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FEM-Analysis of Nonclassical Transmission Conditions between Elastic Structures
Part 1: Soft Imperfect Interface.

G. Mishuris1, A. Öchsner2 and G. Kuhn 3

Abstract: FEM-evaluation of imperfect transmission
conditions has been performed for a modelling problem
of an elastic structure with a thin intermediate interface.
Very good correlations with theoretical results have been
obtained. Additionally, the possible error connected with
introducing the transmission conditions instead of the in-
termediate zone has been estimated depending on me-
chanical properties of the zone.
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1 Introduction

Composite materials are usually considered as nonhomo-
geneous solids with perfect bonding between different
phases of the composites [Allen(1969) and Ashby, Fleck,
Gibson, Hutchinson, and Wadley (2000)]. On the other
hand, such structures, in fact, contain thin intermediate
layers matching materials of the phases together. More-
over, features of the layers may play an important role
and influence the composite properties. However, when
a structure consists of components of essentially differ-
ent sizes and properties, FEM analysis of the structure
becomes very difficult. This fact follows from the neces-
sity to construct a complicated mesh structure which, in
turn, may lead to unstable numerical calculations [Hathe-
way (1989)].

The aim of this paper is to investigate by FEM analysis
one of the possible approaches to avoid such problems.
Namely, we are going to consider in detail the so-called
imperfect interface approach. It consists of replacing the
real thin interphase which is connecting the different ma-
terials by special transmission conditions. These con-
ditions are accurately extracted by asymptotic analysis
taking into account possible small parameters involved
in the problem. Such a small parameter is definitely
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here the thickness of the interphase between the mate-
rials. However, other parameter can also appear which
are connected with the relative difference in the mechani-
cal properties of the interphase and the bonded materials.
Three cases can be separated: i.e. the soft interphase, the
stiff interphase and a comparable interphase with respect
to mechanical properties. The main efforts are made in
the paper to verify the accuracy of the transmission con-
ditions not in terms of the asymptotic analysis estimate
(like O(ε)), but in exact values.

In the next section, we accurately discuss the asymptotic
procedure to evaluate the transmission conditions for the
soft inhomogeneous interface. In the case of the inter-
phase with properties comparable to those of the matched
materials, we refer the prospective reader to the mono-
graph [Movchan and Movhan (1995)]. We verify the ap-
plicability of the obtained conditions and discuss edge
effects appearing in the problem. Various combinations
of the material parameters are under consideration. In
this paper, we restrict ourselves to simple load cases and
symmetrical samples for homogeneous and nonhomo-
geneous interphases. Stiff interphases and other effects
(nonsymmetric samples, complicated loadings, norm es-
timates) will be investigated in the second part of the pa-
per.

2 Asymptotic evaluation of transmission conditions
between elastic bodies for soft interphase (2D-
problem)

Let us consider a model plane strain problem for a bima-
terial elastic solid in the rectangle Ωh = Ω+ ∪ Ω− ∪ Ω,
where Ω± = {(x,y),±y ≥ h}, Ω = {(x,y), |y| ≤ h}
(see Fig. 1). We assume that the intermediate layer
Ω is inhomogeneous and isotropic, while the bonded
materials are isotropic and homogeneous.

Let u±(x,y) and u(x,y) be vectors of displacements:
u± = [u±x ,u±y ]�, u = [ux,uy]

�. They satisfy Lamé equa-
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Figure 1 : Schematic representation of the problem

tions in the corresponding domains:

L±u± = 0, (x,y) ∈ Ω±, Lu = 0, (x,y) ∈ Ω, (1)

where the differential operators L± and L are defined in
the following manner:

L± =

(
(λ± +2µ±)D2

x +µ±D2
y (λ± +µ±)DxDy

(λ± +µ±)DxDy (λ± +2µ±)D2
y +µ±D2

x

)
,

(2)

L =

(
Dx(λ+2µ)Dx +DyµDy DxλDy +DyµDx

DyλDx +DxµDy Dy(λ+2µ)Dy +DxµDx

)
.

