
Copyright c© 2006 Tech Science Press CMC, vol.3, no.2, pp.77-95, 2006

Object-Oriented Modeling of Solid Material in Nonlinear Applications

Hamid Sharifi1 and Augustin Gakwaya1

Abstract: In this paper, an object-oriented modeling of
solid material constitutive behavior using the UML nota-
tion is presented. Material properties are first classified
into large and small deformation kinematical models. In
the small deformation package, we keep classes such
as Elastic, ElastoPlastic, ViscoElastic and ViscoPlastic.
In the large deformation package, we store classes such
as ElastoPlastic, HyperElastic, HyperPlastic, HyperVis-
coElastic, HyperViscoPlastic and so on. The hierarchical
structure, the association relationships as well as key at-
tributes and methods of these classes are presented. We
used a C++ implementation of the above model for de-
veloping HyperElastic, HyperElastoPlastic and Contact
applications in the Diffpack environment.

keyword: Material modeling, Hyperelastoplasticity,
Finite Element, Object-Oriented, UML, Diffpack.

1 Introduction

The object-oriented programming appears to be the
method of choice for recent finite element code de-
velopments [Dubois-Pélerin(1993), Bettig(1996),
Zabaras(1999), Cross(1997), Masters(1997), Touk-
ourou(2001), Nikishkov(2006)]. There is a tendency
to separate the material behavior from finite element
objects in recent finite element and boundary element
codes [Foerch(1997), Besson(1997), Sharifi(2005)]. In
this perspective to access to the material properties,
a geometrical finite element is associated to a class
of material. For example, in the calculation of the
consistent tangent matrix or the elasticity tensor, needed
in the finite element calculation, at each Gauss point,
material properties can be accessed by the element via
an association link between the element and the material
class. Here, elements do not inherit material character-
istic (as proposed in [Kong(1995)]) and therefore, there
is no need to have numerous combined geometrical-
material element classes, such as: T3 triangular elastic
element, T3 triangular plastic element, T3 triangular

1 Department of Mechanical eng. Laval University, Quebec, Canada

viscoplastic element and so on. These elements can be
replaced with a T3 triangular element that has access
to different material classes. This separation is more
useful when one works with a large number of nonlinear
material constitutive laws [Foerch(1997)]. As a result,
the object-oriented model of material can be considered
separately, and it does not depend on other finite element
or boundary element objects.

Beside, the object-oriented modeling of material charac-
teristics gives us the opportunity to model and to classify
the material properties in a convenient way. It is a useful
tool to present the kinematical as well as the hierarchical
relationships between different types of materials. An
object-oriented model is not only valuable to be used for
software engineering purposes, but also it is a useful tool
in educational and research intentions. A good object-
oriented model presents each material using its specific
characteristic properties (attributes of the material object)
and its behaviors in actual application (methods of the
material object). It helps us to show similarities and rela-
tions among materials, and it permits to collect the com-
mon material properties in a more general class (a super
class). This kind of modeling gives us a global overview
of materials. It helps us to present when a specific type
of material behaves differently from its general category
(polymorphism).

A successful solid material model must cover linear
and nonlinear, as well as isotropic and anisotropic ma-
terial properties. In the technical literature, solid ma-
terial properties are classified into different categories
[ABAQUS(2005)], from which the following can be con-
sidered as classical categories of solid properties:

• General properties such as material density and ini-
tial temperature;

• Mechanical behavior, Stress/Strain relationship
(Elastic, Inelastic properties,);

• Thermal properties;

• Damage properties;

78 Copyright c© 2006 Tech Science Press CMC, vol.3, no.2, pp.77-95, 2006

• Dynamic properties such as acoustic; and

• Electrical properties.

Some of these properties, such as the conductivity and
the elasticity, are totally unrestricted and they can be used
alone or together. Some other properties, for example
the elasticity and the plasticity, are not exclusive (a plas-
tic solid may also have the elastic behavior in a small
strain range). On the other hand, some properties cannot
be combined; for example if we chose the small defor-
mation model we cannot use the large deformation prop-
erties. Northwest Numerics and Modeling Inc. [North-
west(2005)] defines object BEHAVIOR as the collection
of:

• primal (prescribed) variable (i.e. strain) and dual
(associated) variable (i.e stress),

• set of state dependent variables,

• set of auxiliary variables (used in post-processing),

• external parameters (defined by the user such as
temperature and external load), and

• material parameters.

In the object-oriented modeling, we can present above
properties and variables. We can specify for each class
of material different attributes (properties) and different
operations over these attributes (behaviors). More impor-
tant, we can construct a global architecture to relate these
classes together. As one realizes from the previous dis-
cussion, the classical categories of material properties by
themselves are not enough to lead us to an appropriate
object-oriented model. We need a natural or an inherent
way to classify the material properties.

The constitutive equations of a class of materials are usu-
ally defined by a set of first order ordinary differential
equations (ODE) expressed in terms of state variables,
material parameters and boundary conditions. As a re-
sult, in each class of materials there must be methods to
integrate these ODEs and to find the material property
matrix (the consistent tangent matrix) or the elasticity
tensor. If it is not easy to perform the direct evaluation of
an integral, for example in a plasticity problem, explicit
or implicit methods of integration can be used. For exam-
ple, we can consider the Runge-Kutta method (explicit)
or the Newton θ method (implicit).

