
Copyright c© 2006 Tech Science Press CMC, vol.5, no.1, pp.25-36, 2006

Numerical Simulation of Elastic Behaviour and Failure Processes in
Heterogeneous Material
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Abstract: A general numerical approach is developed
to model the elastic behaviours and failure processes of
heterogeneous materials. The heterogeneous material
body is assumed composed of a large number of con-
vex polygon lattices with different phases. These phases
are locally isotropic and elastic-brittle with the differ-
ent lattices displaying variable material parameters and a
Weibull-type statistical distribution. When the effective
strain exceeds a local fracture criterion, the full lattice ex-
hibits failure uniformly, and this is modelled by assum-
ing a very small Young modulus value. An auto-select
loading method is employed to model the failure pro-
cess. The proposed hybrid approach is applied to plane
stress problems with fracture patterns and effective load-
displacement curves presented to illustrate the full failure
process.

keyword: Heterogeneous materials; Weibull distribu-
tion; Elastic-brittle model; Failure process; Finite ele-
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1 Introduction

Heterogeneous materials (such as composites, polymer
blends, ceramics, concrete, etc) are used more and more
in many modern structures, because their mechanical
properties of strength, stiffness and toughness have sig-
nificantly improved. During loading of these materials,
micro-mechanical failure mechanisms, such as matrix
cracking, void formation and fibre-matrix debonding, are
frequently encountered, requiring a numerical simulation
for their determination. Moreover, when developing new
materials, the relations between the micro-mechanical
failure mechanisms and the microscopic deformation be-
haviour are necessary to predict macroscopic properties
of the microstructure.

Heterogeneity implies material properties vary spatially.
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It is difficult to observe and/or to simulate the spatial
pattern of material heterogeneity from micro to macro
scales. The irregular and complex nature of spatial vari-
ability of material properties deny a precise quantita-
tive description of the microstructure geometry because
of uncertainties due to insufficient detail information.
Therefore, a statistical model is an attractive alternative
mathematical framework to describe heterogeneity.

Many statistical theories have been developed to achieve
this goal. For example, the homogenization method de-
veloped for heterogeneous materials with periodic mi-
crostructures. In this model the material is assumed
statistically homogeneous with local material properties
treated as constant when averaged over a representative
volume element (RVE). The real heterogeneous material
is therefore replaced by a homogeneous one, in which
the local material properties are determined from the av-
erages of the representative volume elements in the orig-
inal material. Hashin (1983) and Nemat-Nasser and Hori
(1993) present comprehensive reviews of the RVE analy-
sis. Based on this mathematical framework, many sig-
nificant contributions developing the model have been
produced, for example, by Hollister and Kikuch (1992),
Ghosh, Lee and Moorthy (1995, 2005 Raghavan), Boutin
(1996), van der Sluis, Vosbeek, Schreurs and Meijer
(1999, 2000), Terada, Hori, Kyoya and Kikuchi (2000),
Ganser, Fischer and Werner (2000), Kouznetsova, Geers
and Brekelman (2002), Ostoja-Starzewski (1999, 2002),
Fish and Chen (2003). These authors and others have
successfully applied the method to determine the effec-
tive elastic properties of various heterogeneous materi-
als with periodic microstructures. However, in practical
problems, many heterogeneous materials exhibit signifi-
cant randomness in their geometrical configurations and
even a periodic distribution of a single cell is seldom ob-
served. Moreover, the homogenization method is unsuit-
able to simulate the failure processes in heterogeneous
materials.

Finite element methods have been used to simulate the
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failure processes of homogeneous materials (see, for ex-
ample, Mackerle 2000, Zienkiewicz and Taylor 2000).
However, such approaches are not as numerically effi-
cient for heterogeneous materials as homogenous mate-
rials because of difficulties arising from mesh genera-
tion, mesh restructuring and stiffness matrix evaluations,
which are often required in simulations of crack initia-
tion and propagation. The spring network method, bor-
rowed from material physics, provides an efficient ap-
proach to simulate the failure processes of heterogeneous
materials. This method models the properties of the het-
erogeneous medium by assigning the spring constants
to model the spring bonds of all lattices according to
the local phase properties. The approach allows cracks
to be created in the material by simply removing the
spring bonds. Various studies relating to the applica-
tion of the spring network method to the fracture simula-
tion of heterogeneous media are described by Herrmann
and Roux (1990), Grah, Alzebdeh, Sheng, Vaudin, Bow-
man, and Ostoja-Starzewski, (1996), Krajcinovic (1996),
Alzebdeh, Jasiuk, and Ostoja-Starzewski (1998), Ostoja-
Starzewski and colleagues (see, 1989, 1996a, 1996b,
1997a, 1997b, 1998).