(3)

Here Dx and Dy are the respective partial derivatives,
while the material parameters can change their values
within the interphase:

µ = µ(x,y), λ = λ(x,y). (4)

Some boundary conditions are assumed to be satisfied on
the exterior boundaries:

B±u± = 0, (x,y) ∈ ∂Ωh ∩∂Ω±,

Bu = 0, (x,y) ∈ ∂Ωh ∩∂Ω.
(5)

We do not use precise forms of the boundary operators
B± and B because they will not play any role in a formal
asymptotic procedure. However, they are extremely im-
portant, of course, for justification of the final asymptotic
estimate for the obtained solution.

Along the interior boundaries y = ±h, the perfect trans-
mission conditions (6) should be satisfied (the vectors of
displacements and stresses are continuous across the in-
terface):

u±(x,±h) = u(x,±h), σ(y)
± (x,±h) = σ(y)(x,±h) , (6)

where σ(y)
± (x,±h) and σ(y)(x,±h) are tractions along the

boundaries of the thin interphase between the adherends
which are calculated from Hooke’s law:

σ(y)
± (x,y) = M±u±(x,y), σ(y)(x,y) = M u(x,y) , (7)

M =

(
µDy µDx

λDx (λ+2µ)Dy

)
, (8)

and M± are defined in the same manner by replacing µ
and λ with µ± and λ±.

We assume that the intermediate layer is essentially thin-
ner in comparison to the characteristic size of the body:
h << min{L,H}. This allows us to introduce in the prob-
lem a small dimensionless parameter ε << 1 in the fol-
lowing manner: (x,y) ∈ Ω

y = εξ, ξ ∈ [−h0,h0], h0 ∼ min{L,H}. (9)

This makes it possible to use asymptotic methods to per-
form an analysis of the problem. It is a well known fact
that the perfect transmission conditions are still applica-
ble if the elastic constants of the intermediate layer are
comparable in values with those of the matched materi-
als (see, for example, [Movchan and Movhan (1995)]).

We assume in this paper that there is a significant dif-
ference in the elastic properties. Namely, there exists an
additional small parameter connected with the mechani-
cal properties of the bimaterial structure (the interphase
is essentially softer than the both matched materials):

µ(x,y) = εµ0(x,ξ), λ(x,y) = ελ0(x,ξ), (10)

µ0 ∼ λ0, µ0 ∼ µ±. (11)

Let us denote by w(x,ξ) = u(x,εξ) the solution within
the domain Ω0 = {(x,ξ), |ξ| ≤ h0}. In the new notations,
all operators can be rewritten as follows:

L = ε−1L0 +L1 +εL2, M = M0 +εM1, (12)

where L0 = DξA0Dξ, L2 = DxA2Dx, M0 = A0Dξ, M1 =
A1Dx, A0A2 = µ0(2µ0 +λ)I and

L1 =

(
0 Dxλ0Dξ +Dξµ0Dx

Dξλ0Dx +Dxµ0Dξ 0

)
, (13)

A0 =

(
µ0 0
0 λ0 +2µ0

)
, A1 =

(
0 µ0

λ0 0

)
. (14)
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Then, a part of the problem under consideration within
the domain Ω0 can be reformulated in the following man-
ner: we should look for the solution w in the domain Ω0

satisfying the equation:
(

L0 +εL1 +ε2L2

)
w = 0, (x,ξ) ∈ Ω0, (15)

and the interior transmission conditions:

u±(x,±εh0) = w(x,±h0),

σ(y)
± (x,±εh0) =

(
M0 +εM1

)
w|ξ=±h0

.
(16)

According to a standard procedure [Movchan and
Movhan (1995)], the solution within corresponding do-
mains will be sought in form of asymptotic series:

w(x,ξ) =
∞

∑
j=0

ε jw j(x,ξ), u±(x,y) =
∞

∑
j=0

ε ju±
j (x,y).

