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Abstract: Piezoelectric materials have wide range en-
gineering applications in smart structures and devices.
They have usually anisotropic properties. Except this
complication electric and mechanical fields are coupled
each other and the governing equations are much more
complex than that in the classical elasticity. Thus, effi-
cient computational methods to solve the boundary or the
initial-boundary value problems for piezoelectric solids
are required. In this paper, the Meshless local Petrov-
Galerkin (MLPG) method with a Heaviside step function
as the test functions is applied to solve two-dimensional
(2-D) piezoelectric problems. The mechanical fields are
described by the equations of motion with an inertial
term. To eliminate the time-dependence in the governing
partial differential equations the Laplace-transform tech-
nique is applied to the governing equations, which are
satisfied in the Laplace-transformed domain in a weak-
form on small subdomains. Nodal points are spread on
the analyzed domain and each node is surrounded by a
small circle for simplicity. The spatial variation of the
displacements and the electric potential are approximated
by the Moving Least-Squares (MLS) scheme. After per-
forming the spatial integrations, one obtains a system
of linear algebraic equations for unknown nodal values.
The boundary conditions on the global boundary are sat-
isfied by the collocation of the MLS-approximation ex-
pressions for the displacements and the electric potential
at the boundary nodal points. The Stehfest’s inversion
method is applied to obtain the final time-dependent so-
lutions.
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1 Indroduction

Piezoelectric materials have wide range engineering ap-
plications in smart structures and devices. They are ex-
tensively utilized as transducers, sensors and actuators
in many fields like telecommunications, robotics, micro-
electronics, mechatronics or adaptive intelligent struc-
tures. Piezoelectric effects were discovered in 1880 by
J. and P. Curie. When a mechanical load is applied to a
piezoelectric material an electrical voltage is generated.
This phenomenon is known as the direct piezoelectric ef-
fect. On the contrary, an electrical voltage can produce a
mechanical strain in a piezoelectric material, which is re-
ferred to as the inverse piezoelectric effect. Piezoelectric
materials have usually anisotropic properties. Except this
complication electric and mechanical fields are coupled
each other and the governing equations are much more
complex than that in the classical elasticity. Thus, effi-
cient computational methods to solve the boundary or the
initial-boundary value problems for piezoelectric solids
are required. In spite of the great success of the finite
element method (FEM) [Gaudenzi and Bathe (1995); Ha
et al. (1992); Enderlein et al. (2005)] and the bound-
ary element method (BEM) [Pan (1999); Lee (1995);
Chen and Lin (1995); Ding and Liang (1999); Gross et
al. (2005); Garcia-Sanchez et al. (2005, 2006); Sheng
and Sze (2006)] as effective numerical tools for the so-
lution of boundary or initial-boundary value problems in
piezoelectric solids, there is still a growing interest in the
development of new advanced methods. In recent years,
meshless formulations are becoming popular due to their
high adaptivity and low costs to prepare input and output
data for numerical analysis. A variety of meshless meth-
ods has been proposed so far and some of them also ap-
plied to piezoelectric problems [Ohs and Aluru (2001);
Liu et al. (2002)]. They can be derived either from a
weak-form formulation on the global domain or a set of
local subdomains. In the global formulation background
cells are required for the integration of the weak-form. In
methods based on local weak-form formulation no back-
ground cells are required and therefore they are often re-
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ferred to as truly meshless methods. The meshless local
Petrov-Galerkin (MLPG) method is a fundamental base
for the derivation of many meshless formulations, since
trial and test functions can be chosen from different func-
tional spaces. By using the fundamental solution as the
test function, accurate numerical results can be obtained,
which were reported in previous papers for 2-D problems
in isotropic, homogeneous or continuously nonhomoge-
neous and linear elastic solids under static [Atluri et al.
(2000); Sladek et al. (2000); Sellountos et al. (2005)]
and dynamic loading conditions [Sladek et al. (2003a,b);
Sellountos and Polyzos (2003)], and for 3-D problems
in homogeneous and isotropic solids under a static or a
dynamic load [Han and Atluri (2004a,b)].