The UML (Unified Modeling Language) notation
[Muller(1997), Graham(2001), Wampler(2002)] is in-
creasingly used in the object-oriented modeling. We
have chosen this notation to present our solid mate-
rial model. The UML, which is actually a fusion of
Booch, OMT and OOSE methods, is accepted as the
standard notation for the object-oriented application de-
sign. Rational Rose software is a powerful tool that can
be used for object-oriented modeling with UML [Ratio-
nal(2006)]. Unfortunately, Rational rose is a commercial
software, therefore we have used open source ArgoUML
[ArgoUML(2006)], which is good as well, to present our
UML model.

Input/output objects as well as several numerical method
utility objects, i.e., Matrix, Vector, linear and nonlinear
solvers, are needed to write an object-oriented finite el-
ement (FE) application. To develop our implementation
examples, we have taken advantage of the Diffpack pack-
age. The Diffpack package is efficient object-oriented
software written in C++. It consists of a set of useful li-
braries that makes input/output and utilities objects avail-
able [Langtangen(1999), Diffpack(2006)].

2 Deformation / time curve of solid material

In a search for characteristics to be used in classifica-
tion of material properties, which is also suitable for our
object-oriented modeling, we consider the behavior of a
solid material under loading. Generally, the deformation
versus time curve of a solid material under a gradually
increasing load, which starts from zero and goes higher
than the yield limit, gives us a deformation history, which
is similar to one presented in Figure 1. In this experience,
we load the material so that the yield limit of the mate-
rial is over passed, but it stays below the fracture limit.
Thereafter, suddenly, we remove the load (point B).

As we increase the load, the material is deformed from
the state A to the state B. If in the point B we remove
the load, part of material deformation recovers instantly,
from B to C, this recoverable deformation is called the
elastic part. As the time goes on, another part of defor-
mation is recovered, from C to D. This time dependent
nonlinear elastic recoverable part is called the anelastic
part. After the point D, we observe that there is a de-
formation part that cannot be recovered even with time,
from D to E, this unrecoverable part could be due to the
damage, the plastic, the viscous or the viscoplastic prop-
erty of the material.

Object-Oriented Modeling of Solid Material 79

Depending on the type of the solid material and the na-
ture of our application, some of these deformation be-
haviours are more important than the others. For in-
stance, in the small deformation, it is not necessary to
consider the unrecoverable deformation part, while for
some large deformation applications; the effect of elastic
part can be neglected.

Considering the above observations and focusing our at-
tention to the application nature, we can categorize our
solid behavior properties in two grand kinematics mod-
els, which are the small and the large deformation mod-
els. In the small deformation, we can model the material
behavior by introducing the linear elastic and the weak
nonlinear behavior parts. On the other hand in the large
deformation, we model the material behavior and char-
acteristics by introducing large elastic and large inelastic
or permanent deformation parts.

Time

Deformation

A

B

C

D E

Figure 1 : Deformation/Time curve of a typical solid ma-
terial

Since the behavior of materials in each part of the above
curve is very important in our application, we can fur-
ther refine our classification of material properties in the
following rheological categories

1. Rigid;

2. Elastic;

3. Anelastic;

4. Damage;

5. Plastic and

6. Viscous.

We have added the rigid category, in order to have more
general categories and to allow covering the rigid boy
motions of a material.

Using the above rheological based classification and also
taking into account the thermodynamic formulations of
material constitutive equations, from now on, we will
present our object-oriented model using the UML nota-
tion.

3 Organization of packages

Figure 2, presents the organization of packages of our
object-oriented model of material. As one can see, we
put all of the material classes into a package, called Ma-
terial. The utility package contains some of the numer-
ical analysis utility classes, for example, classes which
make tensor, matrix and vector operations needed in our
calculations available. Inside the Material package, we
have two sub-packages; they are the Fluid and the Solid
packages. The Fluid package has also been added to our
modeling in order to construct a more general model and
to store the fluid properties for the future development of
the model.

The Solid package has six internal packages. These
are: Small deformation, Large deformation, Isomor-
phism, ThermoElectric, ThermodynamiquePotential and
Loading Surface. Classes that are in relation with the
large deformation behavior of the material are kept in
the Large deformation package. In Small deformation,
we keep classes, which are in relation with the small
deformation behavior of a material. The link between
Large deformation and Small deformation emphasize
the possibility of the access to the small deformation
classes from the large deformation classes. The Load-
ing Surface package has two interior packages. They are
YieldCriterion and DamageCriterion packages. For each
yield or damage criterion model, we can have a class in-
side the YieldCriterion or DamageCriterion packages, for
example, VonMises, Drucker and Hill are three classes
inside YieldCriterion package. We thermodynamically
consider the consistent material behavior, which is based
on the concept of observable and internal state variables;
therefore we have to deal with the deformation potential
in small and large deformation calculations. As a result,
the ThermodynamiquePotential package has also been
inserted into the solid package to store different large
deformation potential modes such as: Plastic and Dam-
age dissipation potentials, and different Elastic energy

80 Copyright c© 2006 Tech Science Press CMC, vol.3, no.2, pp.77-95, 2006

potentials such as Ogden, Hill, Polynomial, and so on.
The objects inside this package have access to the Load-
ing Surface package, used in calculation of the damage
rule and the plastic flow rule.

Isomorphism is another package inside the Solid pack-
age. This package is used to keep different material iso-
morphism or symmetry models. For example, isotropic,
orthotropic and transversal isotropic are three different
isomorphism models that we have considered in our
project. Finally, to store different classes in relation
with thermal and electrical properties of the material, the
ThermoElectric package has also been added inside the
Solid package.

After being familiarized with the package organization,
we now pay attention to the main classes and to their
relationships within our object-oriented model.

