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The Boundary Contour Method for Magneto-Electro-Elastic Media with Linear
Boundary Elements

Aimin Jiang1,2, Haojiang Ding2

Abstract: This paper presents a development of the
boundary contour method (BCM) for magneto-electro-
elastic media. Firstly, the divergence-free of the inte-
grand of the magneto- electro-elastic boundary element
is proved. Secondly, the boundary contour method for-
mulations are obtained by introducing linear shape func-
tions and Green’s functions (Computers & Structures,
82(2004):1599-1607) for magneto-electro-elastic media
and using the rigid body motion solution to regularize
the BCM and avoid computation of the corner tensor.
The BCM is applied to the problem of magneto-electro-
elastic media. Finally, numerical solutions for illustrative
examples are compared with exact ones and those of the
conventional boundary element method (BEM). The nu-
merical results of the BCM coincide very well with the
exact solution, and the feasibility and efficiency of the
method are verified.
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vergence

1 Introduction

The conventional boundary element method (BEM)
usually requires numerical evaluation of line integrals
for two-dimensional problems and surface integrals for
three-dimensional ones. So, more and more attention
has been paid to those methods that do not require the
use of internal cells. Atluri(2004) gave a detailed ac-
count of problems relating to application of the mesh-
less method(MLPG) for domain & BIE dicretizations.
Yoshihiro and Vladimir(2004) gave a method using ar-
bitrary internal points instead of internal cells, based
on a three-dimensional interpolation method by using
a poly-harmonic function with volume distribution in a
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three-dimensional BIEM. Sladek et al. (2004) proposed
meshless methods based on the local Petrov-Galerkin
approach for solution of steady and transient heat con-
duction problem in a continuously non-homogeneous
anisotropic medium. Han and Atluri(2004) developed
three different truly Meshless Local Petrov- Galerkin
(MLPG) methods for solving 3D elasto-static problems.
Using the general MLPG concept, those methods were
derived through the local weak forms of the equilibrium
equations, by using different test functions, namely, the
Heaviside function, the Dirac delta function, and the fun-
damental solutions. Reutskiy(2005) reduced the solu-
tion of an eigenvalue problem to a sequence of inho-
mogeneous problems with the differential operator stud-
ied using the method of fundamental solutions. Hok-
won et al.(2004) presented a mesh-free approach to nu-
merically solving a class of second order time depen-
dent partial differential equations which include equa-
tions of parabolic, hyperbolic and parabolic-hyperbolic
types. Two types of Trefftz bases were considered, F-
Trefftz bases based on the fundamental solution of the
modified Helmholtz equation, and T-Trefftz bases based
on separation of variables solutions.

For magneto-electro-elastic media, the BEM have been
devired [see, for example, Ding and Jiang(2004); Ding
and Jiang(2003)]. But the boundary contour method
(BCM) can achieve a further reduction in dimension by
using the divergence-free property of the integrand of
the conventional boundary element method. Using this
method, three-dimensional problems can be reduced to
numerical evaluation of line integrals over closed con-
tours and two-dimensional problems to merely evalua-
tion of functions at nodes on the boundary of the plane.
This is true even for boundary elements of arbitrary
shape with curved boundary lines (for two-dimensional
problems) or curved surface (for three-dimensional prob-
lems).

Nagarajan et al.(1994) have proposed this novel ap-
proach, called the BCM for linear elasticity problems.
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Nagarajan et al.(1996) used the Stokes’ theorem to trans-
form surface integrals in the conventional boundary el-
ements into line integrals in the bounding contours of
these elements. Phan et al.(1997) derived a BCM formu-
lation and implemented the method for two- dimensional
problems of linear elasticity with quadratic boundary el-
ements. Zhou et al.(2002) developed the BCM based on
equivalent boundary integral equations and applied the
traction BCM to crack problems and the bending prob-
lems of elastic thin plate. For piezoelectric materials,
Wang et al.(2003) presented a development of the BCM
by introducing linear shape functions and Green’s func-
tions in Ding et al.(1998) for piezoelectric media.

