
Copyright c© 2005 Tech Science Press CMC, vol.2, no.3, pp.213-226, 2005

Micromechanical Analysis of Interphase Damage for Fiber Reinforced Composite
Laminates

Yunfa Zhang1 and Zihui Xia1,2

Abstract: In the present study, the initiation and evo-
lution of the interphase damage and their influences on
the global stress-strain relation of composite laminates
are predicted by finite element analysis on a microme-
chanical unit cell model. A thin layer of interphase el-
ements is introduced and its stress-strain relation is de-
rived based on a cohesive law which describes both nor-
mal and tangential separations at the interface between
the fiber and matrix. In addition, a viscous term is added
to the cohesive law to overcome the convergence diffi-
culty induced by the so-called snap-back instability in
the numerical analysis. The matrix behavior is described
by a recently developed nonlinear viscoelastic constitu-
tive model. As application examples, glass fiber/epoxy
unidirectional laminates under off-axis loadings are ana-
lyzed. One-quarter of the unit cell is used in the analysis
accounting for the geometrical symmetry of the model,
and the corresponding periodic boundary conditions for
combined global shear and normal loading are derived.
Results show that the initiation and evolution of the in-
terphase damage can be well simulated and the predicted
global stress-strain responses are in good agreement with
the experimental results.

keyword: Interphase damage, micromechanical mod-
eling, composite laminates, off-axis loading, finite ele-
ment analysis, viscoelastic analysis, periodic boundary
conditions.

1 Introduction

For a unidirectional laminate under tensile loading, the
fiber/matrix interphase damage and matrix cracking are
the two main damage modes [Smith (1987)]. In most
cases, damage process in laminates initiates by the above
two intralamina damage mechanisms. For multidirec-
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tional laminates, intralamina damages may exist at the
loading level much lower than the final failure load or
even during the material curing process. The most com-
mon example is the loading of the 0 ˚ /90 ˚ cross-ply lam-
inates along the 0 ˚ ply direction. In this case the damage
occurs in the 90 ˚ plies at a rather low load, however, the
laminates can still carry higher load in the 0 ˚ direction,
although at a reduced stiffness, see, e.g., Hoover et al.
(1997). Thus for an accurate analysis, it is imperative to
consider the prevailing damage mechanisms, especially
the intralamina ones.

In most advanced composite materials, there is invariably
an interphase between the two main constituents of the
reinforced composites. The scale of the intrephase may
be very small of the order of several microns [Daniel and
Ishai (1994)]. Therefore, in many studies the interphase
can be treated as an interface. Interphase/interface deter-
mines the stress transfer between the reinforcement and
matrix, and thus it influences the damage process of lam-
inates if the bonding is weak.

Both macromechanical [e.g., Tian et al. (2004)] and mi-
cromechanical [e.g., Okada et al. (2004)] approaches can
be used to model the mechanical response of the com-
posite laminates, with or without an assumed damage
occurrence. However, damages in the composite lami-
nates initiate at a microscopic level and it would be desir-
able that a micromechanical approach be used, in which
the fiber, matrix, and interphase/interface are explicitly
accounted for in the model [Pagano and Yuan (2000),
Zhang et al. (2005)]. Assuming a uniform distribution
of fibers, a representative volume element (RVE) or a re-
peated unit cell (RUC) can be used to conduct microme-
chanical studies [Sun and Vaidya (1996)]. By using the
micromechanical approach, not only the global proper-
ties of the composites can be obtained, but also various
damages at microscopic level can be predicted provided
proper damage initiation criteria and evolution rules are
available. Some recent micromechanical studies of lami-
nates involving matrix cracking or interphase damage are
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reported e.g., in Zhang et al. (2005), Zhu et al. (1998),
Yuan et al. (1997), Zhu and Achenbach (1991), among
others. It is worthwhile to note that several researchers
have introduced cohesive interface cracking models into
the micromechanical RUC analysis. A significant advan-
tage of the cohesive cracking model is that both the ini-
tiation and propagation of the damage can be properly
simulated [Tvergaard (1990a, 1990b), Legarth, (2004),
among others].

Most micromechanical analyses so far are confined to
uniaxial loadings along the material principal directions,
as reviewed by Pagano and Yuan (2000). For off-axis
loadings, only limited attentions have been paid. Exam-
ples of recent studies of off-axis loadings are Zhu and
Sun (2003) for thermoplastic matrix composites; Agh-
dam et al. (2001) for metal matrix composites, and
Zhang et al. (2005) for thermoset matrix composites.