4 General overview of the main classes of material
properties

The main classes of the material properties are shown
in Figure 3. Material is our root super-class. We have
divided material properties into two general categories,
solid and fluid. Each category is presented by a derived
class of Material; they are the Solid and the Fluid classes.
Note that, in order to have a more general model we have
added the fluid properties class to our model, but we only
consider the solid properties and leave the fluid proper-
ties for the future development of our model.

As we consider the solid behavior from two kinemati-
cal viewpoints (small and large deformation models), we
keep the solid derived classes in two packages which
are the Small deformation and Large deformation pack-
ages. As we mentioned in the previous sections, a solid
could have different types of response. i.e., Rigid, Elas-
tic, Anelastic, ViscoElastic, ElastoPlastic, ViscoPlas-
tic and so on. Rigid, Elastic, ViscoElastic or Anelas-
tic, ElastoPlastic and ViscoPlastic are classes created in
Small deformation package that are used to model solid
behaviors in the small deformation range. These classes
are the sons of the Solid class; they have access to gen-
eral solid properties from their super-classes (Solid and
Material).

The isomorphism properties of a solid or the thermal
properties of a material are available from Solid and Ma-
terial classes. The ViscoPlastic class is a child of Elasto-
Plastic and ViscoElastic classes (multiple inheritances)

to give it the permission to use the information stored in
these two classes.

Large deformation simulation classes are kept in the
Large deformation Package. As we are interested in hy-
per elastic models in the large deformation range, we
have created the HyperElastic class as the local root in
this package. This class is a child of the Elastic class; as
a result, it has access to elastic properties of the material,
as well as other general properties of the material via its
super-classes.

To deal with different material behavior in the large
deformation model, we have created HyperViscoElas-
tic, HyperPlastic and HyperViscoPlastic classes in the
Large deformation package. They are all children of the
HyperElastic class. Each of these classes is also a child
of its equivalent class in the small deformation package
to give them access to the small deformation behavior
and properties.

In the next section, we look in details at some of these
classes and the relations among them and other associ-
ated classes.

5 Material and Solid associated classes

General thermal properties of material, such as the initial
temperature and the specific heat capacity, are stored in
the ThermalProperty class. ElectricalProperty is a class
that keeps general electrical properties of material. These
two classes are stored in the ThermoElectric package
which is inside the Solid package. The associated classes
to the Material and Solid classes are presented in Figure
4. As one can see, the Material class has the links to
the ThermalProperty class and to the ElectricalProperty
class. Using these links, a material object has access to
the information inside above classes. Note that an ob-
ject of type Material has also access to the information
accessible from these classes.

Damage and Isomorphism are classes that must be acces-
sible to the Solid class. Using the associations between
the Solid class and these classes, a solid material can use
these properties. The Damage class is used to store dam-
age properties of a solid such as damage limit, decay rate
and so on. The Isomorphism class is the superclass of the
isomorphism solid types, which we discuss in the next
section.

Object-Oriented Modeling of Solid Material 81

Figure 2 : Main packages organization

6 Isomorphism types

The object-oriented model of the isomorphism types of a
solid is presented in Figure 5. We have considered three
general isomorphism mechanical properties types of a
solid. For each type, we created a derived class (child)
of the Isomorphism superclass. For isotropic solids, hav-
ing spherically symmetric properties, we keep the Young
modulus E, the Poisson ratio ν and the shear modulus
G (other isotropic properties can also be added), these
attributes are defined in the IsotropicSolid class. For a
transversally isotropic solid, having a plane of isotropy,
we have created the TransversalIsotropicSolid class, and
we have defined the Young modulus E1 & E2, the Pois-
son ratios ν12 & ν31and the shear modulus G12 & G31in
two directions. For an orthotropic solid, having differ-
ent properties in each of the three principal directions,
the OrthotropicSolid class has been created, and we de-
fined the Young modulus E1, E2 & E3 the Poisson ratios

ν12, ν23 & ν31and the shear modulus G12, G23 & G31of
the planes of symmetry (some other key information can
also be added).

In case of the thermal properties of Solid, we can
also observe that different isomorphism types. We
do not mix the thermal and the mechanical proper-
ties together, therefore we have created three isomor-
phism derived classes for the ThermalProperty super-
class to keep the thermal isomorphism data. These
classes are ThermalIsotropic, ThermalTransIsotropic and
ThermalOrthotropic classes. For example, for the ther-
mal conductivity k, we have defined one k attribute in
the ThermalIsotropic class, while in the ThermalTran-
sIsotropic class we defined two attributes, k1 & k2, and in
the ThermalOrthotropic class we defined three attributes
k1, k2 & k3, one for each principal direction of the mate-
rial.

82 Copyright c© 2006 Tech Science Press CMC, vol.3, no.2, pp.77-95, 2006

Figure 3 : Classes general overview.

7 Small deformation classes

As an example, some detail information of certain small
deformation classes are shown in Figure 6. As one can
realize, since the Solid class is an abstract class, it has

pure virtual methods such as “reqMatrixD()”, it can not
be used to define a solid material object by itself. The
method “reqMatrixD()” computes the material property
matrix, because this method is defined as a pure virtual

Object-Oriented Modeling of Solid Material 83

Figure 4 : Material and Solid associated classes

method in the Solid class, it has to be redefined in each of
the derived classes. Elastic, ViscoElastic and ElastoPlas-
tic are three children of the Solid class, and for each of
these classes, the above method must be redefined with
respect to the material type. Information in the Solid
class and its associated classes are almost sufficient for
the definition of the Elastic class, and the computation
of the material tangent matrix or the elasticity tensor, but
these attributes and methods are not sufficient in case of
the ViscoElastic and the ElastoPlastic classes. Therefore,
the missing material properties have been added to the
appropriate classes. For example, the viscosity and the
relaxation parameters have been added as the private at-
tributes of the ViscoElastic class. The shear modulus,
the bulk modulus, the yield limit and the type of yield
criterion are also defined and placed in the ElastoPlastic

class.