(17)

As a result, sequence of the BVPs determining respective
terms in asymptotic expansions (17) will be found. Thus,
for the first term w0, one can obtain:

DξA0Dξw0 = 0, (x,ξ) ∈ Ω0, (18)

u±
0 (x,±0) = w0(x,±h0), (19)

σ(y)
0±(x,±0) = A0Dξw0|ξ=±h0

. (20)

From (18) and (20) one can immediately conclude that

σ(y)
0+(x,+0) = σ(y)

0−(x,−0), (21)

while equation (18) is easily integrated to obtain:

w0(x,ξ) = u−
0 (x,−0)+

Z ξ

−h0

A−1
0 (x, t)dt ·σ(y)

0 (x,0). (22)

Finally, taking condition (19) into account, one can ob-
serve that an additional condition has to be satisfied for
solvability of the problem (18) - (20):

u+
0 (x,+0)−u−

0 (x,−0) =

Z h0

−h0

A−1
0 (x, t)dt ·σ(y)

0 (x,0).

(23)

Let us note that equations (21) and (23) constitute the
sought for imperfect transmission conditions for the solu-
tions u±0 within the bonded materials. These transmission

conditions together with the boundary conditions (5)1 al-
low us to find the solution of equations (1)1 valid in the
matched materials. Then, the main term of the solution
within the interphase is simply calculated due to (22).

Continuing the procedure, one can obtain the solution
within the whole domain with an arbitrary accuracy with
respect to the small parameter ε. However, such solutions
will still contain an error connected with the fact that the
constructed solution does not satisfy boundary condition
(5)2.
In the case of the plane stress problem, all the results are
still valid if λ is changed to λ∗ = 2λµ/(λ + 2µ). This
means that we have for plane strain problems :

µ =
E

2(1+ν)
, λ =

νE
(1+ν)(1−2ν)

, (24)

in case of plane stress problems, these parameters are de-
fined as follows:

µ∗ =
E

2(1+ν)
, λ∗ =

νE
1−ν2 , 2µ∗+λ∗ =

E
1−ν2 . (25)

Summarizing the obtained results, imperfect transmis-
sion conditions for the soft inhomogeneous interface can
be written in the following manner:

[σ(y)]|y=0 = 0, [u]|y=0 =

(
τ1(x) 0

0 τ2(x)

)
·σ(y)

0 (x,0),

(26)

where the symbol [ f ]|S denotes the jump of a function f
across an arbitrary boundary S, while new parameters are
defined:

τ1(x) =

Z h0

−h0

dξ
µ0(x,ξ)

=

Z h

−h

dy
µ(x,y)

, (27)

τ2(x) =

Z h

−h

dy
2µ(x,y)+λ(x,y)

. (28)

As it follows from Eq. (20), the main terms of the stress
components σy, σxy are constants inside the interphase.
Let us consider the last component σx:

σx = (2µ+λ)εx+λεy =

[
ε(2µ0 +λ0)

∂
∂x

,λ0
∂
∂ξ

]
·w(x,ξ).

The main term with respect to the small parameter ε is

σx(x,ξ) = λ0
∂
∂ξ

[0,1] ·w0(x,ξ)+O(ε),
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then taking into account Eq. (22), one can conclude:

σx(x,ξ) =
λ0

2µ0 +λ0
[0,1] ·σ(y)

0 (x,0)+O(ε),

or finally inside the interphase the last stress component
varies in direction perpendicular to the interphase only if
Poisson’s ratio depends on the variable ξ:

σx(x,ξ) =
ν(x,ξ)

1−ν(x,ξ)
σy(x,0)+O(ε), ε → 0. (29)

Thus, whereas the value of Young’s modulus of the inter-
phase depends on the variable ξ, the stress component σx

does not depend on this variable because Poisson’s ratio
is constant.

Let us consider two particular cases of the transmission
conditions. The first one appears when all the elastic pa-
rameters of the interphase are constant. Then, the inter-
facial parameters are also constants:

τ1 =
4h(1+ν)

E
, τ2 =

2(1+ν)(1−2ν)h
(1−ν)E

(30)

for the plane strain and

τ̃1 = τ1, τ̃2 =
2(1−ν2)h

E
(31)

for the plane stress case.

In the case when Poisson’s ratio is a constant while
Young’s modulus of the interphase is a function of both
variables, one can easily extract from (27) and (28) the
same formulae as in (30) and (31), where the modulus E
has to be only replaced by the auxiliary function:

Ê(x) =

(Z h

−h

dy
E(x,y)

)−1

. (32)

However, we have to mention in this place an essential
difference between plane strain and plane stress prob-
lems. Namely, if the elastic intermediate phase is weakly
compressible (ν = 0.5− εν0, ν0 > 0), then the condition
µ ∼ λ is not true (cf. (11)) in general. As a result, trans-
mission conditions (26) are not justified for the weakly
compressible interface in the case of plane strain prob-
lems [Mishuris (2004)].