In the present study, a numerical approach is developed to
model the behavior of three-dimensional heterogeneous
brittle materials for both compressive and tensile cases
by Chen, Y. H., Yao Z. H., and Zheng X. P. (2002,
2003). This hybrid method is based on the conven-
tional displacement finite element method incorporating
techniques from the spring network method and the vol-
ume average concept in RVE, thus effectively reducing
the computational complexity associated with such mi-
cromechanical simulations. A more general approach is
now developed to model the elastic behaviours and fail-
ure processes of two-dimensional heterogeneous materi-
als. Lattice model and statistical approaches are used to
simulate initial heterogeneity of the material. A simple
elastic-brittle constitutive law and breaking rule in every
lattice is employed. In each load-step stage the problem
is treated as linear allowing use of an auto-select load-
ing method to model a realistic failure process. When
the effective strain exceeds the local fracture criterion,
the full lattice is considered to fail uniformly. This is im-
plemented by taking a very small Young modulus value.
The specimen is considered totally fractured if its resul-
tant force on any cross-section tends to zero or a pre-
scribed small value under displacement- control load-

ing. Finally, the proposed theoretical is applied to plane
stress problems with fracture patterns and effective load-
displacement curves presented to illustrate the full failure
process.

2 Basic Equations

Consider a heterogeneous material body Ω composed of
a large number of convex polygon lattices Ωk with differ-
ent phases, such that Ω =∪

k
Ωk. We assume: (1) these dif-

ferent phases are perfectly bonded, so that the displace-
ments and the tractions are continuous across the inter-
face boundaries; (2) the phase in each sub-domain Ωk is
taken locally homogeneous, isotropic and elastic-brittle;
(3) the size of these sub-domains Ωk is sufficiently large
at microscale and sufficiently small at macroscale. As-
sumption (3) is similar to the requirement introduced in
the representative volume element (RVE) analysis. In the
proposed model, heterogeneity is implemented by simply
taking the material constants, such as Young modulus,
Poisson ratio and failure criteria as random fields.

For linear elastic problems in the absence of body forces,
the basic governing equations in a Cartesian coordinate
reference system (i, j = 1, 2, 3) are the equilibrium equa-
tions

σi j, j = 0 inΩ, (1)

the geometrical (strain-displacement) equations

εi j =
1
2

(ui, j +u j,i) inΩ, (2)

and the constitutive equations

σi j =
E(k)

1+ν(k)

[
εi j +

ν(k)

1−2ν(k) εkkδi j

]
inΩk. (3)

Here σi j , εi j and ui represent the Cartesian stress ten-
sor, strain tensor and displacement vector respectively;
δi j denotes the Kronecker delta; E(k) and ν(k) indicate
Young modulus and Poisson ratio in sub-domain Ωk. It is
noted that even though this is only a piecewise-constant
model, a very wide class of material microstructures can
be modelled by changing the distribution of Young mod-
ulus, and/or by adjusting the shape and size of lattices.
For example, by increasing the value of Young modulus
creates a very stiff inclusion, and by decreasing its value
a very soft inclusion is achieved thus simulating a hole.
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The set of equations (1)-(3) is completed by introducing
the boundary conditions:

Displacement boundary conditions (Dirichlet)

ui = ui onΓu; (4)

Traction boundary conditions (Neumann)

σi jn j = ti inΓt , (5)

where n j denotes direction cosines of the unit normal on
boundary Γ, and Γ = Γu ∪Γt .

Equations (1)-(5) define a linear elasticity boundary
value problem for a heterogeneous material. However,
to simulate the damage initiation and propagation in het-
erogeneous material, a local fracture criterion is required
to supplement equations (1)-(5).