ViscoPlastic is another class in the small deformation
kinematical group. As it needs both the viscoelastic
and the elastoplastic properties, we have defined it as a
child of ViscoElastic and ElastoPlastic. Abstract meth-
ods such as reqMatrixD() and reqTensorElasticity() are
redefined in this class to present the behavior of this type
of material. The ElastoPlastic class needs to have access
to the yield criterion models. In Some application this
class needs the information about the hardening charac-
teristics, the kinematical calculations and the deforma-
tion history of the material. As a result, we have cre-
ated the HardeningMechanism class to keep the hard-
ening mode of the material, and the Kinematics class
to perform the kinematical operations. The YieldCri-

84 Copyright c© 2006 Tech Science Press CMC, vol.3, no.2, pp.77-95, 2006

Figure 5 : Detailed diagram of isomorphism relations.

Object-Oriented Modeling of Solid Material 85

Figure 6 : A detailed diagram of the small deformation class hierarchy

teria classes are used to store information about plas-
tic loading (or yield) function and its parameters. Sev-
eral yield criterion classes have also been created for
the classical yield criterion models, for example Von-
Mises, Hill, Tresca, Drucker and PowderCap are defined
in our project. These classes are specializations (derived
classes) of the YieldCriterion class, they are inside the
YieldCriterion package inside the Loading Surface pack-

age. In Figure 7, we illustrate the relation between the
ElastoPlastic, Hardening, MaterialHistory and Yield Cri-
terion classes.

Association among the ElastoPlastic class and the Yield
criterion classes are exclusive. This means that we can
have only one of the yield criterion classes in relation
with the ElastoPlastic class at a time. For example, we
cannot have Capmodel and VonMises objects at the same

86 Copyright c© 2006 Tech Science Press CMC, vol.3, no.2, pp.77-95, 2006

Figure 7 : Diagram of hardening relations

time in association with an ElastoPlastic object.

MaterialHistory is a class that is created to keep the de-
formation history of a material at each Gauss point or in-
tegration point. In this class, we keep several state vari-
able properties in two instances of time: in the current
and in the previous time steps. Therefore, each attribute

must be associated with two values in this class (i.e., by
using an array of two elements or by repeating the at-
tributes with “N” postfix). As it is possible that we do
not need to use all of MaterialHistory variables in a spe-
cific application, then to use the less memory space in
case of the vector, the matrix or the tensor attributes, we

Object-Oriented Modeling of Solid Material 87

only keep pointers to these attributes. Most of the at-
tributes of this class are used by the HyperElastic class
of the LargeDeformation package.

8 Large deformation classes

Figure 8 shows some of the large deformation classes in
relation with the small deformation classes. As it can be
noticed, to each of the material types (classes) in the large
deformation kinematics package, there is a correspond-
ing father (superclass) in the small deformation kinemat-
ics package. The local root class of the large deformation
classes is the HyperElastic class, as we have chosen the
hyper-elastic model as a base of our modeling of the large
deformation phenomena. The HyperElastic class itself is
a derived class of the Elastic class; therefore it has access
to all of material properties accessible to its superclasses.
To have access to the history evolution of a material and
to the kinematical operations, the HyperElastic class via
the Solid class has a link to the MaterialHistory and the
Kinematics classes, the same as the ElastoPlastic class
in the previous section. For example, the left Cauchy
Green deformation tensor (be) is needed in the hyper-
plastic calculation. This tensor at the current and at the
previous time (N) is stored in the aLeftCauchyGreenDe-
formation be attributes of the MaterialHistory class.

The Polymorphism methods such as reqMatrixD() and
reqTensorElasticity() are also redefined in the Hypere-
lastic classes to return the appropriate material tangent
matrix and the elasticity tensor to the calling program.
As the hyperelastic formulation is driven from the hyper-
elastic potential, and since we thermodynamically con-
sider the consistent material behavior, the elastic energy
potentials and the dissipation potentials are essential in
our calculation. We have created several elastic energy
potential classes such as Hill, Ogden, Polynomial and
Neohookean. Figure 9 shows the association relation-
ships among the HyperElastic class and the hyperelastic
potential classes. The FreeEnergy class has the multiples
heritage, because the total energy is the sum of the elas-
tic, the plastic and the damage energies. These classes
are inside the ThermodynamiquePotential package that
is inside the Solid package.

Figure 10 shows the relations between the plastic and the
damage dissipation potential classes, the damage and the
plastic criterion classes, and the Damage and the Hard-
eningMechanism classes. The PlasticDamagePotential
class is the son of the PlasticPotential and the Damage-

Potential classes. In this class the coupled plastic and
damage effects are defined. The link between the Dam-
age class and the DamagePotential class, and the link be-
tween the HardeningMechanism class and the PlasticPo-
tential class show that objects of type Damage or Hard-
eningMechanism have access to objects of type Damage-
Potential or PlasticPotential respectively. These associa-
tions can be used, for example, in the calculation of the
damage rule or the plastic flow rule. The DamagePo-
tential and the PlasticPotential classes have access to the
YieldCriterion and DamageCriterion respectively as the
loading surface functions can be used in formulation of
dissipation potentials.