One of the main questions, as it usually appears in
asymptotic approaches, is: which magnitude of error will
be introduced in the problem if one replaces the real thin

interphase by the evaluated imperfect transmission con-
ditions. An additional problem which everywhere ap-
pears after formal asymptotic analysis is the estimation
of regions where the asymptotic formulae give an accept-
able result and where other methods (other conditions in
this case) should be applied to correct the solution.

If one models the soft intermediate layer by the imper-
fect transmission conditions (26) then the relative error
connected with such an approach can be estimated a pri-
ori from the asymptotic analysis in terms of O(ε) except
the regions near the intersections of the layer and the ex-
ternal boundary (Fig. 1). Nevertheless, it is impossible
to estimate in value the ranges of the mentioned regions
and the real error introduced in the solution.

One of the aims of this work is to provide numerical es-
timates for the aforementioned error as well as to clarify
the sizes of the edge zone effects by FEM modelling of
the thin intermediate layer in composite structures. We
are not going to discuss here any questions concerning
implementation of the imperfect transmission conditions
in the numerical codes wich is also an important problem
to be solved.

3 FEM simulation

The commercial finite element code MSC.Marc is
used for the simulation of the mechanical behavior
of the thin intermediate layer with a dimension of
2h = H/100 = 0.01 and L = 10. The two-dimensional
FE-mesh is built up of four-node, isoparametric elements
with bilinear interpolation functions. In order to investi-
gate the edge effect (cf. Fig. 1, left and right hand side of
the interphase), a strong mesh refinement is performed in
this region. Furthermore, the mesh is generated in such
a way that it is possible to evaluate the displacements
and stresses along the axes of symmetry (cf. Fig. 2, lines
A and B) and along the transition zone of the materials
(cf. Fig. 2, lines C and D). In Fig. 2, the lines Ce and De

belong to the bonded material and the lines Ci and Di to
the interphase. The MSC.Marc user subroutine feature
is used to automatically derive the data along the above
mentioned lines.

The final mesh and some details of the interphase with
its strong mesh refinement are shown in Fig. 3. The
whole mesh consists of 108544 Elements whereof 39512
Elements account for the interphase. The resulting
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Figure 2 : Evaluation paths of the investigated structure

mesh detail:  middle of interphase
mesh detail:  end of interphase

interphase

Figure 3 : Two-dimensional FE-mesh: strong mesh re-
finement in the investigated area

linear system of equations is still possible to solve in a
short time on a standard personal computer with 1.5 GB
RAM. Fig. 4 describes the mesh in more detail with the
so-called mesh density (elements per length).

In the framework of the presented work, we investigate
two load cases. In the so-called simple tensile case (cf.
Fig. 5 a)), all nodes with y = +H/2 have a constant y-
displacement and the x-displacement is constrained to
zero. At the lower boundary (y = −H/2), all degrees of
freedom are constrained to zero. In the so-called simple
shear case (cf. Fig. 5 b)), the same fixed boundary is used
at y = −H/2 and to all nodes with y = +H/2 a constant
x-displacement is applied, whereas the y-displacement of
these nodes is constrained to zero. Let us underline here
that the simple shear case in our paper is not a pure shear
state because bending is superimposed to the shear state
due to the boundary conditions.

