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Effect of Constitutive Parameters on Cavity Formation and Growth in a Class of
Incompressible Transversely Isotropic Nonlinearly Elastic Solid Spheres

X.G. Yuan12 and R.J. Zhang 2

Abstract: Cavity formation and growth in a class of
incompressible transversely isotropic nonlinearly elastic
solid spheres are described as a bifurcation problem, for
which the strain energy density is expressed as a nonlin-
ear function of the invariants of the right Cauchy-Green
deformation tensor. A bifurcation equation that describes
cavity formation and growth is obtained. Some interest-
ing qualitative properties of the bifurcation equation are
presented. In particular, cavitated bifurcation is exam-
ined for a solid sphere composed of an incompressible
anisotropic Gent-Thomas material model with a trans-
versely isotropy about the radial direction. The effect of
constitutive parameters on cavity formation and growth
is then carried out. It is proved that a cavity forms in
the interior of the sphere earlier or later than that in the
isotropic Gent-Thomas sphere as the anisotropic parame-
ter takes certain values. The condition for the bifurcation
to the left or to the right of the cavity solution is proposed.
The stability and the catastrophe of the equilibrium solu-
tions are discussed by using the minimal potential energy
principle. Whereas, in contrast to other isotropic nonlin-
ear elastic spheres, cavitated bifurcation in the isotropic
Gent-Thomas sphere is quite different, it is proved that
the cavity solution can bifurcate locally to the left. The
growth of a pre-existing micro-void in the sphere is ex-
amined, which interprets the physical implications of the
preceding bifurcation problem.
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1 Introduction

Cavitation phenomenon, the sudden formation and
growth of cavity in solid materials has given rise to many
investigations in mechanics, applied mathematics, mate-
rial science etc., due to its importance in understanding
damage and failure mechanisms. The experimental ob-
servation of cavity formation in vulcanized rubber un-
der tension loading was reported by Gent and Lindly
(1958), moreover, a recent review on cavitation in rub-
ber is that of Gent (1990). The nonlinear theoretical
investigation in a solid mechanics framework for cav-
itation problems started with the work of Ball (1982),
in which cavity formation and growth is modeled as a
class of nonlinear bifurcation problems with discontinu-
ous radial symmetric solutions in finite elasticity. On the
other hand, an alternative interpretation for such prob-
lems in terms of the growth of a pre-existing micro-void
has been given by Horgan and Abeyaratne (1986), see
also Sivaloganathan (1986). As pointed out, for exam-
ple, by Horgan and Abeyaratne (1986), cavitation is an
inherently nonlinear phenomenon and cannot be modeled
by using linearized solid mechanics theories. Many sig-
nificant works have been carried out since then, see the
review articles, by Polignone and Horgan (1995) for a
comprehensive review of results up to 1995 for both in-
compressible and compressible materials. In particular,
Chou-Wang and Horgan (1989) investigated the problem
of void nucleation and growth for a class of incompress-
ible isotropic nonlinearly elastic materials of power-law
type. Polignone and Horgan (1993a, b) studied cavitation
for (composite) anisotropic nonlinearly elastic materials,
and they also examined the effect of material anisotropy
(and inhomogeneity) on cavity formation and growth in
incompressible nonlinearly elastic solids. Recently, Ren
and Cheng (2002 a, b) studied the similar problem for the
isotropic Valanis-Landel material and the transversely
isotropic Ogden material. Yuan and Zhu (2004, 2005)
carried out the qualitative analyses of cavitated bifurca-
tion for the generalized Valanis-Landel material and the
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transversely isotropic modified Varga materials.