In this paper, the initiation and evolution of interphase
damage and their effect on the global stress-strain rela-
tion of composite laminates are predicted by finite el-
ement micromechanical analysis. A three-dimensional
RUC model based on periodic fiber array is established,
and appropriate periodic boundary conditions for com-
bined shear and normal stress loading, with consideration
of the geometrical symmetry of the RUC, are derived. To
model both the normal and tangential separations of the
fiber/matrix interface, a thin layer of interphase elements
is introduced in the unit cell model. The stress-strain re-
lation of the interphase element is derived based on a co-
hesive law [Tvergaard (1990a, 1990b)], which character-
izes the dependence of the tractions on the displacement
discontinuities across the interface. In addition, a viscous
term is added to the cohesive law to overcome the conver-
gence difficulty induced by the so-called snap-back insta-
bility in the numerical iterations. The matrix behavior is
described by a recently developed nonlinear viscoelastic
constitutive model [Xia et al. (2003)]. As application ex-
amples, glass fiber/epoxy unidirectional laminates under
off-axis loading with angles of 90 ˚ , 45 ˚ , 30 ˚ , and 20 ˚
are analyzed, respectively. Results show that the initia-
tion and evolution of the interphase damage can be well
simulated. And the predicted global stress-strain curves
are also in good agreement with the experimental results.

2 Unit Cell Model and Periodic Boundary Condi-
tions

2.1 Unit cell of a unidirectional laminate

Assuming fiber distribution is periodic across the cross-
section, a repeated unit cell (RUC) can be isolated from
the composite laminates. The periodic fiber sequences
commonly used are the square array and the hexagonal
array, see Sun and Vaidya (1996), for example. In this
paper, the square array of fiber distribution is assumed,
resulting in a rectangular parallelepiped RUC containing
one fiber, as shown in Fig.1.

The cross section of the unit cell is a square with sides
a, and thickness in the fiber direction is b (Fig.1b). The
radius of the fiber, R, is determined by the fiber volume
fraction Vf of the composite such thatVf = πR2

/
a2.

2.2 Periodic boundary conditions

The analysis of a unit cell under general periodic bound-
ary conditions can be found in Suquet (1987), Michel et
al. (1999), Aboudi et al. (2001), among others, and the
implementation in FEM analysis for multiaxial loading
case can be seen in Xia et al. (2003), Xia et al. (2005).
For a periodic array, the displacement field can be ex-
pressed as [Suquet (1987)]:

ui(x1,x2,x3) = εi jx j +u∗i (x1,x2,x3) (1)

where εi j is the global strain applied to the periodic body,
and u∗i (x1,x2,x3) is the periodic part of the deformation.
In addition, for a periodic RUC, the tractions on the op-
posite boundary surfaces should also meet the continuity
condition, i.e.

σi j(P)n j(P) = −σi j(Q)n j(Q) (2)

where P and Q are periodic points (with the same in-
plane coordinates) on the two opposite boundary sur-
faces, n is the unit outward normal vector to the surfaces,
see Fig. 1(b).

Generally, u∗i (x1,x2,x3) is unknown prior to the solution,
thus Eq. 1 cannot be directly applied as the displacement
boundary conditions. However, since u∗i is periodic, i.e.
its value is the same at the opposite surfaces of a RUC,
therefore,

ui(P)−ui(Q) = [x j(P)−x j(Q)]εi j (3)
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In a displacement FEM scheme, Eq. 3 can be imple-
mented as displacement constraint equations. Further-
more, it has been shown in Xia et al. (2005) that in a
displacement FEM scheme, a unique solution can be ob-
tained by application of Eq.3 as the displacement bound-
ary conditions and the traction continuity condition, Eq.
2, will be satisfied automatically.

2.3 Off-axis loading

In this study, a unidirectional laminate under off-axis
loading will be analyzed as an application example, Fig.
1(a). The off-axis tensile loading applied to a unidirec-
tional laminate can be decomposed into a set of multiax-
ial loading in the principal material directions of a lam-
ina, as shown in Fig.1(c).