In micro-mechanics analysis, it is usual (see, for exam-
ple, Boutin 1996, van der Sluis et al. 1999, Terada et al.
2000) to introduce a macroscopic stress tensor σ̂(k)

i j and

strain tensor ε̂(k)
i j in sub-domains Ωk. These are defined

as the volume averages of the corresponding microscopic
fields⎧⎪⎨
⎪⎩

σ̂(k)
i j = 1

Vk

R
Ωk

σi jdV

ε̂(k)
i j = 1

Vk

R
Ωk

εi jdV

in Ωk (6)

where Vk denotes the volume of sub-domains Ωk.

A brittle failure criterion, together with the elastic consti-
tutive equations (3), are expressed as follows⎧⎪⎨
⎪⎩

σi j = E(k)

1+ν(k)

[
εi j + ν(k)

1−2ν(k) εkkδi j

]
if f (k)[ε̂(k)

i j ] < 0

σi j = 0 if f (k)[ε̂(k)
i j ] ≥ 0

inΩk, (7)

where f (k)[ε̂(k)
i j ] is the criterion function. Equations (7)

describe an elastic-brittle mode, in which the stress and
strain retain a linear relation when the effective strain is
under the local fracture criterion and otherwise the full
lattice fails uniformly. In this study, the maximum prin-
cipal strain theory (see, for example, Ugural and Fenster
1987) is employed, in which the criterion function is de-
fined as follows

f (k)[ε̂(k)
i j ] = max

{∣∣∣ε̂(k)
1

∣∣∣ , ∣∣∣ε̂(k)
2

∣∣∣ , ∣∣∣ε̂(k)
3

∣∣∣ }
−ε(k)

cr inΩk. (8)

Here, ε̂(k)
1 , ε̂(k)

2 and ε̂(k)
3 represent the principal strains of

the macroscopic strain tensor ε̂(k)
i j , ε(k)

cr is the tensile fail-
ure strain for phase Ωk. Criterion (8) is suitable for a
wide class of isotropic elastic-brittle materials.

3 Weibull Distribution

The Weibull distribution is a popular representation of
time to failure. This model is used also to deal with such
problems as reliability, life testing of material, etc (see,
for example, Weibull 1961 and Abernethy 1996). The
Weibull distribution is adopted here to describe the prop-
erties of material (e.g. elasticity, strength, etc). Since all
such parameters are positive, the two-parameter Weibull
model is employed with probability density function

p(r) =

⎧⎨
⎩

0 r < 0

m
R

(
r
R

)m−1
e−( r

R)
m

r ≥ 0
(9)

where R > 0, m > 0 are scale and shape parameters re-
spectively. This probability density function is used for
its simplicity though, if required, it may be replaced by a
generalized Gamma function (see, for example, Andrew
and Price, 1979).

The corresponding distribution function is given by

P(r) =
Z r

−∞
p(t)dt =

⎧⎨
⎩

0 r < 0

1−e−( r
R)

m

r ≥ 0
(10)

with meanα

α =
Z +∞

−∞
rp(r)dr = RΓ(1+

1
m

), (11)

and variance β

β =
Z +∞

−∞
(r−α )2 p(r)dr

= R2

{
Γ(1+

2
m

)−
[

Γ(1+
1
m

)
]2

}
. (12)

Thus, once R and m are specified, the Weibull distribu-
tion is completely determined. Alternatively, if only α
and β are specified, the transcendental equations (11)-
(12) require solution to obtain the parameters R and m.
Figure 1 shows the variations of the mean and variance
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Figure 1 : Variation of mean and variance values with
shape parameter m(R=1)

with different values of the shape parameter mwhen R=1.
This figure indicates that the parameter m has little ef-
fect on the mean, but it significantly affects the variance.
The variance decreases rapidly as m increases implying
a more homogeneous material for larger shape parameter
m.