The purpose of this paper is to further study the bifurca-
tion problem of cavity formation and growth in a class of
incompressible transversely isotropic nonlinearly elastic
solid spheres. The corresponding strain energy density
is expressed as a nonlinear function of the invariants of
the right Cauchy-Green deformation tensor, and it can be
viewed as the generalized forms of some known mate-
rial models, such as the neo-Hookean material model, the
Mooney-Rivlin material model, the Gent-Thomas mate-
rial model, etc. A bifurcation equation that describes
cavity formation and growth is obtained. Some inter-
esting qualitative properties of the bifurcation equation
are carried out, such as the normal form, the condition
of cavity formation, and the bifurcation direct of the cav-
ity solution, and so on. In particular, cavitated bifurca-
tion is considered for a sphere composed of an incom-
pressible anisotropic Gent-Thomas material model with
a transversely isotropy about the radial direction, and
the effect of material anisotropy on cavity formation and
growth is then examined. It is proved that a cavity oc-
curs in the interior of the sphere earlier or later than that
in the isotropic Gent-Thomas material as the anisotropic
parameter takes different values. The distinguishing be-
tween the left-bifurcation and the right-bifurcation of the
cavity solution at the critical point is made. The stabil-
ity and the catastrophe of the equilibrium solutions are
discussed by using the minimal potential energy princi-
ple. It is worth pointing out that cavitated bifurcation in
the isotropic Gent-Thomas sphere is quite different from
other isotropic nonlinear elastic spheres. It is proved that
the cavity solution can bifurcate locally to the left and
there exists a secondary turning point on the cavity solu-
tion that bifurcates locally to the left. Finally, to better
understanding the physical implications of the preceding
bifurcation problem, we examine the growth of a pre-
existing micro-void in the sphere.

2 Formulation

2.1 Governing equation

Attention will be focused on the radial deformation of a
solid sphere composed of a homogeneous, incompress-
ible nonlinearly elastic material. The sphere is subjected
to a uniform radial traction p0 > 0 on its surface R = b.
Assume that the resulting deformation is radially sym-
metric, then the coordinates of a material point in the un-

deformed state and a spatial point in the deformed state
are respectively given by (the details of the formulation
can be found in the text by Fu and Ogden (2001))

X1 = RsinΘcosΦ,

X2 = RsinΘ sinΦ,

X3 = RcosΘ (1)

and

x1 = r(R) sinθcosφ,

x2 = r(R) sinθ sinφ,

x3 = r(R)cosθ (2)

where r = r(R) is the radial deformation function to be
determined, Θ = θ and Φ = φ. The principal stretch
λi, (i = r,θ,φ), the deformation gradient tensor F and
the right Cauchy-Green deformation tensor C, referred
to spherical polar coordinates, are given by

λr = ṙ(R), λθ = λφ = r(R)/R (3)

F = diag(λr,λθ,λφ) = diag(ṙ(R), r(R)/R, r(R)/R) (4)

and

C = FT F = diag(ṙ2, r2/R2, r2/R2) (5)

where ṙ(R) denotes the derivative with respect to R. Un-
der the assumption of the radial deformation, the four
strain invariants are given by

I1 = trC = λ2
r +λ2

θ +λ2
φ (6)

I2 =
1
2
[(trC)2trC2] = λ2

r λ2
θ +λ2

θλ2
φ +λ2

r λ2
φ (7)

I3 = detC = λ2
r λ2

θλ2
φ (8)

I5 = C11 = λ2
r (9)

As is well known, the response of an elastic material
is described completely by the form of its strain energy
density. Moreover, the strain energy density per unit un-
deformed volume for an elastic material which is trans-
versely isotropic about the radial direction is given by
(see e.g. Polignone and Horgan (1995))

W = W (I1, I2, I3, I5) (10)
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For incompressible materials, I3 = J2 = λ2
r λ2

θλ2
φ = 1. The

corresponding nonzero components of the Cauchy stress
tensor for transversely isotropic incompressible materials
about radial direction are given by

τrr(R) = −p+2(ṙ2W1− ṙ−2W2 + ṙ2W5) (11)

and

τθθ(R) = τφφ(R) = −p+2(ṙ−1W1 − ṙW2) (12)

where p is the unknown hydrostatic pressure associated
with the incompressible constraint J = λrλθλφ = 1, and
Wj = ∂W/∂I j, ( j = 1,2,5). It is assumed that, in the
undeformed state where I1 = 3, I2 = 3, I3 = 1 and I5 = 1,
W varnishes and the initial stress is a hydrostatic pressure
so that one has the following normalization conditions
for the strain energy density

W(3,3,1,1)= 0, W5(3,3,1,1)= 0 (13)

In this work, we shall assume that the strain energy den-
sity function W has the form

W = f (I1)+g(I2)+h(I5) (14)

where the nonlinear functions f ,g and h are assumed
to be twice continuously differentiable. Obviously,
if h(I5) ≡ 0, the expression (14) then reduces to the
isotropic material model.