9 Thermoelectric classes

In some applications, we need access to the thermal, the
electrical or the thermoelectrical behavior of a solid. To
deal with such applications, we have created two tem-
plate classes: ElectroSolid and ThermoSolid (presented
in Figure 11). The type of the template parameter of these
classes is a solid class; as a result we can create sev-
eral thermo-solid or electro-solid classes. For example,
the ThermoPlastic class is created from the ThermoSolid
class by choosing the ElastoPlastic class as the template
parameter.

The ThermoElectroSolid class is a class that combines
thermal and electrical effects. As one can see from Figure
11, it has the aggregation associations with ThermoSolid
and ElectroSolid templates. Therefore, it is also a tem-
plate class that is formed from the combination of these
two templates. Moreover, we can also add some other
appropriate attributes or methods to this class.

All of the above classes can be put in the ThermoElectro
package inside the Solid package. Piezoelectric class is
another interesting class inside this package. In this class,
we have defined special piezoelectric characteristics. It is
also in association with the ElectroSolid class to give it
access to the general electro-solid methods and attributes.

10 Integration of constitutive equations:

As mentioned in previous sections, the “reqMatrixD()”
method is the polymorphism method which computes
the material property matrix (tangent moduli). The “re-
qTensorElasticity()” method is another polymorphism
method that calculates the elasticity tensor. These meth-
ods must be redefined in each non-abstract material type

88 Copyright c© 2006 Tech Science Press CMC, vol.3, no.2, pp.77-95, 2006

Figure 8 : Detailed diagram for large deformation class.

classes. In these methods, we really integrate the evolu-
tion laws of the constitutive equations to find the material
tangent matrix or elasticity tensor. As an example, in this

section we consider the algorithm of this method in the
case of the HyperPlastic class.

Integration of the constitutive laws has been con-

Object-Oriented Modeling of Solid Material 89

Figure 9 : Large deformation potentials

sidered in several papers [Ortiz(1986), Simo(1991),
Simo(1992), Nikishkov(1993), Gharzeddine(1999),
Liu(2004), Sun(2004) Akamatsu(2005)]. The algorithm
that is used for implementation of the “reqMatrixD()”
method in the Hyperplastic class is based on the gen-
eral return mapping in principal axes with an implicit
integration method. Our implementation, we used
the multiplicative decomposition proposed by Simo
[Simo(1985), Simo(1988), Simo(1991), Simo(1992)] for
large strain elastoplasticity.

Given a typical time step tn and displacement increment
Δun+1 in a typical time interval [tn, tn+1], we first as-
sume plastic flow is frozen and evaluate a trial elastic
state. Then the trial stress state is tested to see if it is
inside or outside of the yield surfaces. If it is outside the

elastic zone, the true stress is then found by a closest-
point-projection of the trial stress onto the yield surfaces.
The problem to be solved can the be stated as follows:
consider a typical time sub-interval [tn, tn+1], and a spe-
cific Gauss point X∈ Ω, (Ω is the domain of material).
Assuming that X has the following history of deforma-
tion gradient, left Cauchy-Green tensor and strain like
internal variables vector: {Fn, be

n , ξn} at time tn. We
would like to compute: true stress state σn+1and history
variables {Fn+1, be

n+1 , ξn+1} at time tn+1 for a given a
prescribed incremental displacement un+1.

11 Algorithm

A. Kinematical Calculation:

90 Copyright c© 2006 Tech Science Press CMC, vol.3, no.2, pp.77-95, 2006

Figure 10 : Large deformation dissipation potential associations

Figure 11 : ThermoElectric class diagram

(using methods of the Kinematics and the MaterialHis-
tory classes)

- Compute the relative deformation gradient:

Fn+1
u = I + ∇un+1

Object-Oriented Modeling of Solid Material 91

I is an identity matrix.

- Evaluate total deformation gradient and its determi-
nant:

Fn+1 = Fn+1
u Fn

Jn+1 = det Fn+1

B. Apply the predictor/corrector algorithm for the multi-
plicative decomposition.

1. elastic trial state (first freeze plastic flow and compute
trial elastic response)

1.1 compute the trial left Cauchy-Green tensor

betrial
n+1 = Fn+1be

nFT
n+1

1.2 perform its spectral decomposition of betrial
n+1 by solv-

ing an eigen value problem:

- compute invariants I1, I2, I3 :

I1 = tr[betrial
n+1]

I2 =
1
2
(I2

1 − tr[betrial
n+1]2)

I3 = det[betrial
n+1]

- form the characteristic equation:

− (λe
A)6 + I1(λe

a)
4− I2(λe

A)2 + I3 = 0

- find principal values λe
A, A = 1,...,3

- compute rank-one principal directions basis matrices
[Simo(1991)]:

n(A)⊗n(A) = m(A)

=
(betrial

n+1)
2 − (I1 − (λe

A)2)betrial
n+1 + I3(λe

A)−2↔g

2(λe
A)4− I1(λe

A)2 + I3(λe
A)−2 ;

for λe
1 �= λe

2 �= λe
3

n(3)⊗n(3) = m(3) =
betrial

n+1 − (λe
1)

2↔g

(λe
3)2 − (λe

1)2 ;

m(1) = ↔g−m(3) for λe
1 = λe

2 �= λe
3

n(1)⊗n(1) = m(1) = λe↔g for λe
1 = λe

2 = λe
3 = λe

here ↔g is the metric tensor.