Let us assume that the heterogeneous material body Ω is
composed of N convex polygon lattices, and the Young
modulus E over all Ωk has a Weibull-type statistical dis-
tribution defined by parameters R and m. The semi-axis
0≤ r < +∞ is divided into N equal-probability inter-
vals, such that the mid-point rk(k = 1, 2, · · · , N) of the
kth interval is defined by the following distribution

P(rk) =
2k−1

2N
k = 1, 2, · · ·N. (13)

By solving equation (13) and taking Ek = rk, it follows
that

Ek = rk = R m

√
ln

(
2N

2N −2k +1

)
k = 1, 2, · · ·N. (14)

This provides the Weibull-type statistical distribution ex-
pression for Young modulus Ek and Figure 2 illustrates
this form for m=2. When these Ek values are distributed
into lattice Ωk in a random way, a model of a heteroge-
neous material body is derived. Figure 3 illustrates an
example of a plane heterogeneous material with uniform
square lattices. The different colours show the space dis-
tribution of Young modulus with black indicating high
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Figure 2 : Weibull distribution representation of Young
modulus E (m=2)

Figure 3 : Space distribution of Young modulus E (m=2)

value and white low value. In the same way, we can
obtain the Weibull-type statistical distribution expression
for Poisson ratio ν(k) and failure strain ε(k)

cr .

4 Finite Element Formulation

A finite element method is used to implement the numeri-
cal simulations described previously. Since the size of all
sub-domains Ωk in Ω is assumed sufficiently small at the
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macroscale level, the domain decompositionΩ = ∪
k

Ωk is

taken as the finite element mesh discretization. The dis-
placement finite element method produces a system of
algebraic equations in the form

Ka = f, (15)

where the stiffness matrix K and the nodal load vector f
are defined by⎧⎪⎪⎪⎨
⎪⎪⎪⎩

K = ∑
k

K(k) =
R

Ωk

BTD(k)BdV

f = ∑
k

f(k) =
R
Γk

NTtds
. (16)

In this expression, B is the strain matrix, D(k)is the con-
stitutive matrix and N is the vector of displacement shape
functions. In comparison with the conventional finite el-
ement methods, here the constitutive matrix D(k) for ho-
mogenous materials can take different values for differ-
ent elements. From the constitutive equation (3), the con-
stitutive matrix D(k) is given by the expression

D(k) =
E(k)

2[1+ν(k)][1−2ν(k)]
×

⎡
⎢⎢⎢⎢⎢⎢⎣

2[1−ν(k)] 2ν(k) 2ν(k)

2ν(k) 2[1−ν(k)] 2ν(k)

2ν(k) 2ν(k) 2[1−ν(k)]
0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0
1−2ν(k) 0 0
0 1−2ν(k) 0
0 0 1−2ν(k)

⎤
⎥⎥⎥⎥⎥⎥⎦

. (17)

After imposing the necessary geometric boundary condi-
tions, the displacements at all the element nodes are ob-
tained by solving equation (15). Thus, the microscopic
stress and strain components are computed at any loca-
tion within an element by using the following equations⎧⎪⎨
⎪⎩

σ(k) = D(k)Ba(k)

ε(k) = Ba(k)
. (18)

Strain and stress are not constant through the element, but
by choosing simple shape functions, the relevant average
strain and stress parameters in an element are easily de-
termined. From equations (6) and (18), the macroscopic
stress and strain components over element Ωk are given
as follows⎧⎪⎨
⎪⎩

σ̂(k) = 1
Vk

D(k) [R
Ωk

BdV
]

a(k)

ε̂(k) = 1
Vk

[R
Ωk

BdV
]

a(k)
in Ωk. (19)

For linear elastic problems, equations (15)-(19) can be
applied directly to determine the effective elastic proper-
ties of the heterogeneous materials. However, to simulate
damage initiation and propagation in these materials, an
efficient computing scheme must be devised. In this pa-
per, an incremental or stepwise procedure is constructed
to model the non-linear behaviour of the damage initi-
ation and propagation in heterogeneous materials. This
approach provides a relatively complete description of
the load-deformation behaviour and is created as follows:

1. A small initial load step (i.e. force-load or
displacement-load) is applied to the heterogeneous
material body. The linear algebraic equation (15) is
solved to calculate the macroscopic stress and strain
components given by equation (19).