For these model calculations, the elastic constants,
Young’s modulus E± = E∗ = 72700 MPa and Poisson’s
ratio ν± = ν∗ = 0.34, of the aluminum alloy AlCuMg1
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Figure 4 : Mesh density with reference to Fig. 2

(2017) are assigned to the bonded material (cf. Fig. 2).
Differing elastic constants are chosen for the intermedi-
ate layer and the calculations are carried out for the plane
stress and plane strain case.
We have restricted ourselves to the cases of the men-
tioned simple tensile and simple shear loading because
the constructed FEM mesh is definitely appropriated for
them. We have checked this fact by comparing the test
results where x = 0 holds for the completely homoge-
neous elastic domain without intermediate zone (E∗ = E,
ν∗ = ν) with two solutions. Theoretical solutions for sim-
ple tensile, shear and bending problems in rectangles can
be found for example in [Flügge (1962)]. We also have
compared those FEM solutions for our mesh with the
FEM solutions for standard regular (without transition el-
ements) mesh for the homogeneous elastic rectangle. As
a result, we have made sure that for the tensile and shear
loadings the constructed mesh with transition elements
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Figure 5 : Boundary conditions and loads: a) tensile
case; b) shear case

works well, but not for the bending loading.

4 Numerical results and discussion

First of all let us note that, in the case when the elastic
modulae of the intermediate layer are constant, equations
(22) and (23) can be rewritten in the following form:

w(x,ξ) = u−(x,−0)+(ξ+h0)A−1
0 σ(y)(x,0) , (33)

[u]y=0 =

(
2h/µ 0

0 2h/(2µ+λ)

)
σ(y)(x,0) . (34)

In the following, we will discuss the obtained numeri-
cal results in detail only for one case as an example:
i.e. plane stress tensile loading with interface constants:
E = 813 MPa, ν = 0.4999. In Fig. 6, distributions of
displacements and stresses along the line A (cf. Fig. 2)
are presented. Note that the stress component σx(0,y) is
discontinuous at the interface boundaries, as it should be
expected, while all other components are continuous. Al-
though the ratio E/E∗ can only be estimated as 0.1 while
2h/H = 0.01, one can see that the distribution of the dis-
placements within the interface exhibits linear character,
which coincides with (33). Moreover, we can now check
condition (34) at least at the point x = 0. For this rea-
son, we calculate the difference between displacements
∆uy = u+

y − u−y from different sides of the interface. In
the first line of the table 2, the calculated value of ∆uy/σy

is presented whereas stress σy = σy(0,0) has been ex-
tracted directly from the subroutine (the different mate-
rial combinations are explained in Tab. 1). This value
can be compared, as it follows from (34), with the mate-
rial constant 2h/(2µ + λ). Although both values have an
order of 10−7, the relative error takes only a magnitude
of 10−7, which is essentially better than one can expect
from the theoretical result where an estimate O(ε2) can
be only justified (ε2 ∼ 10−4). This fact can be probably
explained in that way that next terms in the asymptotic
expansions (17) disappear in this case, as an exception,
due to the special symmetry of the loadings and geome-
try.

Note also that the value of ∆uy(x)/σy(x) does not change
practically along the entire interface, and the edge ef-
fect becomes essential only near the external boundary.
To show this fact, distributions of the displacements and
stresses along five lines B, Ci, Ce, Di, De (cf. Fig. 2) are
presented in Figs. 7 and 8 for the same example. The de-
viation between the lines of Fig. 7 at the free edge is not
visible in the scale of the figure.

Let us note that the first component in the transmission
condition (34) is satisfied identically for the entire in-
terface as it follows from Figs. 7 and 8 due to tensile
loading. In the case of the shear loading, the same re-
sults have been obtained for the second component of
(34). These facts are simple consequences of the sym-
metry in geometrical and mechanical properties of the
example under consideration. It is important to note that
although the displacement is continuous along the inter-
phase boundary, it is not smooth in y-direction and there-
fore, a visible difference of displacement for lines Ce, Ci

and De, Di can be observed in Fig. 7b. Furthermore, the
decrease of σx at the free ends is not possible to observe
in the given scale of Fig. 8 but indicated by the markers.

One can think that the displacements should behave in
opposite way at the free edge in comparison with that
presented in Figs. 7b and 8. At the first glance, the in-
terphase stiffness seems to increase near the free edge,
because the displacement decreases. In Fig. 9a, the final
shape of the free edge boundary after the deformation is
presented for the same sample with simple tensile load-
ing. It is clear that such a behavior of the displacements
near the free edge is reasonable because of the contrac-
tion. In order to compare two limiting cases of Poisson’s
ratio, the shape is drawn for the same tensile sample in
Fig. 9b with another Poisson’s ratio of ν = 0.0001. Now,
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Figure 6 : Normalized displacement and stress distribu-
tion along line A (cf. Fig. 2)

there is practically no contraction of the interphase mate-
rial. However, the distance from the free edge, measured
where the stress component σy is no longer a straight line,
is practically the same for both cases with an accuracy of
1% in the reference coordinate system.