However, to the authors’ knowledge, no attempts in the
literature have been made to solve problems of magneto-
electro-elastic media by the BCM. This paper presents
a development of the BCM for magneto-electro-elastic
problems. Firstly, the divergence-free of the integrand of
the magneto-electro-elastic boundary element is proved,
then, the BCM formulation is derived and potential func-
tions are obtained by introducing linear shape func-
tions and Green’s functions[Ding and Jiang(2004)] for
magneto-electro-elastic media and using the rigid body
motion solution to regularize the BCM and avoid com-
putation of the corner tensor. The BCM is applied to the
problem of magneto-electro- elastic media. Finally, nu-
merical solutions for illustrative examples are compared
with exact ones and those of the conventional bound-
ary element method (BEM). The numerical results of the
BCM coincide very well with the exact solution, and the
feasibility and efficiency of the method are verified.

2 General Integral Formulation for Magneto-
Electro- Elastic Plane

For two-dimensional transversely isotropic magneto-
electro-elastic media, we define the general displacement
u, general surface traction t, general stress T and general
strain S as follows[Ding and Jiang(2004), Pan(2001)]
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(1)

So the relation between general stress and general strain
can be written as

T = DS (2)

where

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

c11 c13 0 0 e31 0 d31

c13 c33 0 0 e33 0 d33

0 0 c44 e15 0 d15 0
0 0 e15 −ε11 0 −g11 0
e31 e33 0 0 −ε33 0 −g33

0 0 d15 −g11 0 −µ11 0
d31 d33 0 0 −g33 0 −µ33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Moreover, we define

U∗ =

⎡
⎢⎢⎣

u∗11 u∗12 Φ∗
1 Ψ∗

1
u∗21 u∗22 Φ∗

2 Ψ∗
2

u∗31 u∗32 Φ∗
3 Ψ∗

3
u∗41 u∗42 Φ∗

4 Ψ∗
4

⎤
⎥⎥⎦ ,

T∗ =

⎡
⎢⎢⎣

t∗11 t∗12 ω∗
1 η∗

1
t∗21 t∗22 ω∗

2 η∗
2

t∗31 t∗32 ω∗
3 η∗

3
t∗41 t∗42 ω∗

4 η∗
4

⎤
⎥⎥⎦ (3)

where u∗i j and t∗i j (i, j = 1,2) are, respectively, displace-
ments and surface tractions at a field point Q in the Xj

(X1 = x, X2 = z) coordinate directions due to a unit load
acting in one of the Xi directions at a source point P
on the boundary, u∗3 jand t∗3 j ( j = 1,2) are, respectively,
displacement components and surface tractions in the Xj

coordinate directions at Q due to a unit electric charge
at P, u∗4 j and t∗4 j ( j = 1,2) are, respectively, displace-
ment components and surface tractions in the Xj coordi-
nate directions at Q due to a unit current at P, Φ∗

i , Ψ∗
i ,

ω∗
i and η∗

i (i = 1,2) are, respectively, electric potential,
magnetic potential, surface charge and surface magnetic
induction at Q due to a unit load acting in one of the Xi di-
rections at P, Φ∗

3, Ψ∗
3, ω∗

3 and η∗
3 are, respectively, electric
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potential, magnetic potential, surface charge and surface
magnetic induction at Q due to a unit electric charge at
P, Φ∗

4, Ψ∗
4, ω∗

4 and η∗
4 are, respectively, electric poten-

tial, magnetic potential, surface charge and surface mag-
netic induction at Q due to a unit current at P. The full
statement of U∗ and T∗ can be seen in Appendix A. It
is assumed that there is neither body force nor electric
charge. Based on the extended Somigliana equation, the
boundary integral formulation is obtained

C(P)u(P) =
Z

SU∗(P,Q)t(Q)ds−
Z

ST∗(P,Q)u(Q)ds

(4)

The general surface t and the matrix T∗ can be written as⎧⎪⎪⎨
⎪⎪⎩

tx
tz
−ω
−η
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⎪⎪⎭

=

⎡
⎢⎢⎣
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Dx Dz

Bx Bz

⎤
⎥⎥⎦

{
nx

nz

}
(5)

⎡
⎢⎢⎣

t∗11 t∗21 t∗31 t∗41
t∗12 t∗22 t∗32 t∗42
ω∗

1 ω∗
2 ω∗

3 ω∗
4

η∗
1 η∗

2 η∗
3 η∗

4

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

σ1x τ1xz σ2x τ2xz

τ1xz σ1z τ2xz σ2z

−D1x −D1z−D2x −D2z

−B1x −B1z−B2x −B2z

σ3x τ3xz σ4x τ4xz

τ3xz σ3z τ4xz σ4z

−D3x −D3z−D4x −D4z

−B3x −B3z−B4x −B4z

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

nx 0 0 0
nz 0 0 0
0 nx 0 0
0 nz 0 0
0 0 nx 0
0 0 nz 0
0 0 0 nx

0 0 0 nz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6)

