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Numerical Investigation of the Multiple Dynamic Crack Branching Phenomena

T.Nishioka1 , S.Tchouikov1 and T.Fujimoto1

Abstract: In this study, phenomena of multiple
branching of dynamically propagating crack are inves-
tigated numerically. The complicated paths of cracks
propagating in a material are simulated by moving fi-
nite element method based on Delaunay automatic tri-
angulation (MFEM BODAT), which was extended for
such problems. For evaluation of fracture parameters for
propagating and branching cracks switching method of
the path independent dynamic J integral was used. Us-
ing these techniques the generation phase simulation of
multiple dynamic crack branching was performed. Var-
ious dynamic fracture parameters, which are almost im-
possible to obtain by experimental technique alone, were
accurately evaluated.
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ture, Crack propagation and arrest, Moving finite element
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1 Introduction

The phenomena of multiple crack branching are very of-
ten observed in dynamic fracture of brittle materials (See
Fig.1). However, the detailed mechanism of multiple
crack branching, (some cracks branch, and arrest, some
continue propagating and bifurcate again), has not been
fully elucidated yet. Recently the problem of governing
condition of dynamic crack branching was investigated
in our experimental studies [Nishioka, Kishimoto, Ono
and Sakakura(1999a, 1999b), Nishioka, Matsumoto, Fu-
jimoto and Sakakura(2003)]. The experiments on dy-
namic branching phenomena revealed that the total en-
ergy flux per unit time into a propagating crack tip or into
a fracture process zone governs the dynamic two crack
branching [total energy flux criterion].

Over the past few decades, many numerical methods
have been proposed to model crack and other prob-
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Figure 1 : An ultra-high speed photograph of multiple
crack branching

lems. For example, some MLPG method [Han and
Atluri (2004)] and Material point method [Bardenhagen
and Kober (2004), Guo and Nairn (2004)] have been
reported. In our previous studies [Nishioka, Furutuka,
Tchouikov and Fujimoto(2002), Nishioka, Tchouikov
and Fujimoto(2002)], the authors developed the moving
finite element method based on Delaunay automatic tri-
angulation (MFEM BODAT) [Nishioka, Tokudome and
Kinoshita (2001)], which allows the simulation of the
phenomenon of dynamic two cracks bifurcation. In the
present work, this method is extended for simulation of
the multiple crack branching phenomena. The cracks
are modeled by the Delaunay Automatic triangulation for
each time step. Using this crack modeling technique the
moving singularities at the tips of dynamically propagat-
ing cracks are treated accurately and even fairly compli-
cated fracture paths are precisely generated. The applica-
bility of the moving finite element method were demon-
strated for various cases [Fujimoto and Nishioka (2001),
Nishioka, Hashimoto and Fujimoto (2001), Nishioka, Hu
and Fujimoto (2001), Nishioka, Ichikawa and Maeda
(1995), Tchouikov, Nishioka and Fujimoto (2005), Nih-
sioka, Maruoka and Fujimoto (2004), Nishioka and Stan
(2003), Nishioka, Stan and Fujimoto (2002, 2001), Nish-
ioka, Syano and Fujimoto (2000), Nishioka, Tchouikov
and Fujimoto (2004, 2001), Nishioka, Yoshimura, Nishi
and Sakakura (1995), Tchouikov, Nishioka and Fujimoto
(2004)].

In this work, we carried out the generation phase simu-
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lation of multiple dynamic crack branching based on ex-
perimental fracture history data. Various dynamic frac-
ture parameters, such as the dynamic J integral [Nishioka
and Atluri (1983)], dynamic stress intensity factors, en-
ergy flux are accurately evaluated even immediately after
the crack branching. The same simulations were also per-
formed for two crack bifurcation without preceding mul-
tiple crack branching. Comparing the calculation results
for both cases the influence of multiple crack branching
on crack propagation was investigated.

Theoretical and computational aspect of dynamic frac-
ture simulations were reviewed in [Fujimoto and Nish-
ioka (2001), Nishioka (2002, 2001, 2000, 1999a,
1999b)].

2 Moving Finite Element Method for Dynamic
Crack Branching Phenomena

In this study for mesh generation we used the modified
Delaunay automatic triangulation [Taniguchi(1992)],
which requires only exterior, interior boundary points
and specified interior points (if they are necessary). In
consideration of the stress singularity at each propagat-
ing crack tip, the crack tips are always surrounded by the
specified interior points.