By using the normalization conditions in (13), we obtain
certain conditions that f ,g and h must hold, i.e.,

f (3) = g(3) = h(1) = 0, h′(1) = 0 (15)

In fact, as f ,g and h take some special functions, the
strain energy density corresponds to the following classi-
cal nonlinear elastic material models:

1. If f (I1) = µ
2 (I1 − 3) and g(I2) = h(I5) ≡ 0, (14)

then reduces to the well-known isotropic neo-
Hookean material model (see Chow-Wang and Hor-
gan (1989)). Further, If g(I2) ≡ 0 and h(I5) =
a(I5 −1)2, (14) is the neo-Hookean material model
which is transversely isotropic about radial direction
given by Polignone and Horgan (1993).

2. If f and g are linear functions, and h(I5) ≡ 0, (14)
is the isotropic Mooney-Rivlin material model (see
Chow-Wang and Horgan (1989)).

3. If f is a linear function, g(I2) is a nonlinear func-
tion, and h(I5)≡ 0, (14) then reduces to the isotropic
Rivlin-Saunders material model (see Chow-Wang
and Horgan (1989)).

4. If f is a linear function, g(I2) = µ2(I2 − 2)/2, and
h(I5) ≡ 0, (14) is the isotropic Gent-Thomas mate-
rial model (see Gent and Thomas (1958)).

Due to the radial deformation and the absence of body
force, the equilibrium equation reduces to

τ̇rr(R)+2
ṙ(R)
r(R)

[τrr(R)−τθθ(R)] = 0 (16)

On the other hand, from the incompressibility constraint
λrλθλφ = 1 and (3), we have

ṙ(R) =
R2

r2(R)
(17)

At the center of the sphere, we have the condition

r(0+)τrr(0+) = 0 (18)

(18) here means that if no cavity occurs, we have
r(0+) = 0, if a cavity forms at the center of the sphere,
for the traction-free cavity, τrr(0+) = 0.

Since the surface of the sphere is subjected to a pre-
scribed uniform radial tensile dead load p0 > 0, the sur-
face condition requires that

τrr(b) = p0

[
b

r(b)

]2

(19)

Thus, under a prescribed uniform surface radial tensile
dead load p0 > 0, the governing equations, which de-
scribes the radial deformation of a homogeneous, incom-
pressible transversely isotropic nonlinearly elastic solid
sphere, with respect to τrr(R), τθθ(R), the radial defor-
mation function r(R), and the hydrostatic pressure p(R),
is composed of Eqs.(3), (11), (12), (14), (16), (17), and
the boundary conditions (18) and (19).

2.2 Solutions of the Problem

On integration of Eq.(17) with respect to R, this leads to

r(R) = (R3 +k3)1/3 (20)



204 Copyright c© 2005 Tech Science Press CMC, vol.2, no.3, pp.201-211, 2005

where k ≥ 0 is a constant to be determined, it denotes
the cavity radius. If k > 0, then Eq.(20) means that a
cavity of radius k forms at the center of the sphere, while
if k = 0, the body remains a solid sphere.

For convenience, we introduce the notation

ω = ω(R,k) = (1+
k3

R3 )1/3 (21)

From Eqs.(3) and (21), we have

λr = ω−2, λθ = λφ = ω (22)

and

I1 = ω−4 +2ω2, I2 = ω4 +2ω−2, I5 = ω−4 (23)

and thus the strain energy density (14) can be written as

W = f (ω−4 +2ω2)+g(ω4 +2ω−2)+h(ω−4) (24)

Substituting Eqs.(11), (12) and (14) into Eq.(16), and
then integrating the obtained equation from 0 to R, one
obtains

τrr(R)−τrr(0+) = −4M(R,k) (25)

where

M(R,k) =
Z R

0

(ω−7 −ω−1) f ′+(ω−5 −ω)g′+ω−7h′

ξ
dξ

(26)

in Eq.(26), ω denotes ω = ω(ξ,k) = (1+k3
/

ξ3)1/3.

From Eqs.(11) and (14), we obtain

p(R,k) = 2
(
ω−4 f ′ −ω4g′+ω−4h′

)∣∣
(R,k)

+4M(R,k)−τrr(0+) (27)

where r(0+) = k and τrr(0+) can be determined by the
boundary conditions (18) and (19).