It is more convenient to use the index notation rather than
the matrix representation

ti = Ti jn j , T ∗
ki = Σki jn j (7)

where T is the general stress tensor and Σ is the Green’s
function stress tensor. Then, Eq.(4) can be rewritten as

cki(P)ui(P) =
Z

S{u∗ki(P,Q)Ti j(Q)−Σki j(P,Q)ui(Q)}e j ·ds

(8)

where e j are global Cartesian unit vectors.

Consider an arbitrary rigid body translation where
ui(Q) = ui(P)=constant. Thus, Ti j(Q) = 0. Use of this
rigid body motion solution in Eq.(8) gives

cki(P)ui(P) = −
Z

SΣki j(P,Q)ui(P)e j ·ds (9)

Substituting Eq.(9) into Eq.(8) yields a new BEM equa-
tionZ

S{u∗ki(P,Q)Ti j(Q)−Σki j(P,Q)[ui(Q)−ui(P)]}e j ·ds

(10)

Thus, the corner tensor cki is now eliminated from the
BEM equation. Its evaluation is avoided and this is first
advantage of using the rigid body motion technique.

Now let

Fk = {u∗ki(P,Q)Ti j(Q)−Σki j(P,Q)[ui(Q)−ui(P)]}e j (11)

It is easy to show that when we take the divergence of
Fk at a field point Q, this vector is divergence free every-
where except at the source point P, i.e.

∇Q ·Fk = {u∗ki(P,Q)Ti j(Q)−Σki j(P,Q)[ui(Q)−ui(P)]}, j

= [S∗ki j(P,Q)Ti j(Q)−Σki j(P,Q)Si j(Q)]
+u∗ki(P,Q)Ti j, j(Q)−Σki j, j(P,Q)[ui(Q)−ui(P)]
= 0 (12)

Where Si j = 1
2(ui, j + u j,i), for i = 1,2; Si j = ui, j, for i =

3,4, and similarly for S∗ki j.

Eq.(12) shows the existence of a function Φk such that

Fk =
∂Φk

∂z
e1 − ∂Φk

∂x
e2 (13)

The boundary is now discretized into n elements, and
each general curved boundary element with e1 and e2 as
the end nodes and m the middle node of the element (Fig-
ure 1).

Then, Eq.(10) becomes
Z

S

Fk ·dS =
n

∑
e=1

Z e2

e1

Fk ·dS

=
n

∑
e=1

Z e2

e1

Fk ·ndS =
n

∑
e=1

Z e2

e1

dΦk

=
n

∑
e=1

[Φe
k(e2)−Φe

k(e1)] (14)



4 Copyright c© 2006 Tech Science Press CMC, vol.5, no.1, pp.1-11, 2006

e1

e2

m

Figure 1 :

which means that there is no need for any numerical in-
tegration for two dimensional magneto- electro-elastic
problems.

It is important to observe that the above integrand con-
tains unknown functions u and t on dS which must sat-
isfy the basic equations of magneto-electro-elastic me-
dia. Thus, local shape functions for u must be chosen
such that they satisfy the general Navier-Cauchy equa-
tions and the shape functions for t must be derived from
those of u.

3 Two-Dimensional Magneto-Electro-Elastic Plane
Strain with Linear Shape Functions

Linear shape functions for u are chosen for each element
as in Figure 1 such that

u = a1 +b1x+c1z for the displacement in x direction

w = a2 +b2x+c2z for the displacement in z direction

Φ = a3 +b3x+c3z for electric potential

Ψ = a4 +b4x+c4z for magnetic potential (15)

where x and z are co-ordinate with respect to a global
co-ordinate system.