In this paper, the MLPG method with a Heaviside step
function as the test functions [Atluri et al. (2003); Atluri
(2004); Sladek et al. (2004)] is applied to solve two-
dimensional (2-D) piezoelectric problems. The mechan-
ical fields are described by the equations of motion with
an inertial term. To eliminate the time-dependence in
the governing partial differential equations the Laplace-
transform technique is applied to the governing equa-
tions, which are satisfied in the Laplace-transformed do-
main in a weak-form on small fictitious subdomains. If
the shape of subdomains has a simple form, numerical
integrations over them can be easily carried out. Nodal
points are introduced and spread on the analyzed do-
main and each node is surrounded by a small circle for
simplicity, but without loss of generality. The integral
equations have a very simple nonsingular form. The spa-
tial variations of the displacements and the electric po-
tential are approximated by the Moving Least-Squares
(MLS) scheme [Belytschko et al. (1996); Zhu et al.
(1998)]. After performing the spatial integrations, a sys-
tem of linear algebraic equations for unknown nodal val-
ues is obtained. The boundary conditions on the global
boundary are satisfied by the collocation of the MLS-
approximation expressions for the displacements and the
electric potential at the boundary nodal points. The Ste-
hfest’s inversion method [Stehfest (1970)] is applied to
obtain the final time-dependent solutions. The accuracy
and the efficiency of the proposed MLPG method are ver-
ified by numerical examples.

2 Local boundary integral equations

The governing equations for a homogeneous and linear
piezoelectric solid can be derived from an appropriate

thermodynamical potential given for instance by the elec-
tric enthalpy density H as a function of the strain and the
electric fields [Tiersten (1969); Parton and Kudryavtsev
(1988)]

H(εi j,E j) =
1
2

ci jklεi jεkl −e jklE jεkl − 1
2

h jkE jEk , (1)

where ci jkl , e jkl and h jk are elastic, piezoelectric and di-
electric material tensors, respectively. The strain tensor
εi j and the electric field vector E j are related to the dis-
placements ui and the electric potential ψ by

εi j =
1
2

(ui, j +u j,i) ,

E j = −ψ, j . (2)

Differentiating eq. (1) with respect to εi j and E j, one
obtains the following constitutive equations for the stress
tensor

σi j =
∂H
∂εi j

= ci jklεkl −eki jEk, (3)

and the electric displacement vector

D j = − ∂H
∂E j

= e jklεkl +h jkEk. (4)

In many cases, piezoelectric solids are transversely
isotropic with ε33 = ε31 = ε32 = E3 = 0 for plane strain
conditions. In such a case the constitutive equations (3)
and (4) are reduced to [Sheng and Sze (2006)]⎡
⎣ σ11

σ22

σ12

⎤
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c12 c22 0
0 0 c44

⎤
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⎦
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where

C =

⎡
⎣ E11/e E22ν12/e 0

E22ν12/e E22/e 0
0 0 G12

⎤
⎦ with e = 1 −

E22
E11

(ν12)
2 ,

in which E11 and E22 are Young‘s modulii, G12 is the
shear modulus,and ν12 is Poisson ratio.

The equations of motion for the mechanical filed and
Maxwell’s equations for the quasi-static electric field in
the analyzed domain Ωcan be written as

σi j, j −ρüi +Xi = 0, (7)

D j, j = 0 , (8)

where Xi is the body force vector, ρ is the mass density
and the dots over a quantity indicate the time derivatives.
A static problem can be considered formally as a special
case of the dynamical one, with omitting the acceleration
üi(x, t) in the equations of motion (7). Therefore, both
cases are analyzed simultaneously in this paper.

The following essential and natural boundary conditions
are assumed for the mechanical quantities

ui(x, t) = ũi(x, t)on Γu,

ti(x, t) = t̃i(x, t)on Γt ,

and for the electrical quantities

ψ(x, t) = ψ̃(x, t)on Γp,

niDi(x, t) = Q̃(x, t)on Γq,

where Γu is the part of the global boundary with pre-
scribed displacements, and on Γt , Γp and Γq the traction
vector, the electric potential and the surface charge den-
sity are prescribed, respectively.