Let R = b in Eq.(25), we have

τrr(0+) = 4M(b,k)+ p0

[
b3

b3 +k3

]2/3
(28)

On multiplication both sides of Eq.(28) by k, it leads to

kp0 = −4k(1+
k3

b3 )2/3M(b,k) (29)

In sum, for the prescribed dead load p0 > 0, if there ex-
ists values of k satisfying Eq.(29), then τrr(0+) can be
obtained by Eq.(28). Obviously, for p0 > 0, k ≡ 0 is a
solution of Eq.(29) and τrr(0+) is given by (28), so

p(R) = 2 f ′(3)−2g′(3)− p0, r(R) = R (30)

are the homogeneous solutions of the radial symmetric
deformation of the sphere, while if k > 0 is a solution of
Eq.(29), we get τrr(0+) = 0 from Eq.(28), then Eqs.(20)
and (27) are the nontrivial solutions of the problem.

It is not difficult to see that Eq.(29) describes exactly the
relationship between k andp0, so we call it the bifurca-
tion equation of cavity.

3 Existent conditions and qualitative properties of
cavity solutions of Eq.(29)

3.1 Existent conditions of cavity solutions

In what follows, it is convenient to introduce the dimen-
sionless quantity

x = k
/

b (31)

Using the relation between ω(ξ,k) and ξ, we have

M(x) =
Z ∞

(1+x3)
1
3

(ω−ω−5) f ′ +(ω3 −ω−3)g′ −ω−5h′

ω3 −1
dω

(32)

By introducing the function

Ψ(ω) = f (ω−4 +2ω2)+g(ω4 +2ω−2)+h(ω−4) (33)

it is easy to show that

Ψ1 =
dΨ
dω

= 4
[
(−ω−5 +ω) f ′ +(ω3 −ω−3)g′ −ω−5h′

]
(34)

Thus, the dimensionless form of Eq.(29) can be rewritten
as

F(x, p0) = x(1+x3)2/3
Z ∞

(1+x3)
1
3

Ψ1(ω)
ω3 −1

dω−xp0 = 0

(35)

Obviously, for any prescribed p0 > 0, x ≡ 0 is a solution
of Eq.(29). Corresponding to it, the homogeneous defor-
mation solutions of the problem are given by Eq.(30), and
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thus we call x ≡ 0 the trivial solution of Eq.(35). More-
over, if there exists x > 0 satisfying Eq.(35), i.e.,

p0 = (1+x3)2/3
Z ∞

(1+x3)
1
3

Ψ1(ω)
ω3 −1

dω (36)

this implies a cavity forms in the interior of the sphere,
so we call Eq.(36) the cavity solution.

Let x → 0+, we then obtain

pcr =
Z ∞

1

Ψ1(ω)
ω3 −1

dω (37)

it is called the critical dead-load at which a internal cavity
may be initiated.

Since the integral of Eq.(37) is improper, pcr may or may
not be finite, and thus cavitation may or may not take
place, in other words, pcr depends strictly on the concrete
form of the strain energy density. Further, from Eq.(34),
it is easy to show that (the details of the formulation can
be found in Polignone and Horgan (1993))

dΨ(ω)
dω

∣∣∣∣
ω=1

= 0,
d2Ψ(ω)

dω2

∣∣∣∣
ω=1

= 4(a1−a2 +4a3) (38)

where a1,a2,a3 are elastic constants associated with in-
finitesimal deformations of the transversely isotropic ma-
terial. Thus, we know that the right hand of Eq.(37) is fi-
nite as ω → 1 by using the l’Hôpital’s rule. On the other
hand, from the properties of the integrand, if it is required
that pcr is finite, the following expression must be valid
as ω → ∞, i.e.,

Ψ(ω) = O(ω1+κ), (0 < κ < 1) (39)

From the above analyses, we now present the conditions
that f ,g and h must satisfy such that pcr is finite.

From the strong convex condition (see Ball(1982)), and
the normalization conditions (15), as ω → ∞, we obtain

f (ω−4 +2ω2) = O
(
(ω−4 +2ω2)α)

(40)

g(ω4 +2ω−2) = O
(
(ω4 +2ω−2)β

)
(41)

h(ω−4) = O
(
(ω−4−1)η)

(42)

where 1
/

2 ≤ α < 3
/

2,0 < β < 3
/

4, η ≥ 2.

Further, from Eq.(34), we have

dΨ(1)
dω

= 0,
d2Ψ(1)

dω2
= 24 f ′(3)+24g′(3)+16h′′(1) (43)

So it is required that f ′(3),g′(3) and h′′(1) must be posi-
tive finite values as ω → 1.

All in all, for the strain energy density (14), if f ,g and
h respectively satisfy the conditions (40)∼(43), one can
see that pcr is finite, that is to say, a cavity would form
in the sphere associated with the material model (14) as
the surface tensile dead load p0 exceeds the critical value
pcr.