σ11 = σcos2 θ
σ22 = σsin2 θ (4)

σ12 = σsinθcosθ

Therefore the global stress and corresponding strain vec-
tors can be written as:

{σ} = {σ11, σ22, 0, σ12, 0, 0}T (5)

{ε} = {ε11, ε22, ε33, ε12, 0, 0}T (6)

Note that Eq. 3 is the periodic boundary conditions for
the entire RUC model. Referring to Fig.1, the geometry,
material and loading of the present problem have three
symmetries, viz.: (1) along x1 axis (fiber direction), the
geometry, material, stress/strain, and periodic part of dis-
placement are invariant; (2) mirror symmetry about the
plane x3 = 0; and (3) π -rotation symmetry about the x3

axis. In Appendix A, a detail derivation of the periodic
boundary conditions for the one-quarter RUC, Fig. 1(c),
under the combined shear and normal loading is provided
considering the above three symmetries. In such a way,
the computation time required can be significantly re-
duced, especially for the current nonlinear problem. The
applied boundary conditions to the one-quarter model are
summarized in the following:

On planes x1 = ±b/2

⎧⎨
⎩

u1(b/2, x2, x3)−u1(−b/2, x2, x3) = ε11b
u2(b/2, x2, x3)−u2(−b/2, x2, x3) = 0
u3(b/2, x2, x3)−u3(−b/2, x2, x3) = 0

(7)

On plane x2 = 0⎧⎨
⎩

u1(x1, 0, x3) = ε11x1

u2(x1, 0, x3) = 0
σ23(x1, 0, x3) = 0

(8)

On plane x2 = a/2:⎧⎨
⎩

u1(x1, a/2, x3) = ε11x1 +2ε12(a/2)
u2(x1, a/2, x3) = ε22(a/2)
σ23(x1, a/2, x3) = 0

(9)

On plane x3 = 0⎧⎨
⎩

u3(x1, x2, 0) = 0
σ23(x1, x2, 0) = 0
σ31(x1, x2, 0) = 0

(10)

On plane x3 = a/2:⎧⎨
⎩

u3(x1, x2, a/2) = δ33

σ23(x1, x2, a/2) = 0
σ31(x1, x2, a/2) = 0

(11)

Note that the constant δ33in the first of Eq.11 is not spec-
ified, therefore, it ensures that, on the plane x3 = a/2, the
total normal traction vanishes, i.e.
Z

σ33dS = 0 (12)

Thus, the global stress component σ33 = 0.

In an off-axis loading of unidirectional laminates under
strain control, the global strain in the loading direction
(see Fig.1 (a) and (c)) is

ε = ε11 cos2 θ+ε22 sin2 θ+2ε12 cosθ sinθ (13)

For each time step, ∆t, the strain increment is given by

∆ε = ε̇∆t (14)

where ε̇ is the applied global strain rate. To simulate
the off-axis loading, an iterative procedure is required
to ensure that proper proportions of the increments of
ε11, ε22, ε12 are applied, so that Eq. 4 is satisfied at each
step. The iteration procedure is as follows [Zhang et al.
(2005)]:

(i) For each time step ∆t, we have the trial increments
ofε11, ε22, ε12, which satisfy Eq. 13.
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(a) (b) (c)
Figure 1 : Unidirectional laminates and unit cell model: (a) A unidirectional laminate under off-axis loading; (b)
Unit cell for a square fiber array; (c) Quarter of the unit cell

(ii) The solution gives the stress distribution in the unit
cell, so the global stress components can be calculated
from

{σ} =
1
V

Z
V
{σ(x1, x2, x3)}dV (15)

where V is the volume of the unit cell.

(iii) Equation 4 is checked and, if it is satisfied (within
certain error limit), then one proceeds to the next step. If
not, new increments of ε11, ε22, ε12are obtained and steps
(i) to (iii) are repeated.

For a small time step, it could be assumed that the incre-
ments of ε11, ε22, ε12 are proportional to the correspond-
ing increments of average stress components, then the
new increments of ε11, ε22, ε12 can be estimated from the
average stresses, Eq.15. Numerical calculation indicated
that the required increments of ε11, ε22, ε12could be ob-
tained through a few iterations.

