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A Meshless Approach Based upon Radial Basis Function Hermite Collocation
Method for Predicting the Cooling and the Freezing Times of Foods

A. La Rocca 1, H. Power 1, V. La Rocca 2, M. Morale 2

Abstract: This work presents a meshless numerical
scheme for the solution of time dependent non linear
heat transfer problems in terms of a radial basis function
Hermite collocation approach. The proposed scheme is
applied to foodstuff’s samples during freezing process;
evaluation of the time evolution of the temperature pro-
file along the sample, as well as at the core, is carried
out. The moving phase-change zone is identified in the
domain and plotted at several timesteps. The robustness
of the proposed scheme is tested by a comparison of the
obtained numerical results with those found using a Fi-
nite Volume Method and with experimental results.

1 Introduction

One of the main applications of refrigeration can be iden-
tified in the preservation of food. As matter of fact, activ-
ity of enzymes and micro-organisms, which are respon-
sible for the deterioration of organic products, is effec-
tively reduced by cooling and freezing food items. Be-
side, crystallisation of water reduces the amount of liquid
water available for microbial growth.

One of the key issues in the frozen food industry is the
production of high quality items; the growing demand
of such products in the market has stimulated researches
and industries to develop new food processing practices
and technologies. Refrigeration equipments need to re-
spect quality standards as well as to be cost effective
and, therefore, an appropriate design need to be carried
out, for this purpose a good estimation of the cooling and
freezing times is necessary.

In literature a wide collection of methods and ap-
proaches, which can provide accurate estimation of tem-
perature and times are available. For instance, semi an-
alytical methods have been developed by Becker and
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Fricke (2002). Numerical methods based on finite vol-
umes or finite elements technique have been proposed to
predict freezing times (see Hu and Sun (2000) and Puri
and Anantheswaran (1993)). Beside that, the finite vol-
ume method has been the main approach used in com-
mercial computational fluid dynamics (CFD) software
packages which are already exist to simulate thermal pro-
cesses of food for analysing complex flux behaviour.

In recent years, meshless approaches have become a pop-
ular numerical scheme to solve partial differential equa-
tions; La Rocca, Hernandez and Power (2004) show
the versatility of the radial basis functions (RBFs) Her-
mite collocation approach to solve time dependent lin-
ear convective diffusion problems with constant coeffi-
cients. As it is point out in their work, the numerical solu-
tion of such transient problem using meshless approaches
present several advantages in comparison with the use of
traditional scheme as the finite difference, elements and
volume.

The use of a mesh is a basic characteristic of traditional
numerical approaches for the solution of partial differ-
ential equations. In those approaches, assumptions are
made for the local approximation of the primitive vari-
ables, which require mesh to support them. During re-
cent years, considerable effort has been given to the de-
velopment of so-called mesh free methods (meshless ap-
proach). The aim of this type of approach is to elimi-
nate at least the structure of the mesh and approximate
the solution entirely using nodes values inside and/or in
the boundary quasi-random distributed in the domain.
For instance, the meshlees local Petrov-Galerkin and lo-
cal boundary integral methods were given by Atluri and
Zhu (1998) and (2000), respectively. These two meth-
ods basically transform the original problem into a local
weak formulation over each subdomain, and the shape
functions were constructed from using the moving least-
squares approximation to interpolate the solution.

In this work we used a truly mesh free numerical scheme
based upon radial basis functions Hermite interpolation
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techniques. In recent years the theory of radial basis
functions (RBFs) has undergone intensive research and
enjoyed considerable success as a technique for interpo-
lating multivariable data and functions. Although most
work to date on RBFs relates to scattered data approx-
imation and in general to interpolation theory there has
recently been an increased interest in their use for solv-
ing PDEs. This approach, which approximates the whole
solution of the PDE by the direct use of RBFs, is very
attractive due to the fact that this is truly meshfree tech-
nique. Kansa (1990a) (1990b) introduced the concept of
solving PDEs using RBFs direct interpolation approach.
He focused upon the multiquadric function and argued
that PDEs are intrinsically related to the interpolation
scheme from which PDE solvers are derived.