- hence spectral decomposition betrial
n+1 becomes:

betrial
n+1 =

⎧⎪⎪⎨
⎪⎪⎩

3
∑

A=1
(λAe)2m(A),

(λe
1)

2↔g +((λe
3)

2 − (λe
1)

2)m(3)

(λe
1)

2↔g

det [betrial
n+1] = (λe

1)
2(λe

2)
2(λe

3)
2

1.3 evaluate the trial logarithmic principal stretches:

εetrial
A,n+1= lnλe

A,

lnJe = tr[εe
A],

Je = (λe
1)(λ

e
2)(λ

e
3)

1.4 compute elastic principal trial Kirchhoff stresses:

σ = 2
∂ψ
∂be be => {τe

n+1
trial} = [a]{εe

n+1
trial}

where [a] = κ�1⊗�1+2µ(I− 1
3
�1⊗�1), κ is the bulk modulus

and µ is the shear modulus. Due to isotropy, the principal
directions of the Kirchhoff stress τ and of the elastic left
Cauchy-Green tensor becoincide. Hence, in term of the
principal Kirchhoff stresses, we can write:

τ =
3

∑
A=1

βAmA

where βA, A=1,2,3 are principal value of Kirchhoff stress
tensor, with deviatoric part:

β
trial
n+1 = 2µεe

n+1
trial; εe = dev[εe] = εe − 1

3
tr[εe]

and pressure:

ptrial
n+1=Jn+1

dU(Jn+1)
dJ

U(λe
A,ξ),A = 1, ...,3,is volumetric free energy function.

1.5 Evaluate the trial yield function; (using YieldCrite-
rion classes)

φtrial
n+1 = φ(τtrial

n+1,qtrial
n+1)

in case of Von Mises:

φ(τ,q)trial
n+1 =

∥∥dev[τtrial
n+1]

∥∥−
√

2
3
[σy +h(ξtrial

n+1)]

where σy is the yield stress, q is stress-like internal vari-
able and h(.) is an isotropic hardening function.

1.6 Testing:

92 Copyright c© 2006 Tech Science Press CMC, vol.3, no.2, pp.77-95, 2006

- if trial yield function <= 0 then we have an elastic
response:

.perform a trivial updating: (.) n+1 = (.)trial

. exit.

- else if trial yield function > 0 , we have a plastic
response

. perform a one step return mapping i.e.

. continue to step 2

2. Plastic Correction Phase (perform a plastic correc-
tor). Perform the return mapping algorithm in principal
axes to evaluate the elastic stretches εn+1, total stresses
σn+1 and internal variables ξn+1 in a way that is con-
sistent with the plasticity constitutive laws: (using the
HardeningMechanism class)

2.1 evaluate the consistency parameter Δγn+1 at time tn+1

using Euler-bakward method:

- evaluate the plastic flow direction from the trial state:

νn+1 = νtrial
n+1 =

βtrial
n+1∥∥βtrial
n+1

∥∥
- use updating formula for : stresses and equivalent plas-
tic strain(for isotropic hardening)

τA
n+1 = βn+1 = βtrial

n+1 −2µΔγn+1νn+1

ξn+1 = ξtrial
n+1 +

√
2
3

Δγn+1 (1)

- use expression of current value of the yield surface at
tn+1 and find a combined non linear scalar equation in
Δλn+1 which becomes in case of isotropic hardening:

φn+1

= φtr
n+1−2µΔγn+1−

√
2
3
[h′(ξn +

√
2
3

Δγn+1)−h′(ξn)]

= 0;

h(ξ) = Hξ+[σ∞
y −σy](1−exp[δξ])

solve it using a local Newton-Raphson scheme and find
Δλn+1.Here, H is the kinematical hardening coefficient
(=0 here) and σ∞

y and σy are the yield limit at infinity and
the current yield limit of the material.

2.2 Once Δλn+1 is found , then perform updating of
strains and stresses at tn+1:

(using the MaterialHistory class)

- first compute elastic principal stretches:

εe
n+1=εe

n+1
trial −Δλn+1νtrial

n+1

- update internal plastic variables:

ξn+1 = ξtrial
n+1 −Δλn+1∂qφn+1

- compute the principal deviatoric Kirchhof stresses:

βn+1 = βtr
n+1 −2µΔγn+1νn+1

- recover the total Kirchhof stress tensor from the spectral
decomposition:

dev[τ] = τn+1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3
∑

A=1
β(A)

n+1m(A)
n+1

β(1)
n+1

↔g +(β(3)
n+1 −β(1)

n+1)m(3)
n+1

β(1)
n+1

↔g

Add the pressure term and deviatoric part to obtain:

τn+1 = dev[τn+1]+Jn+1pn+1

2.3 Update the intermediate configuration:

- compute the updated left Cauchy-Green tensor

be
n+1

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3
∑

A=1
(expε(e)

A,n+1)
2m(A)

n+1

(expεe
1,n+1)

2↔g +[(expεe
3,n+1)

2− (exp ε1,n+1)2]m(3)
n+1

(expεe
1,n+1)

2↔g

using the principal basis direction and updated logarith-
mic stretches

- update the right Cauchy-Green plastic deformation ten-
sor Cp on the intermediate configuration:

Cp
n+1

−1 = Fn+1be
n+1F−1

n+1

3. Compute the consistent algorithmic tangent mod-
uli:

3.1 Ignoring the thermal effect, the assumed decoupled
volumetric/isochoric form of the free energy can be writ-
ten as: (using elastic energy classes)

ψ = ψvol +ψisoch

Object-Oriented Modeling of Solid Material 93

ψisoch(b
e
) =

1
2

µ[Je− 2
3 tr[b

e
]−3];

ψvol(Je) = U(Je) = K[
1
2
((Je)2−1)− ln Je]