From the equations of magneto-electro-elastic media, we
have
⎧⎪⎪⎨
⎪⎪⎩

tx
tz
−ω
−η

⎫⎪⎪⎬
⎪⎪⎭

=

⎡
⎢⎢⎣

c11b1 +c13c2 +e31c3 +d31c4
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e15c1 +e15b2−ε11b3 −g11b4

d15c1 +d15b2−g11b3 −µ11b4

c44c1 +c44b2 +e15b3 +d15b4

c13b1 +c33c2 +e33c3 +d33c4

e31b1 +e33c2 −ε33c3 −g33c4

d31b1 +d33c2 −g33c3 −µ33c4

⎤
⎥⎥⎦

{
nx

nz

}
(16)

The twelve constants in Eq.(15) are related to twelve
physical quantities on a boundary element (e) by a trans-

formation matrix T(e)

{
P(e)

}
= [T(e)(x, z)]

{
C(e)

}
(17)

where P(e) = [u(e1) w(e1) − Φ(e1) − Ψ(e1) t(m)
x t(m)

z −
ω(m) − η(m) u(e2) w(e2) − Φ(e2) − Ψ(e2)]T, and C(e) =
[a1 b1 c1 a2 b2 c2 a3 b3 c3 a4 b4 c4]T. The element of
the matrix T(e) depend on the nodal co-ordinates and the
normal at m. The variables in P(e)are chosen such that
the matrix T(e) is invertible.

A new coordinate system (ξ,η) centered at the source
point j is introduced. This is done in order to make
the shape function variables conform to those of u∗ki and
Σki j(which are functions of ξ and η only). The ξ and η
axes are parallel to the global x and z axes, thus

ξ = x(Q)−x(P) , η = z(Q)− z(P) (18)

By instituting Eq.(18) into Eq.(15) the displacements
shape functions can be written as

{u} = [Tu(ξ,η)][B j]{C} = [Tu(ξ,η)]
{

Ĉ
}

(19)

in which [B j] is a transformation matrix that depends
only on the coordinates of the source point j. The trac-
tion remains the same form as in Eq.(16).

If (h) is the element containing the source point at its

first node, with this new coordinate system u1(P) = Ĉ(h)
1 ,

u2(P) = Ĉ(h)
4 , u3(P) = Ĉ(h)

7 and u4(P) = Ĉ(h)
10 . So, for the

element (e), we have

{u(Q)−u(P)} = [Tu(ξ,η)]
{

C̃(e)
}

(20)

where the columns of [Tu(ξ,η)] are the twelve shape
functions
⎧⎪⎪⎨
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0
0
0

⎫⎪⎪⎬
⎪⎪⎭
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⎫⎪⎪⎬
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0
0
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,
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⎪⎪⎩

0
1
0
0
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⎪⎪⎭

,
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0
ξ
0
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η
0
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⎫⎪⎪⎬
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0
0
1
0

⎫⎪⎪⎬
⎪⎪⎭

,

⎧⎪⎪⎨
⎪⎪⎩

0
0
ξ
0

⎫⎪⎪⎬
⎪⎪⎭
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⎧⎪⎪⎨
⎪⎪⎩

0
0
η
0

⎫⎪⎪⎬
⎪⎪⎭

,

⎧⎪⎪⎨
⎪⎪⎩

0
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1

⎫⎪⎪⎬
⎪⎪⎭
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⎧⎪⎪⎨
⎪⎪⎩

0
0
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ξ
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⎪⎪⎭

,

⎧⎪⎪⎨
⎪⎪⎩

0
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η

⎫⎪⎪⎬
⎪⎪⎭
(21)
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and

{C̃(e)} =
〈
[Ĉ(e)

1 −Ĉ(h)
1 ] Ĉ(e)

2 Ĉ(e)
3 [Ĉ(e)

4 −Ĉ(h)
4 ] Ĉ(e)

5 ×

Ĉ
(e)
6 [Ĉ(e)

7 −Ĉ(h)
7 ] Ĉ(e)

8 Ĉ
(e)
9 [Ĉ(e)

10 −Ĉ(h)
10 ] Ĉ(e)

11 Ĉ
(e)
12

〉T
(22)

Potential functions must be obtained for each of twelve
states, for each of the direction, electric potentials
and magnetic potentials corresponding to k = 1 ∼ 4 in
Eq.(14). Let ϕ1,l(l = 1 ∼ 12) denote potentials for the
above twelve states, for k = 1. These corresponding to
the unit force in the x direction. The function in Eq.(14) is
a linear combination of ϕ1,l(l = 1 ∼ 12). ϕ1,l can be cal-
culated individually by using Eq.(13), with ϕ1,l replacing
Φ1, ξ and η replacing x and z, respectively.