The above approach has been applied successfully in
several cases (see for example Dubal (1994), Hon and
Mao (1998), Zerroukat, Power and Chen (1998) and
Amaziane, Naji and Ouazar (2004)), including initial and
boundary value problems. However, no existence of so-
lution and convergence analysis is available in the liter-
ature and for some cases, it has been reported that the
resulting matrix was extremely ill-conditioned and even
singular for some distribution of the nodal points (see
Dubal, Olivera and Matzner (1993)). Several techniques
have been proposed to improve the conditioning of the
coefficient matrix and the solution accuracy, as are: re-
placement of global solvers by block partitioning, LU
decomposition schemes, matrix preconditioners, multi-
zone methods etc (see Kansa and Hon (2000)). Besides
some variations of the original Kansa’s idea, which im-
prove the performance of the scheme, have been also sug-
gested. Among them it is worthy to mention the works
of Shu and co-workers and Tran-Cond and co-workers.

Wu and Shu (2002) suggested using differential quadra-
ture approximation to represent the differential operators
of a given problem, instead of the direct differentiation
used in the Kansa’s method. The proposed differen-
tial scheme is the same one used in the dual reciprocity
method (DRM) of the boundary element technique to ap-
proximate the derivatives of the variables in the volume
integrals to be transformed to surface integrals (for more
details see Partridge, Brebbia and Wrobel (1992)). In this
type of differentiation the basic unknowns are the nodal
values of the function instead of the expansion coeffi-
cients. Shu, Ding and Yeo (2005) implemented this type
of approach to find the numerical solution of complex in-

compressible Newtonian fluid flow problems at moderate
Reynold’s number. Wu and Hon (2003) recently solved
transient heat diffusion problems using a scheme similar
to the one proposed by Wu and Shu. Besides showing
the implementation of the approach, they also gave error
estimate on the convergence of the scheme.

On the other hand, Mai-Duy and Trang-Cong (2001) pro-
posed to approximate directly the higher derivative of the
differential operator by the radial basis function instead
of the function itself and find the lower derivatives and
the function via symbolic integrations, instead of find-
ing the derivatives by differentiation of the radial basis
function. By this idea, they were able to improve the
accuracy of the scheme without increasing the computa-
tional cost, in particular the approximation of the higher
derivatives. This approach has been also used to solve
both transient and steady state problems (see Mai-Cao
and Tran-Cong (2005), Mai-Duy (2004) and May-Duy
and Tran-Cong (2003)). However as is the case of the
original Kansa’s approach, none of the above modifica-
tions are completely mathematically robust and rigorous
proof of their existence of solution is not available.

Fasshauer (1996) suggested an alternative approach
based on Hermite interpolation technique using radial ba-
sis functions, which allows not only the interpolation a
given function but also its derivatives. The convergence
proof for RBF Hermite-Brikhoff interpolation was given
by Wu (1992) who also recently proved the convergence
of this approach when solving PDEs (see Wu (1998) and
Schaback and Franke (1998)). From a series of simple
steady state numerical examples Fasshauer (1996) con-
cluded that those methods base on Hermite interpolation
performs slightly better than those based on direct inter-
polation. Jumarhon, Amini and Chen (2000) and Leitao
(2001) observed similar improvement when using Her-
mite algorithms instead of direct approaches.

More recently Power and Barraco (2002) found that di-
rect interpolation methods have some difficulties solv-
ing convection-diffusion problems at high Péclet number,
which do not come across using the Hermite approach.
Li and Chen(2003) pointed out that these inconveniences
that the direct approach has to predict high Péclet can be
improve by using higher-order radial basis functions and
overlapping domain decomposition technique.

Furthermore it is important to mention that most of the
works reported in the literature based on the Hermite ap-
proach are used to solve steady state non-homogeneous
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problems with constant coefficients. In the present work,
we report how this approach (Hermit collocation) can be
implemented to find the numerical solution of time de-
pendent non linear diffusion problems with variable co-
efficients with application to cooling and freezing foods.
The numerical results obtained with the proposed mesh-
less approach are compared with experimental values and
with the results of a finite volume scheme, previously re-
ported in literature.