3.2 qualitative properties of cavity solutions

In this subsection, assume that f ,g and h respectively sat-
isfy the conditions (40) ∼ (43). From

Fxp0(0, pcr) = −1 (44)

we obtain a unique bifurcation point (x, p0) = (0, pcr),
namely, the cavity solution bifurcates from the trivial so-
lution x ≡ 0. Further, at the bifurcation point (0, pcr), it
is easy to show that

Fx(0, pcr) = Fxx(0, pcr) = Fxxx(0, pcr) = Fp0(0, pcr) = 0

(45)

and

Fxxxx(0, pcr) = 16

[
pcr − 1

6
d2Ψ(1)

dω2

]
(46)

Conclusion 1 From the distinguished conditions of the
bifurcation equation in singularity theory, one can know
that F(x, p0) is equivalent to the normal form ±x4 + δx
with single-sided constraint conditions in certain neigh-
borhood of the critical point (0, pcr). Further, From
Eq.(44), we know that there is a unique bifurcation point
on the trivial solution of the equation F(x, p0) = 0. As

pcr − 1
6

d2Ψ(1)
dω2 > 0 (or < 0), the nontrivial solution of

Eq.(35) bifurcates locally to the right (or to the left) from
the trivial solution at (0, pcr).

4 An example

In this section, assume that the sphere is composed of
a class of transversely isotropic Gent-Thomas material
models (Gent and Thomas (1958)), in which the corre-
sponding strain energy density function is given by

W(I1, I2, I5) =
µ1

2
[(I1 −3)+ γ ln(I2−2)+h(I5)] (47)
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whereγ = µ2/µ1, and µ1,µ2 > 0 are material constants in
the state of infinitesimal deformations. From the normal-
ization conditions (15) (or (42)), take

h(I5) = h(ω−4) = a(I5 −1)2 +b(I5 −1)3 (48)

where a,b≥ 0 are dimensionless parameters which serve
as measures of the degree of anisotropic about radial
direction of the material about the radial direction. If
a = b = 0, the corresponding hyper-elastic material is
isotropic. If at least value of a and b is nonzero, the corre-
sponding hyper-elastic material is called the transversely
isotropic Gent-Thomas material. Maybe, Polignone and
Horgan (1993) presented the first paper of the problem of
cavity formation and growth for this kind of materials. In
their work, the strain energy functions of anisotropic ma-
terials were discussed in detail. Using the notation (21),
we have

Ŵ(ω) =
µ1

2
[(ω−4 +2ω2 −3)+ γ ln(ω4 +2ω−2 −2)

+a(ω−4 −1)2 +b(ω−4 −1)3] (49)

On substitution of Eq.(49) into Eq.(35), the bifurca-
tion equation of cavity associated with the transversely
isotropic Gent-Thomas material model is given by

F(x, p0) = x(G(x,γ,a,b)− p0) = 0 (50)

where

G(x,γ,a,b) = (1+x3)2/3
Z ∞

(1+x3)
1
3

Ŵ1(ω)
ω3 −1

dω (51)

The critical dead load is given by

pcr/µ1=̇2.5+1.2551γ+0.7184a−0.3789b (52)

Moreover, we have

Fxxxx(0, pcr)=̇16µ1(0.5−0.7449γ
−1.9482a−0.3789b) (53)

To further study the qualitative properties of the cavity
solution of Eq.(50), by expanding Eq. (51) at x = 0, we
get the Taylor expansion as follows:

G(x,γ,a,b)= µ1
(
2.5+q1(γ,a,b)+q2(γ,a,b)x3

+o
(
x4)) as x → 0+ (54)

where

q1(γ,a,b) = 1.2551γ+0.7184a−0.3789b (55)

and

q2(γ,a,b) = 0.5−0.7449γ−1.9482a−0.3789b (56)

4.1 Isotropic case

Let a = b = 0 in (49), the material model then reduces
to an isotropic one. From Eq.(52), we know that a cav-
ity would form at the center of the sphere composed
of the isotropic Gent-Thomas (1958) material model as
the surface tensile dead load exceeds the finite criti-
cal value. However, another interesting result, which
is different from some classical material models, such
as the isotropic neo-Hookean material, Ogden material,
valanis-Landel material, etc., is obtained in this paper.