3.2 compute the spatial elasticity tensor:

ce = ce
vol +ce

dev

ce
vol = (JeU ′)′Je1⊗1−2JeI

ce
dev = 2µ[I− 1

3
1⊗1]− 2

3
||s||[↔n⊗1+1⊗↔n]

where: s = µdev[be];↔n = s
||s|| ;m = µ1

3tr[be]
then the elastoplastic part is given by:

cep = 2∂gdev[τn+1]|g=1

cep = cetrial
dev +cp

dev

where:

cetrial
dev = 2µ[I− 1

3

⇀

1⊗⇀

1]− 2
3

∥∥dev[τtr]
∥∥(

⇀

1⊗↔n +↔n⊗⇀

1]

cp
dev = −αp{β1cetr +2µβ3

↔n⊗↔n +2µβ4
↔n⊗dev[↔n

2
]}

where αp is a plastic loading flag :

αp = 1 for φtrial => 0;

αp = 0 for φtrial < 0

the various coefficients βi , i= 0,1,2,3,4 are defined as:

β0 = 1+
1
2µ

h′′(ξn +

√
2
3

Δγ);

β1 =
2µΔγ

‖dev[τtr]‖ ;

β2 = [1− 1
β0

]
2
3

∥∥dev[τtr]
∥∥ Δγ

µ
;

β3 =
1
β0

−β1 +β2;

β4 = (
1
β0

−β1)
||dev[τtr]||

µ

4. Transfer from Kirchhoff stress to true Cauchy
stresses:

σn+1 = τn+1/Jn+1

cep
c n+1 = cep

n+1/Jn+1

End of algorithm.

12 Practical use of our model in real application

We convert our UML object-oriented model into a C++
program software package. We use our software in hy-
perelastic and in hyperplastic Diffpack contact applica-
tions. In the hyperelastic application we used an isotropic
hyperelastic material with the NeoHookean potential.
As a result, we have chosen the HyperElastic class of
Large Deformation package as the type for the material.
The HyerElastic object is using the IsotropicSolid class
through its grand parent (Solid) to find its isomorphism
properties. It also uses its associations with the Mate-
rialHistory and the NeoHookeanPotential objects to find
other properties which are needed for the its computa-
tion. Figure 12 shows one of our result diagrams. It is
the equivalent stress for a matrix in contact with a punch.

In our applications, we have not needed to write the
program for the material properties, as the hyperelas-
tic/hyperplastic models have already written in our Ma-
terial package. As a result, the development time is re-
duced considerably for developing a new application. Of
course, we expend time to develop our material model
but this model could be reused for any of our solid mate-
rial applications using the finite element or the boundary
element method.

The difference of the execution time between the object-
oriented and the procedural approach is not significant
and it is ignorable. As lot of time is used for solving the
nonlinear system, the time of access to the data through
the object hierarchy is not considerable.

Figure 12 : equivalent stress of matrix in contact to a
punch.

94 Copyright c© 2006 Tech Science Press CMC, vol.3, no.2, pp.77-95, 2006

13 Conclusion

In this paper, it is shown that the object-oriented model-
ing helps us to model and to classify the material prop-
erties in a convenient way. We consider the behavior of
a material under loading to classify the material prop-
erties. This type of classification is used in our object-
oriented model. We have categorized material properties
in two large and small deformation kinematical models.
In the small deformation, we model the material behavior
in elastic range. On the other hand, the behavior and the
characteristic of permanent deformation range are con-
sidered in the large deformation model. We have also
classified material properties using the rheological cate-
gories, namely, Rigid, Elastic, Anelastic, Plastic and Vis-
cous.

The kinematical as well as the hierarchical relationships
between different types of materials properties are pre-
sentable in our object-oriented model. Our model cov-
ers the linear and the nonlinear as well as the isotropic
and the anisotropic material. Classes such as Elastic,
ElastoPlastic, ViscoElastic and ViscoPlastic have been
put in the small deformation package. In large defor-
mation package, we store classes such as HyperElastic,
HyperPlastic, HyperViscoElastic, HyperViscoPlastic.

We have presented our model graphically using the UML
notation, which is more understandable than a C++ code.
It makes our object-oriented model not only usable for
the software engineering, but also it can be used in the
educational and the research objectives. Using C++ pro-
gramming language, we implemented our model in a hy-
perelastic/hyperplastic Diffpack application. It is con-
siderably reduced the programming effort to develop the
nonlinear material contact applications.

References

ABAQUS/Standard user’s manual (2005):
ABAQUS/Standard user’s manual. Hibbitt,

Akamatsu, M.; Nakane, K.; Ohno, N. (2005):
An Implicit Integration Scheme for a Nonisothermal
Viscoplastic, Nonlinear Kinematic Hardening Model,
CMES:Computer Modeling in Engineering & Sciences,
vol. 10, no. 3, pp. 217-228.

ArgoUML (2006): ArgoUML home page.
http://argouml.tigris.org/index.html.

Besson, J.; Foerch, R. (1997): Large Scale Object-

Oriented Finite Element Code Design, Computer Meth-
ods in Applied Mechanics and Engineering. vol. 142,
pp. 165-187.

Bettig, B. P.; Han, R. P. S. (1996) : An object-oriented
framework for interactive numerical analysis in a graph-
ical user interface environment. International Journal for
Numerical Methods in Engineering, vol. 39, pp. 2945-
2971.

Cross, J. T.; Masters, I.; Sukirman, Y.; Lewis, R.W.
(1997): Object-oriented Programming Techniques for Fi-
nite Element Methods in Heat Transfer. In R.W. Lewis
and J. T. Cross (eds.) Proc. 10th Int. Conf. for Num.
Meth. Thermal Problems, Swansea, pp. 757-766.

Diffpack (2006): Diffpack home page.
http://www.diffpack.com/products/prod main. html.