In Tables 2-5 similar numerical results are presented for
numerous combinations of the elastic constants, loadings
and plane states. For the shear loading in plane strain, all
results are practically the same as in the case of the sim-
ple shear loading in plane stress, which is evident from
the problem formulation. To show this fact, we have pre-
sented only the first case for the weakly compressible in-
terface in Table 5. Let us note that, in the case of the
weakly compressible interface under plane strain condi-
tions, the accuracy becomes to be essentially worse in
comparison with all other cases under consideration. The
explanation is quite simple. As we have mentioned ear-
lier, the transmission conditions evaluated in the first sec-
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lines B, C and D (cf. Fig. 2)

0

N
o
rm

.
n
o
rm

al
st

re
ss

/d
,

1
0

M
P

a
σ

2

-0.8

-0.6

-0.4

-0.2

0.0

0.2

N
o

rm
.
sh

ea
r

st
re

ss
/d

,
1
0

M
P

a
τ

2

200

300

400

500

600

-4 -2 0 2 4

x-coordinate, mm

line Bplane stress, tensile case

E = 813 MPa

ν = 0.4999

σx

σy

τxy

Figure 8 : Normalized normal and shear stress distribu-
tion along line B (cf. Fig. 2)

tion are no longer valid in such a case [Mishuris (2004)].
However, so-called locking phenomena also can occur in
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Figure 9 : Shape of the interphase near the free edge for
different Poisson’s ratios

this case and maybe also involved in the loss of numeri-
cal accuracy.

To our great surprise, the imperfect transmission condi-
tions (34), being only justified for the soft thin interphase,
are true for practically all examples on a sufficiently long
distance along the interface from the center of the sam-
ples, as it follows from the tables. However, with in-
crease of the ratio E/E∗, the region where this fact is
observable becomes smaller.

The edge effect manifests its influence deeper within the
sample. To estimate this influence we have introduced

the distance l from the ends of samples (Fig. 1) where
the corresponding stress component measured along the
interface becomes worse with an accuracy of 1% in com-
parison with the value at the symmetry axis. Let us note
that it is possible to introduce alternative definitions of
the edge effect zone based on the displacement compo-
nents. It is a well known fact that the size of the zone
depends on the definition, but the result is of the same
order. Thus, the same definition is consequently used to
provide the necessary information about the effect. We
use everywhere the parameter δ = 2l/L showing the rel-
ative deepness of this zone. This edge effect is connected
with Saint-Venant’s principle. In fact, in the case of the
infinite strip one can easily show that the stress will be
constant along the interface. Thus, the observed chang-
ing of the behavior near the sample edges in Fig. 8 is
due to the boundary conditions applied to the edges (in
this paper: free edge). The main tendency concerning
the edge effect may essentially differ for other boundary
conditions in comparison with the discussed one.

Table 1 : Investigated material cases (MC)
MC E ν

1 8138 0.4999
2 813 0.4999
3 81 0.4999
4 5427 0.0001
5 542 0.0001
6 54 0.0001
7 8138 0.3000
8 813 0.3000
9 81 0.3000
10 271270 0.3000

In Figs. 10-12, corresponding values of δ are presented
for different cases under consideration. Except the case
of the weakly compressible interface (ν = 0.4999) un-
der plane strain conditions for tensile loading, all curves
in Figs. 10-12 δ = δ(E/E∗) exhibit a similar behavior.
Namely, for small values of the ratio E/E∗ ∼ 10−3, δ
takes a value near 0.05 and for smaller values (see Fig.
12) it becomes comparable with the accuracy of δ due
to the definition. Moreover, the magnitude of Poisson’s
ratio slightly influences the value of δ, except the men-
tioned case of the weakly compressible interface under
plane strain conditions and tensile loading.
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Table 2 : Plane stress, tensile case, line A
MC ∆uy(0,0)