Figure 2 : Crack modeling by distinguishing the crack
surfaces after mesh generation (N is the total number of
nodal points after mesh generation)

At the Delaunay automatic mesh generation stage the two
surfaces of crack path have common nodal points, and
the crack surfaces are described by element boundaries.
In order to distinguish both surfaces of crack after De-
launay automatic mesh generation, dual nodes setting on
crack path are used, so that, the nodal points with the
same coordinates have different nodal numbers if there
are lying on opposite crack surfaces (See Fig.2). There-
fore, the total number of nodal points increases and the

element-nodes relations are changed accordingly. Dur-
ing crack propagation, when crack length is increased
more than a certain value, new nodal points are placed
on crack path behind the group of surrounding interior
points around the crack tip. Furthermore, only an area
of the group of specified interior points with its neigh-
borhood is actually re-meshed during crack propagation,
the rest of the mesh pattern is remaining fixed for more
accuracy of analysis. For the time integration of the fi-
nite element equation of motion the Newmark method is
used. The details of time integration procedures are given
in [Nishioka, Furutuka, Tchouikov and Fujimoto(2002)].

3 Evaluation of Dynamic Fracture Mechanics Pa-
rameters

In this study, to evaluate various fracture mechanics pa-
rameters for a dynamically propagating and branching
cracks the path independent dynamic J integral derived
by Nishioka and Atluri (1983) is used.

For most numerical analyses, considering dynamically
propagating crack in an elastic solid, the global-axis
components of the dynamic J integral (J′) can be
evaluated by the following expression [Nishioka and
Atluri(1983)]:

J′k =
Z

Γ+Γc

[(W +K)nk − tiui,k]dS

+
Z

VΓ−Vε
[(ρüi− f i)ui,k −ρu̇iu̇i,k]dV (1)

where ui, ti, f i,nk and ρ denote the displacement, traction,
body force, outward direction cosine, and mass density,
respectively. W and K are the strain and kinetic energy
densities, respectively, and (),k = ∂()

/
∂Xk. The integral

paths Γε,Γ and Γc are shown in Fig.3 denote a near-field
path, far-field path and crack surface path, respectively.
VΓ is the region surrounded by Γ, while Vε is the region
surrounded by Γε .

The crack-axis components of the dynamic J integral can
be evaluated by the following coordinate transformation:

J′l
(0) = αlk(θ0)J′k, (2)

where αlk is the coordinate transformation tensor and θ0

is the angle between the global X1 and the crack axis x0
1.

The tangential component of the dynamic J integral J′1
0

corresponds to the rate of change in the potential energy
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Figure 3 : Definition of integral paths

per unit crack extension, namely, the dynamic energy re-
lease rate G.

To accurately evaluate the inplane mixed-mode stress
intensity factors from the dynamic J integral values,
we used the component separation method [Nishioka
(1994)] which can be expressed as:

KI = δI

{
2µJ′1

0β2

AI(δ2
I β2 +δ2

IIβ1)

}1/2

= δI

{
2µGβ2

AI(δ2
I β2 +δ2

IIβ1)

}1/2

(3)

KII = δII

{
2µJ′1

0β2

AII(δ2
I β2 +δ2

IIβ1)

}1/2

= δII

{
2µGβ2

AII(δ2
I β2 +δ2

IIβ1)

}1/2

(4)

Where, δI and δII are the mode I and mode II crack open-
ing displacements,µ is the shear modulus,β1,β2 are the
crack velocity parameters normalized by the dilatational
and shear wave velocities, and AI(C),AII(C) are func-
tions of crack velocity [Nishioka and Atruli(1983), Nish-
ioka, Furutuka, Tchouikov and Fujimoto(2002)].

Some of the features of the component separation method
are: (i) mixed - mode stress intensity factors can be eval-
uated by ordinary non - singular elements, and (ii) the

signs of KI and KII are automatically determined by the
signs of δI and δII , respectively.

Because of difficulty in setting far - field integral path
separately for each just bifurcated crack tip, a switch-
ing method of the path independent dynamic J integral
[Nishioka, Furutuka, Tchouikov and Fujimoto (2002)]
was proposed:

For the time integration of the finite element equation
of motion the Newmark method is used. To fulfill the
unconditionally stable condition the Newmark’s param-
eters are chosen to be β = 1/4 and δ = 1/2 [Bathe and
Wilson (1976)]. For further details about time integra-
tion procedures readers may confer [Nishioka, Furutuka,
Tchouikov and Fujimoto (2002)].

3.1 Evaluation of Fracture Mechanics Parameters

In this study, to evaluate various fracture mechanics pa-
rameters for a dynamically propagating and branching
cracks the path independent dynamic J integral derived
by Nishioka and Atluri (1983) is used.