Conclusion 2 There exists a value of γ = µ2/µ1, writ-
ten as γ0 = 0.6712, as 0 ≤ γ ≤ γ0, the cavity solution of
Eq.(50), i.e., p0 = G(x,γ,0,0), bifurcates locally to the
right from the trivial solutionx = 0, however, as γ > γ0,
the cavity solution bifurcates locally to the left from the
trivial solution, and there also exists a secondary turning
bifurcation point on the cavity solution, which bifurcates
locally to the left.

Proof. From Eq.(56), we know that q2(γ,0,0) > 0 as
0 ≤ γ ≤ γ0, this means that the cavity solution bifurcates
locally to the right near the critical point (0, pcr). It can
be shown that Gx(x,γ,0,0)> 0 for all x > 0, so the cavity
solution increases monotonously as p0 > pcr. Whereas,
from Eq.(54), we have Gx(0,γ,0,0) = Gxx(0,γ,0,0) = 0
and Gxxx(0,γ,0,0)= 6q2(γ,0,0)< 0 as γ > γ0, so we have
Gx(x,γ,0,0) < 0 for sufficient small values of x > 0, this
implies that the cavity solution bifurcates locally to the
left near the critical point. On the other hand, it is easy to
show that Gx(x,γ,0,0) > 0 for sufficient large values of
x > 0. Thus we can conclude that there must exist a value
xn, such that Gx(xn,γ,0,0)= 0. Let pn = G(xn,γ,0,0), we
then obtain a secondary turning bifurcation point (xn, pn).
For different values of γ, curves for p0/µ1 ∼ x are shown
in Fig.1.

4.2 Anisotropic case

For the solid sphere composed of the transversely
isotropic Gent-Thomas model (49), namely, at least value
of a and b is nonzero, cavitation will be very interesting.
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Figure 1 : Solution curves of Eq.(50) in isotropic
case for different values of γ.
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Figure 4 : Solution curves of Eq.(50) in Ω2 as γ =
0.3

First of all, let a = b = 0 in (52), p̂cr/µ1 = 2.5+1.2551γ
then denotes the critical dead-load associated with an ini-
tial cavity centered at the origin of the sphere, in which
the sphere is composed of isotropic Gent-Thomas model
(1958). So we have

Conclusion 3 For the given γ, as 0.7184a− 0.3789b <

0 (or > 0), from Eq.(52) we know that pcr/µ1 <(or
>)p̂cr/µ1, that is to say, a cavity forms in the inte-
rior of the sphere composed of the transversely isotropic
Gent-Thomas model is earlier (or later) than that for the
isotropic material model.

Next we divide the first quadrant of the parameter space

(γ,a,b) into two regions by the plane q2(γ,a,b) = 0, as
shown in Fig.2. The regions are denoted by

Ω1 = {(γ,a,b) | 0 ≤ γ ≤ 0.6712,0≤ a ≤ 0.2566,

0 ≤ b ≤ 1.3196,q2(γ,a,b) < 0} (57)

Ω2 = {(γ,a,b) | γ ≥ 0,a ≥ 0,b ≥ 0,q2(γ,a,b) > 0} (58)

Conclusion 4 As the parameter (γ,a,b) belongs to the
region Ω1, the cavity solution of Eq.(50), i.e., p0 =
G(x,γ,a,b), bifurcates locally to the right from the triv-
ial solution x = 0. However, as the parameter (γ,a,b)
belongs to the region Ω2, the cavity solution bifurcates
locally to the left from the trivial solution, and there also
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exists a secondary turning bifurcation point on the cavity
solution, which bifurcates locally to the left.

The proof is similar to that of the Conclusion 2.

As the parameter (γ,a,b) belongs to the region Ω1 and
Ω2, curves for p0/µ1 ∼ x are respectively shown in Fig.3
and Fig.4.

Moreover, in Fig.3 and Fig.4, curves denoted by dashed
(or dash dot dot line) also shows that a cavity forms in the
interior of the sphere composed of transversely isotropic
Gent-Thomas material earlier (or later) than that of the
isotropic material.

4.3 Stability of solutions

We now carry out an energy analysis to examine the sta-
bility of the solutions of Eq.(50).