Similarly, let ϕ2,l , ϕ3,l and ϕ4,l(l = 1 ∼ 12) denote po-
tentials for the twelve states, for k = 2,3,4 correspond-
ing to the unit force in the x direction, the unit electric
charge and the unit current, respectively. The potentials
ϕk,l(k = 1 ∼ 4 , l = 1 ∼ 12) are given in Appendix B.
It should be noted that Φk in Eq.(14) is composed of
ϕk,l(l = 1 ∼ 12), respectively.

Now, with the potential functions already derived, the
BCM discretized equations are developed as follows.

For the source point j(source points are only placed at
the ends of each boundary element, see Figure 1.)

n

∑
e=1

[Φe
k(e2)−Φe

k(e1)]

=
n

∑
e=1

12

∑
l=1

[ϕ j
k,l(e2)−ϕ j

k,l(e1)]C̃
(e)
l = 0 (23)

It should be noted that the potential functions
ϕk,1(ξ,η),ϕk,4(ξ,η),ϕk,7(ξ,η) and ϕk,10(ξ,η)(k = 1 ∼
4)corresponding to constant shape functions, are singu-
lar when a field point Q →the source point P, i.e. when
(ξ,η) → (0,0). But in this case uk(Q)− uk(P) = 0(r),
and Eq.(20) lead to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C̃(e)
1 = [Ĉ(e)

1 −Ĉ(h)
1 ] = 0

C̃(e)
4 = [Ĉ(e)

4 −Ĉ(h)
4 ] = 0

C̃
(e)
7 = [Ĉ(e)

7 −Ĉ(h)
7 ] = 0

C̃(e)
10 = [Ĉ(e)

10 −Ĉ(h)
10 ] = 0

(24)

so the evaluation of these potential functions can be
avoided, i.e. expression(23) is now completely regular.
This is the second advantage of the approach using the
rigid body motion technique.

With n source pints corresponding to n displacement
nodes on the boundary ds, one can get the final BCM
linear system of equations

[K]{P}= {0} (25)

where {P} are degrees of freedom on the whole bound-
ary ds. The global system of equations is condensed in
accordance with continuity of displacements across ele-
ment in the usual way.

Finally, the system of equation (25) needs to be reordered
in accordance with the boundary conditions to form

[A]{X}= {Z} (26)

where {X} contains the unknown boundary quantities
and {Z} is known in terms of prescribed boundary quan-
tities and geometrical and material data of the problem.

After the solution of the global equation system (26)
is obtained, one can easily derive the article variables
{C(e)} from Eq.(17). At this stage, the remaining phys-
ical variables at any node on the boundary can be easily
calculated from Eq.(15) and the corresponding relations
for stresses and tractions in terms of their shape func-
tions.

Evaluation of strain components at points inside a body
requires transformation of equations of the strain BEM
at an internal point to an integrated form analogous to
Eq.(14). This can be done since the integrand is again
divergence free. Stress calculations would then follow
from magneto-electro-elastic fundamental equations.

4 Numerical Example

Consider a magneto-electro-elastic column of size a×b
under three load cases, i.e. uniform axial tension, elec-
tric displacement or magnetic induction as in Ding and
Jiang(2004). The problem is treated as a plane-strain one.

For numerical calculation, we consider the column with
the same geometrical and material constants as in Ding
and Jiang(2004) for which totally twenty linear elements
are used.
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Table 1 : Comparison of BCM results with the exact (*) and BEM results (**)
Load u w Φ Ψ
1 -0.9500E-11

-0.9501E-11(*)
-0.9500E-11(**)

+0.5681E-12
+0.5680E-12(*)
+0.5683E-
12(**)

+0.9495E-3
+0.9495E-3(*)
+0.9495E-3(**)

+0.2138-4E-4
+0.2138E-4(*)
+0.2139E-4(**)

2 -0.2108E-12
-0.2107E-12(*)
-0.2108E-12(**)

+0.9493E-14
+0.9492E-14(*)
+0.9495E-
14(**)

-0.6289E-4
-0.6289E-4(*)
-0.6289E-4(**)

+0.2566E-6
+0.2566E-6(*)
+0.2567E-6(**)

3 +0.5077E-12
+0.5077E-12(*)
+0.5077E-12(**)

+0.2140E-13
+0.2140E-13(*)
+0.2139E-
13(**)

+0.2565E-4
+0.2564E-4(*)
+0.2567E-4(**)

-0.7521E-5
-0.7520E-5(*)
-0.7521E-5(**)

Because of the linearity property, the corresponding re-
sults are compared with the exact ones(*) and BEM re-
sults(**) only at the corner point (a/2, b/2) for example,
which is shown in Table 1.