Dubois-Pélerin, Y.; Zimmermann, T. (1993): Object-
oriented finite element programming: III. An efficient
implementation in C++. Comp. Meth. Appl. Mech.
Eng., vol. 108, pp. 165-183.

Foerch, R.; Besson, J.; Cailletaud, G.; Pilvin, P.
(1997): Polymorphic Constitutive Equations in Finite El-
ement Codes. Computer Methods in Applied Mechanics
and Engineering. vol. 141, pp. 355-372.

Gharzeddine, F.; Ibrahimbegovic, A.; Chorfi, L.;
Gakwaya, A. (1999): Formulation des théories de
grandes déformations dans les axes principaux et leur im-
plantation numérique. 4ème Colloque National en Calcul
des Structures.

Graham, I. (2001): Object-Oriented Methods, Princi-
ples & Practice. Third Edition, Addison-Wesely.

Kong, X.A.; Chen, D.P. (1995): An object-Oriented de-
sign of FEM programs. Computer & Structures, vol. 57,
no. 1, pp. 157-166.

Langtangen, H. P. (1999): Computational Partial Differ-
ential Equations, Numerical Methods and Diffpack Pro-
gramming. Lecture Notes in Computational Science and
Engineering, vol. 2, Springer-Verlag.

Liu, C. S.; Chang, C. W. (2004): Lie Group Symmetry
Applied to the Computation of Convex Plasticity Con-
stitutive Equation, CMES: Computer Modeling in Engi-
neering & Sciences, vol. 6, no. 3, pp. 277-294.

Masters, I.; Cross, J. T.; Lewis, R. W. (1997): A Brief
Review of Object-Oriented Finite Element Methods. In
R.W. Lewis and J. T. Cross (eds.) Proc. 10th Int. Conf.
for Num. Meth. Thermal Problems, Swansea, pp. 766-

Object-Oriented Modeling of Solid Material 95

776.

Muller, P. A. (1997) : Instant UML. Wrox Press.

Nikishkov, G. P.; Atluri, S.N. (1993): Implementa-
tion of a Generalized Midpoint Algorithm for Integration
of Elasto-Plastic Constitutive Relations for Von Mises’
Hardening Material. Computers and Structures, vol.
49(6), pp. 1037-1044.

Nikishkov, G. P. (2006): Object Oriented Design of a Fi-
nite Element Code in Java, CMES: Computer Modeling
in Engineering & Sciences, vol. 11, no. 2, pp. 81-90.

Northwest Numerics (2005): Constitutive Equa-
tions. In http://www.nwnumerics.com/ PDFs/info/z-mat-
detail.pdf, web site of Northwest Numerics and Model-
ing Inc.

Ortiz, M.; Simo, J. C. (1986): An analysis of a new
class of integration algorithms for constitutive relations.
Int. J. Meth. Eng., vol. 23, pp. 353-366.

Pawtucket, R.I.: Karlsson & Sorensen, Inc. Volume I,
Version 5.8.

Rational Rose (2006): Rational Rose Soft-
ware home page. http://www-306.ibm.com/ soft-
ware/awdtools/developer/modeler/, IBM Inc.

Sharifi, H.; Gakwaya, A. (2005): Object-oriented Mod-
eling of Field Boundary Element Method in Nonlinear
Solid Mechanics with Applications. In Advances in
Boundary Element Techniques VI, Editors: A P Selvadu-
rai, C L Tan, M H Aliabadi, EC Ltd United Kingdom, pp.
317-325.

Simo, J. C,; Taylor, R.L. (1991): Quasi-incompressible
finite elasticity in principal stretches: continuum basis
and numerical algorithms. Comp. Methods Appl. Mech,
Eng., vol. 85, pp. 273-110.

Simo, J. C. (1985): On the computational significance
of intermediate configuration and hyperelastic stress rela-
tions in finite deformation elastoplasticirty. Mech. Mater.
vol. 4, pp. 439-451.

Simo, J. C. (1988): A framework for finite strain elasto-
plasticity based on maximum plastic dissipation and mul-
tiplicative decomposition: Part I. Continuum formula-
tion; Part II. Computational aspects. Comput. Methods
Appl. Mech. Eng., vol. 66, pp. 199-219, and vol. 68, pp.
1-31.

Simo, J.C. (1992): Algorithms for static and dynamic
multiplicative plasticity that preserve the classical return
mapping schemes of the infinitesimal theory. Comp.

Meth. Appl. Mech. Eng. vol. 99, pp. 61-112.

Simo, J.C.; Govindjee, S. (1991): Non-linear B-
stability and symmetry preserving return mapping algo-
rithms for plasticity and viscoplasticity. Int. J. Numer.
Meth. Eng., vol. 31, pp. 151-176.

Sun, X. S.; Huang, L. X.; Liu Y. H.; Cen, Z. Z. (2004):
Elasto-plastic Analysis of Two-dimensional Orthotropic
Bodies with the Boundary Element Method ,CMC: Com-
puters, Materials, & Continua, vol. 1, no. 1, pp. 91-106.

Toukourou, M. M.; Gakwaya, A.; Yazdani, A. (2001):
Object-oriented finite implementation of large deforma-
tion frictional contact problems and applications. Com-
putational Fluid and solid Mechanics. pp. 365-368.

Wampler, B. E. (2002): The Essence of Object-Oriented
Programming with Java and UML. Addison-Wesley.

Zabaras, N.; Srikanth, A. (1999): Using Objects to
Model Finite Deformation Plasticity. Engineering with
Computers. vol. 15, pp. 37–60.

