some-
times used by researchers to weaken the spatial sepa-
ration mechanisms), to model the possible presence of
dissolution phenomena driven by lack of compositional
equilibrium when a droplet moves to regions with a dif-
ferent temperature (some initial effort along these lines
has been provided by Lappa and Piccolo, 2004 for the
case of a single drop), and finally to model the effect of
high frequency vibrations (a still unexplored effect that
can suppress coalescence phenomena and can be used as
an additional means for control of coarsening kinetics).
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