2. Since in each load-step stage the problem remains
linear, an auto-select loading method is designed to
allow modelling of a realistic failure process. From
the determined strain levels of all lattices, the lat-
tice, which is most likely to fail (i.e. reach εcr)
under an increasing global strain, can been selected
by equation (7). Without making many small steps,
the strain level of this lattice and corresponding load
level are directly determined causing the lattice ex-
actly to fail.

3. This failing lattice is excluded from the heteroge-
neous material body by choosing the Young mod-
ulus of the lattice to be very small. This process,
therefore, represents the damage initiation and prop-
agation in the heterogeneous material body, causing
a renewal of its geometric configuration. The sys-
tem must now be re-examined for the same load
level and the linear algebraic equation (15) solved
again for the updated geometric configuration. If
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any of the remaining lattices exhibit failure, this pro-
cess is repeated, and the system re-examined again.
This iterative procedure continues until no lattices
fail at this load level. A range of failure possibilities
exist in the sense that either just one lattice needs re-
moving at a given load level or a number fail and are
removed with the system retaining a load-carrying
capability and able to withstand further straining.

4. The incremental load is increased, and steps 2 and
3 repeated until a continuous crack path is formed
through the whole specimen. The end occurs when
the specimen has no load-carrying capability left,
implying that the resultant force over any cross-
section of specimen reaches a value tending to zero
or close to zero.

This proposed approach allows the simulation of frac-
ture events, i.e. the simultaneous growth of many cracks,
through discarding lattices not satisfying local failure
criteria, as well as accounting for stress redistribution
throughout the lattice medium. Moreover, it is worth not-
ing that no remeshing of the domain is required as the
fracture simulation proceeds.

5 Numerical Results and Discussion

Figure 4 shows an example of a square plate under plane
stress. It is investigated to illustrate the applications
of the present method. The square plate is subject to
an uniaxial displacement-control compression in the x-
direction. The boundary conditions of the square plate
are expressed in equation (20). That is, the top and bot-
tom sides are traction free; the left side is the frictionless
surface fixed in the horizontal direction; the right side
is also the frictionless surface subject to horizontal dis-
placement; and the point (x=0 and y=0) is fixed in both
of the horizontal and vertical direction.

⎧⎪⎪⎨
⎪⎪⎩

σyy = 0, σxy = 0
u = 0, σxy = 0

u = ∆u, σxy = 0
u = 0, v = 0

on
on
on
at

y = ±b
/

2
x = 0
x = a

x = 0, y = 0

. (20)

Figure 5 illustrates a square plate specimen uniformly
discretized into 50×50 square lattices. The initial het-
erogeneity of modulus and strength are simulated by

∆u

a

b/2

b/2

x

y

Figure 4 : Geometry and boundary conditions of the
square plate

Figure 5 : Weibull distribution of Young modulus

the Weibull distribution. The numerical simulations dis-
cussed herein use four-node square finite elements, with
displacement represented by bilinear interpolation. An
auto-select loading method (displacement-control load)
is employed so that a realistic failure process is simu-
lated.

The effective stress-strain curves describing
heterogeneous-stiffness materials are shown in Fig-
ures 6 and 7, where the Young modulus is mod-
elled by a Weibull-type statistical distribution with
mean[E(k)]=100GPaPoisson ratioν(k)= 0.3 and the fail-
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Figure 6 : Equivalent stress-strain curves for different
parameter m
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Figure 7 : Equivalent stress-strain curves for various
random samples
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Figure 8 : Equivalent stress-strain curves for different
parameter m

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0

20

40

60

80

100

 sample-1
 sample-2
 sample-3
 sample-4
 sample-5
 sample-6

st
re

ss
 (

G
Pa

)

strain (%)

Figure 9 : Equivalent stress-strain curves for various
random samples

ure strain ε(k)
cr = 0.2% assumed constant over all lattices.

Figure 6 illustrates the effective stress-strain curves for
different values of shape parameter m. The results show
that both the equivalent Young modulus and failure
strength increase with an increase of the shape parameter
m. That is, the greater homogeneity occurring in the
stiffness of the materials, the better the effective stiffness
and strength. Figure 7 shows realisations of the effective
stress-strain curves for various random samples for
prescribed m. These findings demonstrate that although
the value of the equivalent Young modulus are similar,
the resulting failure strengths and paths are different.
This implies that even though the Young modulus has
the same statistical distribution, the different space
configurations cause different failure strengths and
paths.