3 Cohesive Debonding Law and Cohesive Inter-
phase Element

3.1 Cohesive law

The fiber-matrix interphase/interface will be modeled by
a cohesive zone model proposed by Tvergaard (1990a,
b). The behavior to be captured by a cohesive law is
that, as the cohesive surface separates the magnitude of
the tractions at first increases, reaches a maximum and
then it decreases with the increasing separation finally
approaching zero. In the interface coordinate system 1-

2-3 shown in Fig. 1(b), let [u1],[u2] and [u3] be the dis-
placement differences across the interface and T1, T2 and
T3 are the corresponding tractions in the 1, 2, and 3 di-
rections, respectively. To account for the combined effect
of normal and shear decohesions, a non-dimensional pa-
rameter λ is defined as [Tvergaard (1990a,b)]:

λ =

{(
[u3]
δn

)2

+
(

[u2]
δt1

)2

+
(

[u1]
δt2

)2
}1/2

(16)

where δn, δt1, δt2 are displacement difference values in
the three directions, corresponding to the complete sep-
aration. To determine the tractions a function F(λ) is
chosen,

F(λ) =
27
4

σmax(1−2λ+λ2) for 0 ≤ λ ≤ 1 (17)

And the interface tractions are given by the expressions

T3 =
[u3]
δn

F(λ)

T2 = α
[u2]
δt2

F(λ) (18)

T1 = α
[u1]
δt1

F(λ)

For the case of purely normal separation ([u1] = [u2]≡ 0)
the maximum traction is σmax, and the total separation
occurs at [u3] = δn, and the work of separation per unit
interface area is 9σmaxδn/16. Thus, to represent the inter-
facial debonding behavior of a given interface the values
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of the five parameters,δn, δt1, δt2, σmax and α have to
be chosen such that the maximum traction and the work
required for the separation for the combined modes are
approximated as well as possible.

3.2 Cohesive interphase element

The traction-displacement jump relation is relatively dif-
ficult to implement into a commercial finite element
code, especially for three-dimensional cases. Instead, in
this study the ideal interface (zero thickness) is repre-
sented by a very thin layer of interphase element with
thickness of h.Assuming uniform strains throughout the
thickness, then, the strains can be expressed as a func-
tion of the displacement jumps as follows (in the local
coordinate system 1-2-3 shown in Fig. 1(b)):

{ε33 γ23 γ13} =
1
h
{ [u3] [u2] [u1]} (19)

The critical strains are defined from the above equation
as

{εc
33 γc

23 γc
13} =

1
h
{δn δt2 δt1} (20)

Substituting Eqs. 19 and 20 into the cohesive law ex-
pressed by Eqs. 16-18, and replacing the corresponding
tractions T3, T2 and T1 by the stresses σ33, τ23 and τ13, a
stress-strain constitutive law is obtained as follows:

σ33 =
ε33

εc
33

F(λ)

τ23 = α
γ23

γc
23

F(λ) (21)

τ13 = α
γ13

γc
13

F(λ)

λ =

{(
ε33

εc
33

)2

+
(

γ23

γc
23

)2

+
(

γ13

γc
13

)2
}1/2

(22)

The incremental expressions are obtained from Eq. 21 as

σ̇33 =
ε̇33

εc
33

F(λ)+
ε33

εc
33

∂F
∂λ

λ̇

τ̇23 =
γ̇23

γc
23

F(λ)+
γ23

γc
23

∂F
∂λ

λ̇ (23)

τ̇13 =
γ̇13

γc
13

F(λ)+
γ13

γc
13

∂F
∂λ

λ̇

where

∂F
∂λ

=
27
2

σmax(−1+λ)

λ̇ =
1
λ

(
ε33

εc
33

ε̇33

εc
33

+
γ23

γc
23

γ̇23

γc
23

+
γ13

γc
13

γ̇13

γc
13

)
(24)

This cohesive constitutive law can be implemented into
a FEM code as a stress-strain relationship. It should be
noted that the constitutive law is defined in the coordinate
system 1-2-3, in the FEM analysis, it should be trans-
formed to the coordinate system (x1, x2, x3), see Fig. 1.

3.3 Snap-back instability during interphase damage

In the simulation of damage, the snap-back of the stress-
strain curve frequently results in convergence difficulties
in the numerical calculations. Snap-back of the stress-
strain curve indicates the strain decreasing with the de-
creasing of the stress [Gao and Bower (2004), Yang and
Proverbs (2004)]. In this section, a simple interfacial
model is considered to study the snap-back behavior and
the numerical strategy to overcome the convergence dif-
ficulties.