2 Mathematical model

In this article we present an implementation of the radial
basis function Hermite collocation method for the solu-
tion of time dependent non linear heat transfer problems.
To model heat transfer through solid foods Fourier’s
Equation of heat conduction is normally used, which can
be written as:

ρ ·C(T)
∂ T (x, t)

∂t
=

∂
∂x j

(
Kj(T)

∂T (x, t)
∂x j

)
x ∈ Ω ⊂ Rd , t > 0 (1)

where K(T) and C(T ) are the thermal properties of the
substance, which are function of the temperature field
and therefore function of the position x at time t, ρ is
the density, which is considered constant in the present
work, Ω is a bounded domain in Rd, d is the dimension
of the problem.

In general the above differential equation is required to
satisfy the following boundary and initial conditions:

AT (x, t)+B
∂T (x, t)

∂n
= f (x, t), x ∈ Γ, t > 0 (2a)

T (x, t) = T0(x), t = o (2b)

where Aand Bare known constants and f (x, t) and T0(x)
are known functions. When B = 0 and A �= 0, we refer to
this type of boundary condition as of the Dirichlet type,
when A = 0 and B �= 0as the Neumann type and when
B �= 0 and A �= 0as the mixed (radiation) or Robin type.

Thermal proprieties of food items strongly depend on
temperature and might be determined using temperature
dependent models. Under this conditions the above prob-
lem becomes strongly non linear. Therefore, cases such
as freezing processes, in which large ranges of temper-
ature are involved, are challenging to solve due to of
the rapid variation of the coefficients with temperature.

However, the problem can be reduced to a more sim-
ple form by introducing a change of variable in terms of
the Kirchhoff’s transformation (see Carslaw and Jeager
(1959)), i.e.

ϕ =
Z T0

T (x,t)
K (ξ) dξ (3)

which implies

∂ϕ
∂t

= −K
∂T
∂t

∂ϕ
∂x j

= −K
∂T
∂x j

∂2ϕ
∂x2

j

=
∂

∂x j

(
−K

∂T
∂x j

)
(4)

Using this well known technique follows that the form of
the heat equation is preserved with a diffusivity function
of T ; in this way equation (1) becomes:

∂ϕ
∂t

= k (T )
∂2

∂x2
j

ϕ (5)

where k(T) = K (T )
/
[ρ · c(T )], which can be solved by

a direct iterative scheme.

In the above transformation T0is a referent temperature,
which in the case of initial constant temperature can be
chosen to be equal to the initial value.

The boundary and initial conditions of the problem need
to be adapted according to the transformation as follows:

The initial condition T (x,0) = T (0, t) implies ϕ(t) =R T0
T (x,0) K (ξ)dξ , x ∈ Ω, which reduces to ϕ=0 in the case

of constant initial temperature, i.e., T (x,0) = T (0).
A boundary condition of the Dirichlet type T (x, t) =
D(x, t),x ∈ Γ implies ϕ(t) =

R T0
D(x,t) K (ξ)dξ with x ∈ Γ

and a boundary condition of the Neumann type ∂T (x,t)
∂n =

N (x, t),x ∈ Γ, implies ∂ϕ(x,t)
∂n = −K (T )N (x, t) , x ∈ Γ,

while a boundary condition of the Robin type is a mix-
ture of the Dirichlet and Neumann conditions.

As can be observed a boundary condition of the Neu-
mann or Robin type, needs to be included in the itera-
tive scheme. Moreover a simple homogeneous Neumann
condition reduces to ∂ϕ(x,t)

∂n = 0

In equation (5), it is possible to approximate the time
derivative of the partial differential operator by a simple
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forward difference using Crank-Nicholson (θ weighted)
method, i.e.

ϕ(x, t +∆t)−ϕ(x, t)
∆t

= θ k (T )
∂2ϕ(x, t +∆t)

∂x2
j

+(1−θ)k (T )
∂2ϕ(x, t)

∂x2
j

(6)

In this way at each time step the transient problem can be
seen as a steady state non-homogeneous problem, with
the non-homogenous term as function of the solution at
the previous time step, i.e.