5 Conclusions

In this paper, the BCM is presented for 2D magneto-
electro-elasticity based on the fundamental solution of
an infinite magneto-electro-elastic plane. This approach
does not require any numerical integration at all for 2D
problem, even with curved boundary elements, and it re-
quires only numerical evaluation of contour integrals for
3D problems. Numerical results for 2D problem show
that the BCM performs very well.
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Appendix A: Fundamental solutions

u∗11 =
4

∑
j=1

λ j lnR j,

u∗12 =
4

∑
j=1

s jk1 jλ j arctan
x
z j

,

Φ∗
1 =

4

∑
j=1

s jk2 jλ j arctan
x
z j

Ψ∗
1 =

4

∑
j=1

s jk3 jλ j arctan
x
z j

,

u∗21 = −
4

∑
j=1

α j arctan
x
z j

,

u∗22 =
4

∑
j=1

s jk1 jα j lnR j

Φ∗
2 =

4

∑
j=1

s jk2 jα j lnR j,

Ψ∗
2 =

4

∑
j=1

s jk3 jα j lnR j,

u∗31 = −
4

∑
j=1

β j arctan
x
z j

u∗32 =
4

∑
j=1

s jk1 jβ j lnR j,Φ∗
3 =

4

∑
j=1

s jk2 jβ j lnR j,

Ψ∗
3 =

4

∑
j=1

s jk3 jβ j lnR j

u∗41 = −
4

∑
j=1

γ j arctan
x
z j

,

u∗42 =
4

∑
j=1

s jk1 jγ j lnR j,

Φ∗
4 =

4

∑
j=1

s jk2 jγ j lnR j

Ψ∗
4 =

4

∑
j=1

s jk3 jγ j lnR j,

t∗11 =
4

∑
j=1

ω1 js
2
j
λ j

R2
j

(xnx + znz),

t∗12 =
4

∑
j=1

ω1 j
λ j

R2
j

(s2
jznx −xnz)

ω∗
1 = −

4

∑
j=1

ω2 j
λ j

R2
j

(s2
jznx −xnz) ,



8 Copyright c© 2006 Tech Science Press CMC, vol.5, no.1, pp.1-11, 2006

η∗
1 = −

4

∑
j=1

ω3 j
λ j

R2
j

(s2
jznx −xnz)

t∗21 =
4

∑
j=1

ω1 js j
α j

R2
j

(−s2
j znx +xnz),

t∗22 =
4

∑
j=1

ω1 js j
α j

R2
j

(xnx + znz)

ω∗
2 = −

4

∑
j=1

ω2 js j
α j

R2
j

(xnx + znz) ,

η∗
2 = −

4

∑
j=1

ω3 js j
α j

R2
j

(xnx + znz)

t∗31 =
4

∑
j=1

ω1 js j
β j

R2
j

(−s2
j znx +xnz),

t∗32 =
4

∑
j=1

ω1 js j
β j

R2
j

(xnx + znz)

ω∗
3 = −

4

∑
j=1

ω2 js j
β j

R2
j

(xnx + znz),

η∗
3 = −

4

∑
j=1

ω3 js j
β j

R2
j

(xnx + znz)

t∗41 =
4

∑
j=1

ω1 js j
γ j

R2
j

(−s2
j znx +xnz),

t∗42 =
4

∑
j=1

ω1 js j
γ j

R2
j

(xnx + znz)

ω∗
4 = −

4

∑
j=1

ω2 js j
γ j

R2
j

(xnx + znz) ,

η∗
4 = −

4

∑
j=1

ω3 js j
γ j

R2
j

(xnx + znz)

where z j = s jz, R j =
√

x2 + z2
j and s j,ki j ,ωi j ,λ j,α j ,β j,γ j

are as in Ding and Jiang(2004).