A one dimensional interfacial model is shown in Fig. 2.
It consists of three plane strips representing the fiber, in-
terphase and matrix, respectively. The fiber and the ma-
trix are assumed to be elastic and the interphase model
is described by the cohesive law. This one dimensional
model can be solved either analytically or numerically.
In the analytical solution, the interphase is idealized as
an interface, and the cohesive law expressed by Eqs. 16-
18 are used. While in the FEM solution, the interphase
is represented by a thin layer of interphase element, and
cohesive constitutive relations expressed by Eqs. 19-22
are used. First, let us examine the following analytical
solution:

ε = λ(δn/2R)+(σ/σmax)(σmax/2Em)(1+Em/E f )

σ/σmax =
27
4

λ(1−λ)2 (25)

Fig. 3 portrays the stress-strain curves for the above so-
lution with Em=3450 MPa, E f =72400 MPa, σmax= 60
MPa and different ratios of δn/R. It can be seen that
the stress-strain curves show the ‘snap back’ instability
when δn/R = 0.025 or 0.01. By differentiating Eq. 25,
the condition for this instability is, when

(σmax/δn)/(E ′/R) > 4/9 (26)
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where E ′ = EmE f /(Em +E f ).

Figure 2 : One dimensional interphase model.

Figure 3 : Global stress vs. global strain for a simple
interphase model.

In the FEM analyses, for the three ratios of δn/R = 0.1,
0.075 and 0.05the same global stress-strain curves as that
in Fig. 3 are obtained. However, as for the ratios of
δn/R = 0.025 and 0.01, the calculations can be continued
only until the maximum global stress is reached and no
converged solution can be obtained thereafter. To over-
come this difficulty, when the snap-back occurs, an arti-
ficial viscous term is introduced, as suggested in Gao and
Bower (2004). Equation 18 is modified as follows

T3 =
[u3]
δn

F(λ)+
ηn

δn

d[u3]
dt

T2 = α
[u2]
δt2

F(λ)+
ηt2

δt2

d[u2]
dt

(27)

T1 = α
[u1]
δt1

F(λ)+
ηt1

δt1

d[u1]
dt

where ηn, ηt2, ηt1 are viscous coefficients.

In Fig. 4, the FEM numerical solution for δn/R = 0.025
with ηn = 5.0 is compared with the analytical solution. It
can be seen that the snap-back instability is avoided and
the curve after the complete separation seems physically
more realistic. In addition, the influence of the thickness
of the cohesive interphase element, h, is also shown by
comparing the results with two different thicknesses. It
is seen that, the influence of the h is negligible as long
as it is sufficiently small. Thus in the analyses of com-
posite laminates to follow, the thickness of the interphase
element will be taken to be 2% of the fiber radius.

Figure 4 : Response with artificial viscousity and com-
parison with the analytical solution

4 Numerical Results of Laminates under Off-axis
Loading

The off-axis loading of an E-glass fiber/epoxy (Epon
828/Curing agent Z) unidirectional laminate has been an-
alyzed as an application example. This example is cho-
sen because a detailed experimental study [Ishai (1971)]
revealed that the bonding between fiber and matrix in
this material system was relatively weak and interfacial
debonding was the dominant failure mechanisms of the
unidirectional laminates under off-axis loading. Figure 5
shows the fractographs of the failed unidirectional lami-
nate specimens under 90 ˚ , 45 ˚ and 20 ˚ off-axis load-
ings, in which those fibers with relatively smooth sur-
faces indicate complete separations between the fibers
and the epoxy matrix.
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Figure 5 : Fractographs of coupon specimens under off-
axis tensile loadings [from Ishai (1971)]:(a) 90 ˚ off-axis
loading; (b) 45 ˚ off-axis loading; (c) 20 ˚ off-axis load-
ing

In the current FEM analysis the glass fiber is assumed
to be linearly elastic with elastic constants listed in Tab.
1. The epoxy matrix has a highly nonlinear viscoelastic
behavior. Therefore, a viscoelastic constitutive relation
for the matrix material is required for an accurate pre-
diction of the response of the composite. A differential

form of nonlinear viscoelastic model recently developed
in Xia et al. (2003) is used to model the constitutive re-
sponse of the epoxy matrix, Epon 828/Z. The material
constants needed for the viscoelastic model are also listed
in Tab. 1. The physical significances of the constants
and the details of the viscoelastic model are documented
in the above reference. The parameters for the cohe-
sive model used in the calculations are:σmax = 72MPa,
δn/R=δt1/R = δt2/R=1.0 % and α = 0.9, where R is
the radius of the fiber.