θ

(
∆t k (T )

∂2

∂x2
j

− 1
θ

)
ϕ(x, t +∆t)

= (θ−1)

(
∆t k (T )

∂2

∂x2
j

− 1
(θ−1)

)
ϕ(x, t) (7)

After obtaining at each time step the function ϕ, the tem-
perature field is found by inverting of the integral equa-
tion (3).

3 Radial basis function meshless Hermite approach

In recent years the theory of radial basis functions
(RBFs) has undergone intensive research and enjoyed
considerable success as a technique for interpolating
multivariable data and functions. A radial basis func-
tion, Ψ(x−x j) = ψ

(∥∥x−x j
∥∥) depends upon the sep-

aration distances of a sub set of data centres, X ⊂
ℜn,

{
x j ∈ X , j = 1,2, ...,N

}
. Due to RBFs spherical

symmetry about the centres x j (nodal or collocation
points), they are called radial. The distances,

∥∥x−x j

∥∥,
are usually taken to be the Euclidean metric, although
other metrics are possible.

The most popular RBFs are:

r2m−2 logr (generalized thin plate spine),(
r2 +c2)m/2

(generalized multiquadric),

exp( - r / c) (Gaussian)

where m is an integer number and r =
∥∥x−x j

∥∥.

The Gaussian and the inverse multiquadric i.e. m < 0 in
the generalized multiquadric function, are positive defi-
nite functions, while the thin-plate splines and the multi-
quadric i.e. m > 0 in the generalized multiquadric func-
tion, are conditionally positive definite functions of order

m, which require the addition of a polynomial term P of
order m-1 together with a given homogeneous constraint
conditions (see equation (10)) in order to obtain an in-
vertible interpolation matrix. The multiquadric functions
with values of m=1 and c=0 are often referred to as coni-
cal functions whilst with m=3 and c=0 as Duchon cubics.

Duchon (1977) derived the thin plate splines (TPS) as
an optimum solution to the interpolation problem in a
certain Hilbert space via the construction of a reproduc-
ing kernel. Therefore, they are the natural generalisation
of cubic splines in n>1 dimension. Even though TPS
have been considered optimal in interpolating multivari-
ate functions they do, however, only converge linearly
(see Powell (1994)). On the other hand, the Hardy mul-
tiquadratics (MQ) functions converge exponentially and
always produce a minimal semi-norm error as proved by
Madych and Nelson (1990). However, despite MQ’s ex-
cellent performance, it contains a free parameter, c2, of-
ten referred to as the shape parameter. When c is small
the resulting interpolating surface is pulled tightly to the
data points, forming a cone-like basis functions. As c
increases, the peak of the cone gradually flatters.

In a typical interpolation problem we have N pairs of data

points
{
(x j,F (x j))

N
j=1

}
, which are assumed to be sam-

ples of some unknown function F that is to be interpo-
lated by the function f, i.e.

f (x) =
N

∑
j=1

λ jΨ
(∥∥x−x j

∥∥)+Pm (x) x ∈ ℜ2 (8)

in the sense that

F (xi) =
N

∑
j=1

λ jΨ
(∥∥xi −x j

∥∥)+Pm (x) (9)

along with the constrains condition

N

∑
j=1

λ jPk (x j) = 0 1 ≤ k ≤ m (10)

Here the numbers λ j, j=1,2,...,N, are real coefficients and
Ψ is a radial basis function.

The matrix formulation of the above interpolation prob-
lem can be written as Ax = b with

A =
(

Ψ Pm

PT
m 0

)
(11)
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xT (λ, β) and bT = (F, 0), where β are the coefficients of
the polynomial.

Micchelli (1986) proved that for a case when the nodal
points are all distinct, the matrix resulting from the above
radial basis function interpolation is always non singu-
lar. Although theoretically the resulting matrix from
the above interpolation technique is always invertible,
numerical experiments show that the condition number
of the matrix obtained with the use of smooth RBFs
like Gaussian or multiquadrics are extremely large when
compared with those resulting from non-smooth RBFs
like the thin-plate splines for low values of m(see Sch-
aback (1995)). Similar difficulties to those encountered
with smooth functions are found when using non-smooth
functions with large values of m.