σy(0,0)
2h(1−ν2)

E rel. error

1 9.2173 ·10−7 9.2173 ·10−7 1.085 ·10−7

2 9.2264 ·10−6 9.2263 ·10−6 3.577 ·10−6

3 9.2605 ·10−5 9.2605 ·10−5 9.719 ·10−7

4 1.8426 ·10−6 1.8426 ·10−6 −1.085 ·10−6

5 1.8450 ·10−5 1.8450 ·10−5 1.626 ·10−6

6 1.8519 ·10−4 1.8519 ·10−4 1.080 ·10−6

7 1.1182 ·10−6 1.1182 ·10−6 8.943 ·10−6

8 1.1193 ·10−5 1.1193 ·10−5 2.680 ·10−6

9 1.1235 ·10−4 1.1235 ·10−4 8.901 ·10−7

10 3.3550 ·10−8 3.3546 ·10−8 1.264 ·10−4

Table 3 : Plane strain, tensile case, line A
MC ∆uy(0,0)

σy(0,0)
2h(1+ν)(1−2ν)

E(1−ν) rel. error

1 7.7872 ·10−10 7.3709 ·10−10 0.0565
2 7.4210 ·10−9 7.3781 ·10−9 0.0058
3 7.3850 ·10−8 7.4054 ·10−8 −0.0028
4 1.8426 ·10−6 1.8426 ·10−6 4.342 ·10−6

7 9.1285 ·10−7 9.1283 ·10−7 3.177 ·10−5

Table 4 : Plane stress, shear case, line A
MC ∆ux(0,0)

σxy(0,0)
4h(1+ν)

E rel. error

1 3.6862 ·10−6 3.6862 ·10−6 −1.899 ·10−6

2 3.6898 ·10−5 3.6898 ·10−5 1.084 ·10−6

3 3.7035 ·10−4 3.7035 ·10−4 7.020 ·10−6

4 3.6856 ·10−6 3.6856 ·10−6 −5.155 ·10−6

5 3.6904 ·10−5 3.6904 ·10−5 1.074 ·10−7

6 3.7041 ·10−4 3.7041 ·10−4 −4.050 ·10−6

10 9.5851 ·10−8 9.5845 ·10−8 5.842 ·10−5

Table 5 : Plane strain, shear case, line A
MC ∆ux(0,0)

σxy(0,0)
4h(1+ν)

E rel. error

1 3.6860 ·10−6 3.6862 ·10−6 5.154 ·10−5

This phenomenon shows that the edge effect zone is not
only connected with the edge boundary conditions but
also with properties of the bimaterial strip. Such a be-
havior can be easily explained. In fact, when the ratio
of Young’s modulus E/E∗ tends to zero, one can expect
that the top part of the strip will move as a rigid body

(without any traction applied from the absolutely weak
interface). Alternatively, in the case of the other limiting
case - strong stiff interface, the interface will move as a
rigid straight line parallel itself and two different prob-
lems for the strips of the thickness h appear under total
deformation U/2 of each strip. Then, it is clear that such
a case should be equivalent, with respect to the edge zone
analysis, with the homogeneous strip of the thickness 2h
and total deformation U . However, because of the prob-
lem linearity, the edge zone should be of the same order.
This means that with increasing ratio E/E∗ the length
of the edge zone has a tendency to stabilize near some
plateau as it is easy to observe from all presented graphs
in Figs 10 - 12. Moreover, one can easy realize that in
the case of the weakly compressible interface two bonded
half-strip are connected by this interface which still trans-
mits forces from one part to another.

On the other hand, δ = 0.05 means that l = 50h, so that
the depth of the edge zone is 25 times longer than the
thickness of the interphase.
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Figure 10 : Relative length of edge influence δ for plane
stress tensile case

Finally, we would like to check the validity of the trans-
mission condition in the case of the soft nonhomoge-
neous interface. For this reason we choose as an exam-
ple a parabolic behavior of the interphase Young’s mod-
ulus in the form E(y) = 696.86(1+ 22680.0y2), while
Poisson’s ratio remains constant ν = 0.4999. As a result,
the auxiliary parameter Ê defined in (32) takes the same
value Ê = 813.0 as discussed in one of the homogeneous
cases under consideration.