The cohesive stress-strain relations for the interphase ele-
ment and the viscoelastic constitutive model of the epoxy
resin were implemented into the FEM code ADINA as
user-defined material subroutines. The calculations were
conducted on a SGI Origin 2000 computer system. To
compare with the test results in Ishai (1971), uniaxial
tensile loads at four off-axis angles (90 ˚ , 45 ˚ , 30 ˚ , and
20 ˚ ) were applied to the unidirectional laminates at a
constant strain rate of 10−3 s−1.

Figure 6 : Finite element mesh of the RUC model

Figure 6 shows the finite element meshes of the RUC
model with 8 node brick elements. A thin layer of in-
terphase element around the fiber (h/R= 0.02, h and R
are the thickness of the interphase element and the ra-
dius of the fiber, respectively) is shown in the inset. Note
that in the fiber direction (x1 direction), only one layer of
element is sufficient, since all the stress and strain com-
ponents are invariant along the fiber direction.
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Table 1 : Constants of constitutive model for matrix

Constituents E (MPa) ν α1 τ1 R
E-glass fiber 72400 0.22 / / /

Matrix
3450 0.40 10 6.116 1.15

E1(σ) = 1.055×105e−
σ−22.764

18.000 MPa

4.1 Prediction of Global Stress-strain Curves

Figure 7 shows the predicted global stress-strain curves
and the comparison with the test results of Ishai (1971).
All the calculations used the same set of material con-
stants as shown in Table 1 and the off-axis angles con-
sidered were 90 ˚ , 45 ˚ , 30 ˚ , 20 ˚ , as in the test. It
can be seen that the stress-strain curves of the unidi-
rectional laminates with four different angle orientations
are well predicted by the present micromechanical anal-
ysis. In the calculations for all the four off-axis angles,
ηn/σmax = ηt/σmax = 0.15 were used to avoid the con-
vergence problems caused by the snap-back instabilities.

Figure 7 : Global stress-strain curve of a unidirectional
laminate under off-axis loadings.

4.2 Microscopic Deformation and Interphase Dam-
age Initiation

The microscopic deformation including the interphase
damage behavior can be directly obtained from the cur-
rent analysis. Figures 8(a) and (b) show the deformed
RUC and the separation of the interphase for 90 ˚ and
45 ˚ off-axis loadings, respectively. The deformations
of 30 ˚ and 20 ˚ loadings are similar to that of the 45 ˚
loading. As shown in Fig. 8(a), for the 90 ˚ (trans-
verse) loading, the maximum separation of the interphase
is normal to the interphase with [u3] �= 0, [u1] = [u2] = 0.
For 45 ˚ off-axis loading, the interphase damage shows
a mixed mode: opening normal to the interphase and
sliding along the 1 direction, i.e. in this case,[u3] �= 0,
[u1] �= 0, but [u2] = 0 as shown in Fig. 8(b). Note also
that for the transverse (θ = 90 ˚ ) loading, the deformed
surfaces of the RUC remains rectangular, while for 45 ˚
off-axis loading, the surfaces originally perpendicular to
the fiber do not remain planes after the deformation.

Figures 9 to 11 plot distribution of the tractions in the
interphase for the four fiber angles at the instant prior
to but close to the peak point of the stress-strain curves.
For 90 ˚ , 45 ˚ , 30 ˚ , and 20 ˚ off-axis angles, the corre-
sponding global strains are ε =0.5%, 0.9%, 1.0%, and
1.0%, respectively.

It can be seen from Figs. 9 to 11 that, along the circum-
ferential direction of the interphase (see inset in Fig. 9
for angle φ ), the normal traction T3 and sliding traction
T1 for all the four off-axis angles have maximum val-
ues at φ=0 ˚ , thus indicates that the interphase debonding
will initiate at φ = 0 ˚ . However, the proportions of trac-
tions T3 and T1 are different for different off-axis angles
θ. When θ = 90 ˚ (transverse loading), the tractions T2

and T1 are very small at φ = 0 ˚ , while T3/σmaxis close
to 1 as indicted by Fig. 9, thus the initiation of the dam-
age is mainly caused by the traction T3. When θ = 45 ˚ ,
T3/σmax ≈0.6, T1/σmax ≈0.7 (at φ=0 ˚ ), thus both trac-
tions T3 and T1 contribute to the initiation of the inter-
phase damage, resulting in the interphase separates with
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(a) (b)
Figure 8 : Deformed shape of the RUC and interphase damage for different off-axis angles: (a) 90 ˚ off-axis loading;
(b) 45 ˚ off-axis loading