Let us now consider a boundary value problem

L [u](x) = f (x) (12a)

B [u](x) = g(x) (12b)

where the operators L and B are linear partial differential
operators on the domain Ω and at the contour Γ respec-
tively. For the above problem, a Hermite RBF colloca-
tion method represents the solution u by an interpolation
function of the following type:

u(x) =
n

∑
k=1

λkBξΨ(‖x−ξk‖)

+
N

∑
k=n+1

λkLξΨ(‖x−ξk‖)+Pm (x) (13)

with n as the number of nodes on the boundary of Ω,
N − n the number of internal nodes, Lξ and Bξ are the
differential operators in (12-a,b), but acting on Ψ viewed
as a function of the second argument ξ.

This expansion for u leads to a collocation matrix A,
which is of the form

A =

⎛
⎝ BxBξ [Ψ] BxLξ [Ψ] BxPm

LxBξ [Ψ] LxLξ [Ψ] LxPm

BxPT
m LxPT

m 0

⎞
⎠ (14)

The matrix (14) is of the same type as the scattered Her-
mite interpolation matrices and thus non-singular as long
as Ψ is chosen appropriately. The convergence of the
above approach has been proven by Schaback and Franke

(1998) in terms of a generalized Fourier transform anal-
ysis (see also Wu (1998)).

Due to the uncertainty regarding which RBF is the best to
use in a collocation method for the solution of boundary
value problems for partial differential equations in this
work we will use the generalised TPS.

In the matrix representation (14) of the Hermite collo-
cation numerical solution of equation (7), in the cases
when boundary conditions of the first, second and mixed
kind (Dirichlet, Neumann and Robin) are prescribed, the
partial differential operators are given by the following
expressions:

Lx = Lξ = θ

[
∆t

(
k (T )

∂2

∂x2
j

)
− 1

θ

]
(15)

where the partial differential operator Lx is self adjoin,
and

BD
x = 1 BN

x =
∂

∂x j
n j(x)

BR
x = A(x)+C(x)

∂
∂x j

n j(x)

BD
ξ = 1 BN

ξ =
∂

∂ξ j
n j(ξ)

BR
ξ = A(ξ)+C(ξ)

∂
∂ξ j

n j(ξ) (16)

In the above relations the super index D,N,R in the oper-
ator B represent the type of boundary conditions imple-
mented, i.e. Dirichlet, Neumann and Robin. Furthermore
to avoid singularity at r = 0 on the resulting differential
operators of the matrix A, we use in the representation
formula (13) the generalized TPS

ψ = r6 logr (17)

together with the corresponding cubic polynomial.

P(x) = λN+1x3
1 +λN+2x3

2 +λN+3x2
1x2

+λN+4x1x2
2 +λN+5x2

1 +λN+6x2
2

+λN+7x1x2 +λN+8x1 +λN+9x2 +λN+10 (18)

The non-homogeneous term is obtained by
the multiplication of the rectangular matrix
Ã =

[
L̃xBξ [Ψ] L̃xLξ [Ψ] L̃xPm

]
, defined at the
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internal points, by the λ coefficient found at the previous
time step, where

L̃x = (θ−1)

[
∆t

(
k (T )

∂2

∂x2
j

)
− 1

(θ−1)

]
(19)

As can be observed the above system of equations need
to be solved iteratively at each time step of the transient
analysis, due to the presence of a variable k(T). In the
proposed iterative algorithm, at each time step the ini-
tial guess value of the diffusivity coefficient is given in
term of the temperature field of the previous time step,
which is then update with the new obtained value of the
temperature field. In order to progress to a new time
step it is necessary to achieve convergence of the itera-
tive scheme at the previous time step with a given tol-
erance of the relative variation of the temperature field
(Ti+1 (x)−Ti (x))

/
Ti (x), with i as the number of itera-

tion.