Appendix B: Potential functions

ϕ1,1 =
4

∑
j=1

ω1 js jλ j arctan
ξ
η j

ϕ1,2 =
4

∑
j=1

[c11λ j(η lnR j −η)− c11−ω1 js2
j

s j
λ jξarctan

ξ
η j

]

ϕ1,3 =
4

∑
j=1

[s j(ω1 j −c44)λ j(ηarctan
ξ
η j

+
ξ
s j

lnR j)

−ω1 jλ jξ lnR j +c44λ jξ]

ϕ1,4 = −
4

∑
j=1

ω1 jλ j lnR j

ϕ1,5 =
4

∑
j=1

[s j(ω1 j −c44)λ j(ηarctan
ξ
η j

+
ξ
s j

lnR j)

−ω1 jλ jξ lnR j − (ω1 j −c44)λ jξ]

ϕ1,6 =
4

∑
j=1

[c13λ j(η lnR j −η− ξ
s j

arctan
ξ
η j

)

− ω1 jλ j

s j
ξarctan

ξ
η j

−ω1 jλ jη]

ϕ1,7 =
4

∑
j=1

ω2 jλ j lnR j

ϕ1,8 = −
4

∑
j=1

[s j(ω2 j −e15)λ j(ηarctan
ξ
η j

+
ξ
s j

lnR j)

−ω2 jλ jξ lnR j − (ω2 j −e15)λ jξ]

ϕ1,9 = −
4

∑
j=1

[e31λ j(η lnR j −η− ξ
s j

arctan
ξ
η j

)

− ω2 jλ j

s j
ξarctan

ξ
η j

−ω2 jλ jη]
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ϕ1,10 =
4

∑
j=1

ω3 jλ j lnR j

ϕ1,11 = −
4

∑
j=1

[s j(ω3 j −d15)λ j(ηarctan
ξ
η j

+
ξ
s j

lnR j)

−ω3 jλ jξ lnR j − (ω3 j −d15)λ jξ]

ϕ1,12 = −
4

∑
j=1

[d31λ j(η lnR j −η− ξ
s j

arctan
ξ
η j

)

− ω3 jλ j

s j
ξarctan

ξ
η j

−ω3 jλ jη]

ϕ2,1 =
4

∑
j=1

ω1 js jα j lnR j

ϕ2,2 =
4

∑
j=1

[−c11α j(ηarctan
ξ
η j

+
ξ
s j

lnR j)

+ω1 js jα jξ lnR j +
c11α j

s j
ξ]

ϕ2,3 =
4

∑
j=1

[s j(ω1 j −c44)α j(η lnR j −η)

+c44α jξarctan
ξ
η j

+ω1 js jα jη]

ϕ2,4 =
4

∑
j=1

ω1 jα j arctan
ξ
η j

ϕ2,5 =
4

∑
j=1

[s j(ω1 j −c44)α j(η lnR j −η− ξ
s j

arctan
ξ
η j

)

+ω1 jα jξarctan
ξ
η j

]

ϕ2,6 =
4

∑
j=1

[−c13α j(ηarctan
ξ
η j

+
ξ
s j

lnR j)

− ω1 jα j

s j
ξ lnR j +

(c13 +ω1 j)α j

s j
ξ]

ϕ2,7 = −
4

∑
j=1

ω2 jα j arctan
ξ
η j

ϕ2,8 = −
4

∑
j=1

[s j(ω2 j −e15)α j(η lnR j −η− ξ
s j

arctan
ξ
η j

)

+ω2 jα jξarctan
ξ
η j

]

ϕ2,9 = −
4

∑
j=1

[−e31α j(ηarctan
ξ
η j

+
ξ
s j

lnR j)

− ω2 jα j

s j
ξ lnR j +

(e31 +ω2 j)α j

s j
ξ]

ϕ2,10 = −
4

∑
j=1

ω3 jα j arctan
ξ
η j

ϕ2,11 = −
4

∑
j=1

[s j(ω3 j −d15)α j(η lnR j −η− ξ
s j

arctan
ξ
η j

)

+ω3 jα jξarctan
ξ
η j

]

ϕ2,12 = −
4

∑
j=1

[−d31α j(ηarctan
ξ
η j

+
ξ
s j

lnR j)

− ω3 jα j

s j
ξ lnR j +

(d31 +ω3 j)α j

s j
ξ]

ϕ3,1 =
4

∑
j=1

ω1 js jβ j lnR j

ϕ3,2 =
4

∑
j=1

[−c11β j(ηarctan
ξ
η j

+
ξ
s j

lnR j)