Figure 9 : Distribution of T3 Figure 10 : Distribution of T2
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(a) (b)

Figure 12 : Traction distributions in interphase prior to and after damage: (a) Traction T3; (b) Traction T2

Figure 11 : Distribution of T1

the combined normal opening and the sliding along the
fiber circumference.

4.3 Evolution of interphase damage

The propagation of the interphase damage can also be de-
picted by the interphase traction distributions in the RUC.
For transverse loading, for example, Fig. 12 shows the
distribution of the interphase tractions at different load-
ing levels. At ε= 0.5 %, the traction T3 reaches the maxi-
mum value at φ = 0 ˚ , thus the interphase starts separating
at this point. The traction decreases with the increase of
the separation, thus the normalized traction decreases to
about 65% at global strain of 0.7 % and the total sepa-
ration occurs at a global strain of 0.8 %, i.e. the trac-
tion drops to zero. With further increase of loading to
0.9 % and 1.1 %, the damaged zone propagates further
along the circumferential direction. The interphase dam-
age propagates to an angle of φ = 40 ˚ at the global strain
of ε = 1.1 %.
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5 Conclusions

The interphase damage analysis has been successfully in-
corporated into the micromechanical finite element anal-
ysis for the fibrous composite materials. Both the macro-
scopic and microscopic responses of unidirectional lam-
inates under off-axis loadings are well predicted based
on the properties of the constituents and that of the in-
terphase. In particular, the following conclusions can be
drawn from the current investigation:

The interphase element developed based on the cohesive
law is capable of modeling both normal and tangential
separations of the interface. Thus the entire response in-
cluding damage initiation and evolution of the composite
can be simulated. The interphase element is convenient
for the implementation in a FEM code since an equiva-
lent stress-strain relationship is used.

Appropriate periodic boundary conditions should be ap-
plied to the repeated unit cell model of the composite.
From the general periodic boundary conditions for an
entire RUC model, the periodic boundary conditions for
one-quarter of the unit cell accounting for the symmetry
conditions are derived in a rigorous manner for the anal-
ysis of unidirectional laminates under off-axis loading.

For unidirectional laminates under transverse loading,
the interphase damage initiates as the normal opening
while for the off-axis loadings combined mode of nor-
mal opening and in-plane sliding is predicted.

Using the same set of material constants, the global
stress-strain curves at different off-axis angles are pre-
dicted and they are in good agreement with the experi-
mental results.
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Appendix A: Periodic Boundary Conditions for a
Quarter RUC under Off-axis Loading

For the off-axis loading case shown in Fig. 13, the geom-
etry, material, stress/strain, and periodic part of displace-
ment are invariant along the x1 direction. From Eq.1, the
general form of the displacement field can be written as:

u1(x1, x2, x3) = ε11x1 +2ε12x2 +u∗1(x2, x3) (A1)

u2(x1, x2, x3) = ε22x2 +u∗2(x2, x3) (A2)

u3(x1, x2, x3) = ε33x3 +u∗3(x2, x3) (A3)

Note that Eqs. A1 and A2 are obtained through adding a
set of rigid body rotation about x3 axis, u1 = ε12x2, u2 =
−ε12x1, to Eq.A1.

Appendix A:.1 Derivation of boundary conditions
Eqs. 10 and 11

For off-axis loading (Eqs. 5 and 6), the full size RUC
shown in Fig. A1 (a) has a mirror symmetry of plane
x3 = 0, thus the displacement and stress components of
two arbitrary symmetric points satisfy:

u3(x1, x2, x3) = −u3(x1, x2, −x3) (A4)

σ23(x1, x2, x3) = −σ23(x1, x2, −x3) (A5)

σ31(x1, x2, x3) = −σ31(x1, x2, −x3) (A6)

And for the other displacement or stress components:

ui(x1, x2, x3) = ui(x1, x2, −x3)

σi j(x1, x2, x3) = σi j(x1, x2, −x3)

Therefore, we have:

1) From Eqs. A4-A6, on plane x3 = 0, u3 = 0, σ23 =
σ31 = 0, i.e. Eq.10.