For the transversely isotropic Gent-Thomas material
model (49), the total energy corresponding to any equi-
librium configuration of the body is given by

E(c) = 4π
Z b

0
WR2dR−4πb2 p0[r(b)−b]

= 4πk3
Z ∞

(1+k3
/

b3)1/3

ω2Ŵ(ω)
(ω3 −1)2 dω

−4πb2 p0[(b3 +k3)1/3−b] (59)

where Ŵ (ω) is given by Eq.(49). The first term in
Eq.(59) is the total strain energy while the second term
is the work done by the tensile dead load. The dimen-
sionless form of Eq.(59) is denoted by

Λ(x) =
E(x)

(4
/

3)πA3µ
=

3x3

µ

Z ∞

(1+x3)1/3

ω2Σ(ω)
(ω3 −1)2 dω

−3[(1+x3)1/3 −1] (60)

For the trivial solution x = 0, we have

Λ(0) = 0 (61)

For the cavity solution, i.e., x > 0, Λ(x) is given by
Eq.(60). Further, it is not difficult to obtain

Λ(0+) = Λ′(0+) = Λ′′(0+) = 0,

Λ′′′(0+) = 6(pcr − p)/µ1 (62)

where Λ′ denotes derivative with respect to x.

Obviously, Λ(0)is a local minimum as pcr < p0, thus the
trivial solution x = 0 here is stable. Moreover, Λ(0) is
a local maximum as pcr > p0, the trivial solution x = 0
here is unstable.

As the parameter (γ,a,b) belongs to the region Ω1, from
the Conclusion 3, we know that the cavity solution solu-
tion (also called the nonzero equilibrium solution) to the
right from the trivial solution at the critical point (0, pcr),
and Gx(x,γ,a,b) > 0 for any x > 0. It can be shown that
Λx(x) = 0 and Λxx(x) > 0, namely, Λ(x) takes the mini-
mum as p0 > pcr. Thus we can say that the cavity solu-
tion, which increases monotonically, is stable.

As the parameter (γ,a,b) belongs to the region Ω2, how-
ever, there exists a secondary turning bifurcation point on
the cavity solution (see Fig.4), this implies that the num-
ber of the equilibrium solutions depends on the values of
p0 in the following way: Eq.(50) has only a stable trivial
solution x = 0 as p0 < pn; there are exactly three solu-
tions as p0 ∈ (pn, pcr), that is, a stable trivial solution,
and two additional nonzero equilibrium solutions, writ-
ten as x1 and x2, respectively, in which x1 < xn < x2. It is
not difficult to show that Λ(x) takes the local maximum
and minimum respectively at x1 and x2, and thus x1 and
x2 are respectively unstable and stable; as p0 > pcr, there
are two solutions, namely, an unstable trivial solution and
a stable cavity solution. In particular, there two stable
equilibrium states as p0 ∈ (pn, pcr). It is easy to show that
there exists a value of p0, written as pt , the trivial solution
makes the total energy minimized locally as p0 ∈ (pn, pt)
and thus it is actual stable; the cavity solution makes the
total energy maximized locally as p0 ∈ (pt , pcr), and thus
it is actual stable. Example energy curves are show in
Fig.5 and Fig.6.

On the other hand, in region Ω2, from the above analy-
ses, we know that the solutions of Eq.(50) can also occur
catastrophic phenomena. As shown in Fig.4, if the sur-
face tensile dead load p0 changes quasi-statically from
small to large, then for p0 < pt , no cavity forms in the
interior of the sphere; but when p0 > pt , the state of the
sphere breaks suddenly, namely, a relatively larger cav-
ity occurs. Whereas, if the dead load p0 changes quasi-
statically from large to small, only when reduces lower
thanpt , the cavity radius reduces suddenly to zero.

4.4 Growth of micro-void

To better understand the physical implications of the pre-
ceding bifurcation problem, here we consider the growth
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Figure 5 : Energy curves of the sphere in Ω1 as (γ
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Figure 6 : Energy curves of the sphere in Ω2 as (γ
,a,b) = (0.3,1,1)

of a small pre-existing void under the surface tensile
dead-load.

Assume that there exists a micro-void with radius ε at the
center of the sphere in its undeformed configuration. The
sphere is subjected to a prescribed uniform radial tensile
dead-load at its outer surface.

The governing equations and the outer boundary condi-
tion of the finite deformation problem are the same as
those in Subsection 2.1, only the inner boundary condi-
tion becomes

τrr(ε) = 0 (63)

Using the similar method in Subsection 2.2, we then ob-
tain the expression between the tensile dead-load and the
growth of the pre-existing micro-void

p0 = (1+
k3

b3 )2/3
Z (1+ k3

ε3 )
1
3

(1+ k3

b3 )
1
3

Ŵ1(ω)
ω3 −1

dω (64)

in this case, k ≥ 0 denotes the increasing value of the
initial void with radius ε along withp0.