4 Numerical examples

To perform heat transfer calculation thermal properties of
foods must be known. One of the main constituent com-
monly found in food is water. Below the initial freezing
point which is different for each foodstuff due to the dif-
ferent concentration of solid dissolved, such water begin
to crystallize. Therefore water content and is change of
state, influences the thermophysical proprieties of foods;
It is nearly impossible to experimentally determine such
proprieties, and mathematical models need to be used.
As pointed out by Comina, Bonacina and Toffan (1973)
and confirmed recently by La Rocca and Morale (1998),
the phase change can be assumed to take place between
two sharply defined temperatures, initial phase change
temperature Tl and final phase change temperature Ts.
Therefore, in such interval and considering an homoge-
neous food material, the values of the thermal conductiv-
ity K can be predicted using the following expressions:

K (T ) = Kl, T ≤ Tl

K (T ) = Ks +
(Kl −Ks) (T −Ts)

Tl −Ts
, Ts ≤ T ≤ Tl

K (T ) = Ks, T ≤ Ts (20)

which is defines a linear relation to interpolate thermal
conductivity in the phase change area; while a triangle is

used to approximate heat capacity, as follows:

C (T ) = Cl, T ≤ Tl

C (T ) = Cl +
(Cmax−Cl) (Tl −T )

Tl −Tmax
, Tmax ≤ T ≤ T

C (T ) = Cs +
(Cmax−Cs) (T −Ts)

Tmax−Ts
, Ts ≤ T ≤ Tmax

C (T ) = Cs, T ≤ Ts (21)

with

Cmax =
(2∆u−CS(Tmax−TS)−CL(TL−Tmax))

(TL −TS)

been ∆u the latent heat of fusion.

It is important to point out that for simplicity constant
values of thermal properties are employed below and
above the final and initial crystallization temperature.
Moreover, it has to be admitted that better approximation
function are available in literature, however for the pur-
pose of this paper the above estimation can be considered
satisfactory.

A plot of the resulting thermal diffusivity k (T ) =
K (T )

/
[ρ ·C (T )] versus temperature is given in figure1;

as it can be noted it changes dramatically with tempera-
ture. Moreover, values above and below the phase chang-
ing zone are drastically different. Due to the dependency
of thermal properties on temperature and the difference
in magnitude of the physical parameters involved, the nu-
merical analysis of the present freezing process is not a
trivial task.

Knowing the above variation of the thermal diffusivity
with the temperature field, equation (3) can be integrated
to yield the following relation between the variable ϕ and
T :

ϕ = Kl (T0−T ) , Tl ≤ T ≤ T0

ϕ = (Kl) (T0 −Tl)+Ks (Tl −T )− Kl −Ks

Tl −Ts
Ts (Tl −T )

+
Kl −Ks

Tl −Ts

T 2
l −T 2

2
, Ts ≤ T ≤ Tl

ϕ = (Kl) (T0 −Tl)+Ks (Tl −Ts)− Kl −Ks

Tl −Ts
Ts (Tl −Ts)

+
Kl −Ks

Tl −Ts

T 2
l −T 2

s

2
+Ks (Tl −T ) , T ≤ Ts (22)

which can be directly inverted by solving the correspond-
ing quadratic equation to find the value of T knowing ϕ,
that will be used at each step of the iterative algorithm.
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Figure 1 : Thermal diffusivity profile in the range of temperature explored here, for the hamburger sample

Table 1 : Thermo-physical parameters for the hamburger sample.
heat capacity
c

Thermal conductivity
K

Density Latent heat
∆u

Tl Tm Ts 2l

J/(kg K) W/(m K) Kg/m3 J/kg ˚ C ˚ C ˚ C M
Cl Cs Kl Ks

3100 2100 0.43 1.2 990 199000 -1 -3 -6.5 0.0425

For the purpose of validation of the proposed numerical
approach based upon the Hermite radial function collo-
cation technique, two test problems are considered. In
each cases a comparison between the obtained numeri-
cal results of the time variation of the temperature at the
core of the sample with a finite volume results as well
as experiments value reported by La Rocca and Morale
(1998), are presented.

4.1 First numerical example

In the first example a hamburger sample is considered.
The sample has circular cross section, of diameter D
and a thickness s, which respects the condition s/D<<1,
bounded by a pair of parallel planes. The lateral surface
of the cylinder was kept insulated, i.e. non-flux of heat

through surface.

For this example, the thermo-physical parameters in the
governing equation can be evaluated using the data given
table 1.