2) From Eqs. A3 and A4, for an arbitrary point P on
plane x3 = a/2 and its symmetric point Q on x3 = −a/2,

u3(x1, x2, a/2)−u3(x1, x2, −a/2) = ε33a
u3(x1, x2, a/2) = −u3(x1, x2, −a/2)

}
⇒ u3(x1, x2, a/2) = ε33(a/2)
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(a) (b) (c)

Figure 13 : Reduce to one-quarter of the RUC under off-axis loading: (a) Unit cell; (b) Half of the unit cell; (c)
Quarter of the unit cell

i.e. the first equation of Eq.11.

3) From Eqs. 2, A5 and A6, we have, for σ23 and σ31,

σ23(x1, x2, a/2) = σ23(x1, x2, −a/2)
σ23(x1, x2, a/2) = −σ23(x1, x2, −a/2)

}
⇒ σ23(x1, x2, a/2) = 0

σ31(x1, x2, a/2) = σ31(x1, x2, −a/2)
σ31(x1, x2, a/2) = −σ31(x1, x2, −a/2)

}
⇒ σ31(x1, x2, a/2) = 0

i.e. the second and third equations of Eq.11.

Therefore the RUC reduced to one half of the original
full size, Fig. A1 (b).

Appendix A:.2 Derivation of boundary conditions
Eqs. 8 and 9

The problem shown in Fig. A1 (a) has also a π -rotation
symmetry about x3 axis, thus the displacement and stress
components of two arbitrary symmetric points meet:

u1(x1, x2, x3) = −u1(−x1, −x2, x3) (A7)

u2(x1, x2, x3) = −u2(−x1, −x2, x3) (A8)

σ23(x1, x2, x3) = −σ23(−x1, −x2, x3) (A9)

σ31(x1, x2, x3) = −σ31(−x1, −x2, x3) (A10)

And for the other displacement or stress components:

ui(x1, x2, x3) = ui(−x1, −x2, x3)

σi j(x1, x2, x3) = σi j(−x1, −x2, x3)

1) For two arbitrary π -rotation symmetric points A and
B on plane x2 = 0:

From Eq. A1, and note u∗1 are independent of x1, thus

u1(x1, 0, x3)−u1(−x1, 0, x3)
= ε11x1 −ε11(−x1)+u∗1(x1, 0, x3)−u∗1(−x1, 0, x3)
= 2ε11x1

From Eq. A7

u1(x1, 0, x3) = −u1(−x1, 0, x3)

Thus from the above two relations, we obtain

u1(x1, 0, x3) = ε11x1

i.e. the first equation of Eq.8.

Similarly from Eqs. A2 and A8 we can obtain:

u2(x1, 0, x3)−u2(−x1, 0, x3) = 0

u2(x1, 0, x3) = −u2(−x1, 0, x3)

Thus u2(x1, 0, x3) = 0, i.e. the second equation of Eq. 8.

From Eq. A9,

σ23(x1, 0, x3) = −σ23(−x1, 0, x3) ,

but σ23 is also independent of x1 , thus

σ23(x1, 0, x3) = 0
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i.e. the last equation of Eq. 8.

2) For two arbitrary π -rotation symmetric points M and
N on planes x2 = ±a/2:

From Eq. A1, note u∗1 is independent of x1 and u∗1 is
periodic, thus

u1(x1, a/2, x3)−u1(−x1, −a/2, x3)
= ε11x1 −ε11(−x1)+2ε12(a/2)−2ε12(−a/2)
+u∗1(x1, a/2, x3)−u∗1(−x1, −a/2, x3)
= 2ε11x1 +2ε12a+u∗1(x1, −a/2, x3)
−u∗1(−x1, −a/2, x3)
= 2ε11x1 +2ε12a

From Eq. A7,

u1(x1, a/2, x3) = −u1(−x1, −a/2, x3)

Thus from the above two relations we have,

u1(x1, a/2, x3) = ε11x1 +2ε12(a/2)

i.e. the first equation of Eq.9.

Similarly, from Eqs. A2 and A8, the second equation
of Eq.9 can be obtained. Finally from Eq. A9 the last
equation of Eq. 9 can be obtained.