+ω1 js jβ jξ lnR j +
c11β j

s j
ξ]

ϕ3,3 =
4

∑
j=1

[s j(ω1 j −c44)β j(η lnR j −η)

+c44β jξarctan
ξ
η j

+ω1 js jβ jη]
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ϕ3,4 =
4

∑
j=1

ω1 jβ j arctan
ξ
η j

ϕ3,5 =
4

∑
j=1

[s j(ω1 j −c44)β j(η lnR j −η− ξ
s j

arctan
ξ
η j

)

+ω1 jβ jξarctan
ξ
η j

]

ϕ3,6 =
4

∑
j=1

[−c13β j(ηarctan
ξ
η j

+
ξ
s j

lnR j)

− ω1 jβ j

s j
ξ lnR j +

(c13 +ω1 j)β j

s j
ξ]

ϕ3,7 = −
4

∑
j=1

ω2 jβ j arctan
ξ
η j

ϕ3,8 = −
4

∑
j=1

[s j(ω2 j −e15)β j(η lnR j −η− ξ
s j

arctan
ξ
η j

)

+ω2 jβ jξarctan
ξ
η j

]

ϕ3,9 = −
4

∑
j=1

[−e31β j(ηarctan
ξ
η j

+
ξ
s j

lnR j)

− ω2 jβ j

s j
ξ lnR j +

(e31 +ω2 j)β j

s j
ξ]

ϕ3,10 = −
4

∑
j=1

ω3 jβ j arctan
ξ
η j

ϕ3,11 = −
4

∑
j=1

[s j(ω3 j −d15)β j(η lnR j −η− ξ
s j

arctan
ξ
η j

)

+ω3 jβ jξarctan
ξ
η j

]

ϕ3,12 = −
4

∑
j=1

[−d31β j(ηarctan
ξ
η j

+
ξ
s j

lnR j)

− ω3 jβ j

s j
ξ lnR j +

(d31 +ω3 j)β j

s j
ξ]

ϕ4,1 =
4

∑
j=1

ω1 js jγ j lnR j (27)

ϕ4,2 =
4

∑
j=1

[−c11γ j(ηarctan
ξ
η j

+
ξ
s j

lnR j)

+ω1 js jγ jξ lnR j +
c11γ j

s j
ξ]

ϕ4,3 =
4

∑
j=1

[s j(ω1 j −c44)γ j(η lnR j −η)

+c44γ jξarctan
ξ
η j

+ω1 js jγ jη]

ϕ4,4 =
4

∑
j=1

ω1 jγ j arctan
ξ
η j

ϕ4,5 =
4

∑
j=1

[s j(ω1 j −c44)γ j(η lnR j −η− ξ
s j

arctan
ξ
η j

)

+ω1 jγ jξarctan
ξ
η j

]

ϕ4,6 =
4

∑
j=1

[−c13γ j(ηarctan
ξ
η j

+
ξ
s j

lnR j)

− ω1 jγ j

s j
ξ lnR j +

(c13 +ω1 j)γ j

s j
ξ]

ϕ4,7 = −
4

∑
j=1

ω2 jγ j arctan
ξ
η j

ϕ4,8 = −
4

∑
j=1

[s j(ω2 j −e15)γ j(η lnR j −η− ξ
s j

arctan
ξ
η j

)

+ω2 jγ jξarctan
ξ
η j

]

ϕ4,9 = −
4

∑
j=1

[−e31γ j(ηarctan
ξ
η j

+
ξ
s j

lnR j)

− ω2 jγ j

s j
ξ lnR j +

(e31 +ω2 j)γ j

s j
ξ]
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ϕ4,10 = −
4

∑
j=1

ω3 jγ j arctan
ξ
η j

ϕ4,11 = −
4

∑
j=1

[s j(ω3 j −d15)γ j(η lnR j −η− ξ
s j

arctan
ξ
η j

)

+ω3 jγ jξarctan
ξ
η j

]

ϕ4,12 = −
4

∑
j=1

[−d31γ j(ηarctan
ξ
η j

+
ξ
s j

lnR j)

− ω3 jγ j

s j
ξ lnR j +

(d31 +ω3 j)γ j

s j
ξ]

where η j = s jη, R j =
√

ξ2 +η2
j .