Our main object at this point is to validate the proposed
meshless scheme, by comparing the present results with
those previously obtained with a finite volume method
scheme and with experimental values. In figure 2 we
present a comparison between the temperature distribu-
tion obtained using the Hermite collocation approach at
the core of the sample with those found with a finite vol-
ume method.

A uniform temperature field, function of time, is applied
at each end surfaces of the cylinder (dash line in figure
2). Due to the symmetry, the problem was solved only in
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Figure 4 : Phase change zone plotted at different time steps; (1) Unfrozen zone, (2) Phase changing zone, (3) Frozen
zone.

half of the domain with a zero flux condition at the mid-
dle cross section of the cylinder. As it can be seen both
numerical models are in agreement with the experimen-
tal data. A small discrepancy between the numerical and
experimental data at the final part of the simulation is due
to the simple model use to interpolate the thermal prop-
erties of the foodstuff. However, for the purpose of this
work the error introduced by such simple approximating
function, is considered acceptable.

The obtained results of the time evolution of the tempera-
ture profile along the centre line of the cylinder is plotted
in figure 3. The two dash line helps to identify the range
of temperatures were the phase change takes place, i.e.,
Tl and Ts.

As point out before, water is the predominant constituent
in most foods. Therefore as the temperature reaches the
freezing point of water, crystallization begins. Actually,
ice formation starts when the temperature in the sample
reaches the value Tl , usually between -1 ˚ C and -3 ˚ C

rather then the freezing point of pure water, due to the
dissolved chemical in solution. Moreover, below such
temperature, some of the liquid water crystallizes and
therefore the liquid solution becomes more concentrate.

The versatility of our scheme allows us to follow the
phase changing zone inside the cylinder. It is interesting
to notice that along the sample three different zones can
be identified: 1) Unfrozen zone, in which the water con-
tained in the food is not frozen; 2) Phase changing zone,
where crystals of ice coexist with the liquid solution; 3)
Frozen zone characterised by the complete crystallization
of the water present in the sample. However, even though
it is assumed here that the crystallization process ends at
the temperature Ts, it is well know that as solute in solu-
tion depress further the freezing point, foods may never
be completely frozen. In Figure 4, four different instants
of the freezing process are shown; it can be seen that the
phase change zone moves from the boundary surface (left
side) to the core of the sample (right side).
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Table 2 : Thermo-physical parameters for the spinach sample.
heat capacity
c

Thermal conductivity
K

Density Latent heat
∆u

Tl Tm Ts s

J/(kg K) W/(m K) Kg/m3 J/kg ˚ C ˚ C ˚ C m
Cl Cs Kl Ks

4000 2010 0.55 2.04 954 199000 -1 -3 -7 0.043
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Figure 5 : Comparison between experimental (), numerical results of the temperature obtained using a finite volume
method (∆) and the results found using the meshless approach (continuous line)

4.2 Second numerical example

Basically in this example the analysis carried out in the
previous example is repeated but in this case a sample
of spinach is considered. Similar geometry characterize
the problem, while the new thermo-physical parameters
in the governing equation can be evaluated using table 2

In figure 5 a comparison between the two numerical
schemes and the experimental data is given

As in the previous case good agreement between the two
numerical results and the experimental data is observed,
except at the final part of the simulation, which is due
to the simplified interpolating function used to define the
variation of k(T ).

5 Conclusions

The results present in the previous section show the ver-
satility of the radial basis function Hermite collocation
approach to solve time dependent freezing problems in-
cluding cases of variable coefficient. Using the standard
Crank-Nicholson weighed method to represent the time
derivative in the partial differential equation the original
problem reduces to the solution of a steady state non-
homogeneous diffusion problem at each time step, with
the non-homogeneous term proportional to the solution
of the previous time step. When the thermal properties
depend on the temperature, the numerical solution of the
problem is more complicated due to the introduced non
linearity. However, incorporating a Kirchhoff transfor-
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mation the difficulties introduced by the non linearity can
be significantly reduced, preserving the structure of the
heat equation. One of the major contributions of this ar-
ticle is to show the accuracy of the scheme even in cases
of strong variation of thermal properties. Moreover the
versatility of our scheme allows us to follow the phase
change zone, in which crystallization takes place, along
the domain.
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