For most numerical analyses, considering dynamically
propagating crack in an elastic solid, the global-axis
components of the dynamic J integral (J′) can be eval-
uated by the following expression:

J′k =
Z

Γ+ΓC

[(W +K)nk − tiui,k]sdS

+
Z

VΓ
[{(ρüi− f )ui,k −ρu̇iu̇i,k}sdV

+σi jui,ks, j − (W +K) s,k]dV (5)

where Γ is a far-field integral path, that encloses all
branched crack tips and s is a continuous function de-
fined in VΓ.

For calculation of the dynamic J integral for certain crack
tip the s function is set as s=1 for the point at that crack tip
and for the points in whole domain and s=0 for the points
at the others crack tips. Equation (5) made it possible
to accurately by evaluate the dynamic J integral compo-
nents for interacting branched crack tips.

4 Simulation Results

Basing on the experimental data and the history of dy-
namic crack branching, the generation phase simulation
was carried out using the moving finite element method.
Considering the stress singularity each propagating crack
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10mm

Figure 4 : Deformed mesh pattern at the crack branching
area (150µs)

tip is always surrounded by the specified interior points,
placed regularly around the crack tip by 28 points in the
radial direction and by 6◦ increment in the circumfer-
ential direction. Therefore, although the initial number
of elements and nodes were 6756 and 3500 respectively,
due to large number of crack tips propagating, the total
numbers of elements and nodes increased exceedingly
and was 22516 and 11668 at the stage shown in Fig.4.
The time increment of Δt = 1µs was used. Furthermore,
the generation phase simulation of two cracks bifurcation
without multiple branching of central crack based on the
same experimental data was performed and simulation
results for two cases were compared.

The distributions of the equivalent stress at different time
steps are shown in Fig.5. Due to the crack tip singularity,
a large stress concentration can be seen around the crack
tips. The stress in the vicinity of central crack tip is much
larger than those around others cracks before branching
(a), but become almost equal right after the bifurcation
(b). After the last bifurcation, the stress concentrations
around the two main propagating cracks become much
larger, than stress around arrested cracks (c).

The dynamic stress intensity factors for central main
crack tip and one of the cracks after last bifurcation in
multiple crack branching case (a) and simple two crack
branching case (b) are plotted in Fig.6. The KI factor
for single straight crack (b) is much larger than KI for
straight multiply branching cracks (a) and has a maxi-
mum around 110µs. However it can be noted, that values
of stress intensity factors for last two branches are very

(a) 127 s

(b) 128 s

[N/m] 

(c) 150 s

Figure 5 : Equivalent stress distribution at branching
area

similar in both cases.

The energy flux to the propagating crack tip per unit time
was calculated as

Φtotal = J′ ·C (6)
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Figure 6 : Variations of K factors for main crack tip (a)
multiple crack branching (b) two crack branching

and plotted in Fig.7. In case of multiple crack branch-
ing, observed in the experiment, the bifurcation of cen-
tral crack occurs when the energy flux to the crack tip
reaches some critical value, represented by dashed line
in Fig.7. It can be seen that energy flux for side crack
much smaller than for energy flux for central crack in the
case of multiple crack branching (Fig.7a).

5 Conclusions

In this study, the moving finite element method based on
Delaunay automatic triangulation extended for simula-
tion of complicated crack branching problems, such as
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Figure 7 : Variations of energy flux (a) multiple crack
branching (b) two crack branching

multiple cracks branching phenomenon was developed.
Experimentally observed phenomenon of multiple cracks
branching was successfully reproduced by the genera-
tion phase simulation. The mechanism of multiple crack
branching was modeled and various fracture mechanics
parameters were accurately obtained. The simulation re-
sults confirmed the idea, that the total energy flux per unit
time into a propagating crack tip governs the dynamic
crack branching, thus, for dynamic crack branching, the
total energy flux criterion was repeatedly verified.

In this study, the moving finite element method based
on Delaunay automatic triangulation was further devel-
oped for the numerical simulation of complicated dy-
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namic crack bifurcation phenomena, such as branching
into two or three branches and multiple branching. Var-
ious dynamic fracture parameters were accurately eval-
uated by the switching method of the path independent
dynamic J integral even immediately after the crack bi-
furcation.

The dynamic crack bifurcation phenomena observed ex-
perimentally was successfully predicted by the numerical
simulations with conjunction of the local symmetry cri-
terion, the dynamic fracture toughness criterion and the
critical total energy flux criterion.
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