Let

k/b = ρ,ε/b = δ (65)

the dimensionless expression of Eq.(64) is then given by

p0 = H(ρ,δ,γ,a,b) (66)

where

H(ρ,δ,γ,a,b)= (1+ρ3)2/3
Z (1+ ρ3

δ3 )
1
3

(1+ρ3)
1
3

Ŵ1(ω)
ω3 −1

dω (67)

The qualitative analyses of Eq.(66) are similar to those
of Eq.(51). In fact, as the parameter (γ,a,b) belongs to
the region Ω1 (given by Eq.(57)), from the Conclusion 4,
it is easy to show that Hρ(ρ,δ,γ,a,b) > 0 for any ρ > 0
and δ > 0. However, as the parameter (γ,a,b) belongs to
the region Ω2 (given by Eq.(58)), the number of the real
root with respect to ρ of the equation Hρ(ρ,δ,γ,a,b)= 0
depends on the values of δ. It is not difficult to show
that there exists a value of δ, written as δ0, such that the
equation Hρ(ρ,δ,γ,a,b)= 0 has only one real root as δ =
δ0, has no real root as δ > δ0, and has two real roots as
δ < δ0.

We now carry out two numerical examples to show
the effect of material parameters on the growth of pre-
existing void in the sphere.

Take(γ,a,b) = (0.3,0.1,0.15) and (γ,a,b) = (0.3,2,3),
curves of p0/µ1 ∼ δ+ ρ are respectively shown in Fig.7
and Fig.8 for different values of δ. Example energy
curves of the sphere with micro-void are show in Fig.9
as (γ,a,b) = (0.3,2,3).

As seen from Fig.7 and Fig.8, as the parameter belongs
to the region Ω1 for any δ > 0 and the region Ω2 for
δ > δ0, the micro-void grows continuously with respect
to the surface tensile dead-loadp0. However, as the pa-
rameter belongs to the region Ω2 for δ < δ0, it can be
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shown that the growth of the micro-void is discontinuous
and a jump may occur by using the minimal potential
energy principle (as shown in Fig.8). Thus, the bifurca-
tion model can be interpreted as describing sudden rapid
growth of a pre-existing micro-void as was first shown in
Horgan and Abeyaratne (1986).

5 Conclusions

In this work, we first give out the condition of cavitation
in the interior of the solid sphere composed of a class
of incompressible transversely isotropic nonlinearly elas-
tic materials, in which the corresponding strain energy
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Figure 9 : Energy curves of the sphere with micro-void
as (γ ,a,b) = (0.3,2,3)

density may be viewed as the generalized forms of some
known material models, such as the neo-Hookean mate-
rial model, the Mooney-Rivlin material model, the Gent-
Thomas material model, etc. In Conclusion 1, we present
some interesting qualitative properties of the bifurcation
equation, such as the normal form, the condition of cavity
formation, and the bifurcation direct of the cavity solu-
tion, and so on. As an example, we examine the effect of
material anisotropy on cavity formation and growth in the
incompressible transversely isotropic Gent-Thomas solid
sphere, see Conclusion 3 and 4. By using the minimal
potential energy principle, we examine the actual stable
state and catastrophe of the equilibrium solutions. In par-
ticular, the cavity solution associated with the isotropic
Gent-Thomas sphere can bifurcate locally to the left and
there exists a secondary turning point on the cavity so-
lution that bifurcates locally to the left, which is quite
different from other isotropic nonlinear elastic spheres,
see Conclusion 2. To further understanding the physical
implications of the preceding bifurcation problem, we fi-
nally examine the growth of a pre-existing micro-void in
the sphere. We also carry out the corresponding numeri-
cal figures simultaneously.

It is worth pointing out that, via introducing the quadratic
and cubic term (serve as measures of the degree of
anisotropic about radial direction of the material) into
the strain energy function, the qualitative properties of
cavitation can be described completely, such as, a cavity
forms in the transversely isotropic Gent- Thomas sphere
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earlier or later than that in the isotropic Gent- Thomas
sphere; the cavity solution bifurcates locally to the right
of to the left, and so on. On the other hand, according
to singularity theory, if some higher-order terms about
radial direction of the material are introduced into the
strain-energy function (48), the qualitative properties of
the solutions of the bifurcation equation of cavity are also
similar.
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