In Fig. 13, distributions of the displacements and stresses
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in perpendicular direction to the interface at the symme-
try line x = 0 are presented. The only difference between
the graphs in Fig. 6b and Fig. 13b is the scaling. We do
not present such magnification earlier in of Fig. 6 where
the stresses took practically constant values within the in-
terface (with accuracy more than 0.01%, which, in fact, is
better than it has been predicted by the asymptotic analy-
sis). This is no more valid with the same accuracy for the
nonhomogeneous interphase. It is clear from Fig. 13b
that in the case under consideration the stresses within
the interface differ now about 2.4% in the worst point
from the constant behavior.

However, it is important to note that the increase of the
gradient in the definition of Young’s modulus leads to
a loss of accuracy in the calculation. This behavior is
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Figure 13 : Normalized displacement and stress distri-
bution along line A (cf. Fig. 2)

connected with the small amount of nodes in direction
perpendicular to the interphase used in the constructed
mesh (only 9 nodes within the interface in perpendicular
direction). Let us also note that the stress component σx

is a constant within and outside the interphase (|y| < h)
and has a jump at the interface lines (y = ±h). However,
this jump is not well approximated due to the few finite
elements in that region. Of course, one can easily draw
the right behavior.

On the other hand, when we decrease the gradient in
the material properties of the interphase, the stress inside
the interphase becomes again to be constant. However,
even with the chosen sufficiently large change in mate-
rial properties within the interphase, the accuracy of the
transmission conditions is still very high.

To clarify this, two terms which are involved in one
of the imperfect transmission conditions, i.e. ∆uy and
τ1σy(x,0), are presented in Fig. 14. The other condition
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is a priory satisfied due to the problem symmetry. As one
can see no difference between the functions can be ob-
served. The edge effect zone can be determined for the
simple tensile loading by defining 1% accuracy of the
values of both functions from that at the symmetry point
x = 0. On the other hand, one can also observe that the
transmission conditions are still valid within the edge ef-
fect zone! To show this fact, a magnification of the graph
is presented near the right hand side of the free edge. It
is known from the asymptotic analysis that the evaluated
transmission conditions cannot be valid along the whole
interface up to the very end. However, as it follows from
the figure, the region where they fail is extremely smaller
than the edge effect zone itself.

5 Conclusion and further work

As it follows from the presented numerical results, im-
perfect transmission conditions for the soft interphase
(34) obtained analytically by asymptotic analysis are sat-
isfactory with a very good accuracy even in the case
ε = 0.01.

The edge effect appears only on a distance comparable
with twenty five times the thickness of the interface in
the case of the soft interface and it even decreases when
E/E∗ becomes smaller. However, the zone increases es-
sentially with increasing ratio E/E∗ approaching some
limiting value. However, the transmission conditions
are still valid within the edge effect zone and they fail
only near the singularity dominated domain which is ex-
tremely small.

In the second part of this paper, we are going to consider
asymmetric cases, i.e. different bonded materials, to ver-
ify whether a so high accuracy of the imperfect transmis-
sion conditions in comparison with the theoretical pre-
diction is connected with the problem symmetry. Also
we are planning to check other transmission conditions
valid for stiff interfaces. Among others, a range of its
applicability and boundary layer effects will be investi-
gated. Finally, we are going to analyze a phenomenon
connected with the singularity dominated regions (possi-
ble stress singularity near the singular points - intersec-
tions of the interface and the external boundary).

Although FEM analysis is very useful for verification in
value of formal asymptotic analysis, it has its own restric-
tions concerning values of the small parameter and strong
difficulties connecting with necessity to build a compli-
cated mesh which can be additionally depending on the
type of loading, as it occurred in our investigations for
bending. It is also difficult to define an unknown form
of corresponding transmission conditions from the FEM
analysis. However, in the case when one can suppose
any specific conditions, they can be numerically verified.
In such a way there is a possibility to evaluate imper-
fect transmission conditions in the case when respective
asymptotic analysis is difficult to be carried out. Taking
this fact into account, we are going to evaluate and verify
transmission conditions for thin plastic interphases.
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