The effective stress-strain curves describing
heterogeneous-strength materials are shown in Figures
8 and 9, where the failure strain is modelled a Weibull-
type statistical distribution with mean[ε(k)

cr ]=0.2%, and
Poisson ratioν(k)= 0.3 and Young modulus E(k)= 100GPa
assumed constant over all lattices. Figure 8 illustrates
the effective stress-strain curves for different values of
shape parameter m. The results show that the values of
the equivalent Young modulus are similar for different
m, and the failure strength increases with increase of
shape parameter m. That is, the more homogeneous the
distribution of strength in the materials, the better the
effective strength. Figure 9 shows realisations of the
effective stress-strain curves for various random samples
for prescribed m. Again values of the equivalent Young
modulus remain similar in magnitude, but the failure



32 Copyright c© 2006 Tech Science Press CMC, vol.5, no.1, pp.25-36, 2006

strengths and paths are different. This implies that
even though the failure strain obeys the same statistical
distribution, because of different space configurations
different failure strengths and paths occur.

Figures 6-9 also illustrate the occurrence of some non-
linear phenomena, such as strain softening, pre-peak and
post-peak. The characteristic of strain softening phe-
nomenon is that the stress decreases with increasing of
the strain in the stress-strain curves. A pre-peak phe-
nomenon is observed due to the fall in stress-strain curve
occurring prior to reaching maximum stress strength and
similarly, a post-peak phenomenon is because a fall in
the stress-strain curves occurs after the maximum stress
strength is reached. These nonlinear phenomena have
been discovered in many experiments using the heteroge-
neous materials, as described by Karsan and Jirsa (1969),
and Read and Hegemier (1984).

Figure 10 illustrates several appearances of fracture pat-
terns, selected from a failure simulation using the whole
heterogeneous specimen. A black lattice in these figures
implies a failure of the lattice bonds. From this sequence
of patterns derived by the mathematical model simula-
tion described previously, the full fracture procedure of
the heterogeneous specimen is observed, including crack
initiation, crack propagation and ultimate fracture. More-
over we observe in the sequence that the expectancy of
failure in the lattice is likely to take place in the neigh-
borhood of the previous-failed lattices, especially at the
tip of the crack.

6 Conclusions

A general numerical approach is developed to model the
elastic behaviour and failure processes of heterogeneous
materials. Although a two-parameter Weibull statisti-
cal distribution is used to simulate initial heterogeneity
of materials, the model can be modified to use multi-
parameter Weibull distributions or other suitable statis-
tical distributions (see, for example, Andrew and Price,
1979). Since the techniques developed in spring network
method and the volume average concept (RVE) are em-
ployed, the proposed method simulates crack initiation
and propagation without significant computational com-
plexity. Moreover, by adopting a displacement-type fi-
nite element method, the described method is well suited
for easy implementation in standard finite element codes.

A selection of applications of the present method to plane

stress problems is presented. The numerical results indi-
cate that the method is very suitable to simulate strain
softening, pre-peak and post-peak nonlinear phenomena
occurring in the failure process of heterogeneous mate-
rials. The results also indicate that the more homoge-
neous the stiffness or strength of the materials at the mi-
croscale level, the better effective stiffness and strength
occur at the macroscale level. Furthermore, even though
the same statistical distribution is taken to describe stiff-
ness or strength in heterogeneous materials, because of
the different space configurations of properties different
failure strengths and paths occur in the materials.

The present approach, after suitable modification, pro-
vides a method to investigate effective properties of var-
ious practical heterogeneous materials, optimize and de-
sign ingredients and space configurations in composite
materials, etc. It also allows examination of nonlinear
phenomena in the structures or materials by combining
simple constitutive relations and heterogeneous model
in contrast to the more conventional approach by com-
bining complicated constitutive model and homogeneous
model. In this respect, the presented approach more re-
ally describes realistic materials.
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Figure 10 : Full fracture procedure of the heterogeneous specimen
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