Only initial conditions for the mechanical quantities are
required, since there is no time derivative of the electri-
cal field according to the quasi-electrostatic assumption.
Thus

ui(x, t)|t=0 = ui(x,0)and u̇i(x, t)|t=0 = u̇i(x,0) in Ω.

Applying the Laplace-transform to the governing equa-
tions (7), we obtain

σi j, j(x, p)−ρp2ui(x, p) = −Fi(x, p), (9)

where

Fi(x, p) = Xi(x, p)+ pui(x,0)+ u̇i(x,0)

is the redefined body force in the Laplace-transformed
domain with initial boundary conditions for the displace-
ments ui(x,0) and the velocities u̇i(x,0).

The Laplace-transform of a function f (x, t) is defined as

L [ f (x, t)] = f (x, p) =
∞Z

0

f (x, t)e−ptdt,

where p is the Laplace-transform parameter.

Instead of writing the global weak-form for the above
governing equations, the MLPG method constructs a
weak-form over the local fictitious subdomains such as
Ωs, which is a small region taken for each node inside
the global domain [Atluri (2004)]. The local subdomains
overlap each other, and cover the whole global domain Ω.
The local subdomains could be of any geometrical shape
and size. In the present paper, the local subdomains are
taken to be of circular shape. The local weak-form of the
governing equations (9) can be written as
Z

Ωs

[
σi j, j(x, p)−ρp2ui(x, p)+Fi(x, p)

]
u∗i (x) dΩ = 0,

(10)

where u∗i (x) is a test function.

Using

σi j, ju
∗
i = (σi ju

∗
i ), j −σi ju

∗
i, j

and applying the Gauss divergence theorem one can write
Z

∂Ωs

σi j(x, p)n j(x)u∗i (x)dΓ−
Z

Ωs

σi j(x, p)u∗i, j(x)dΩ

+
Z

Ωs

[−ρp2ui(x, p)+Fi(x, p)
]

u∗i (x)dΩ = 0, (11)

where ∂Ωs is the boundary of the local subdomain
which consists of three parts ∂Ωs = Ls ∪Γst ∪Γsu [Atluri
(2004)]. Ls is the local boundary that is totally inside
the global domain, Γst is the part of the local boundary
which coincides with the global traction boundary, i.e.,
Γst = ∂Ωs ∩Γt , and similarly Γsu is the part of the lo-
cal boundary that coincides with the global displacement
boundary, i.e., Γsu = ∂Ωs ∩Γu.

By choosing a Heaviside step function as the test function
u∗i (x) in each subdomain

u∗i (x) =
{

1 at x ∈ Ωs

0 at x /∈ Ωs
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and considering

t i(x, p) = σi j(x, p)n j(x),

the local weak-form (11) is converted to the following
local boundary-domain integral equations

Z

∂Ωs

ti(x, p)dΓ+
Z

Ωs

[−ρp2ui(x, p)+Fi(x, p)
]

dΩ = 0.

(12)

Rearranging unknown terms on the left hand side we get
Z

Ls+Γsu

t i(x, p)dΓ−
Z

Ωs

ρp2ui(x, p)dΩ

= −
Z

Γst

t̃ i(x, p)dΓ−
Z

Ωs

Fi(x, p)dΩ. (13)

Equation (13) is recognized as the overall force equilib-
rium on the subdomain Ωs. In the case of stationary prob-
lems the domain integral on the left hand side of the local
boundary-domain integral equations disappears. Then, a
pure boundary integral formulation is obtained under the
assumption of vanishing body sources and homogeneous
initial conditions.

Similarly, the local weak form of the governing equation
(8) can be written as
Z

Ωs

D j, j(x, p)u∗(x) dΩ = 0, (14)

where u∗(x) is a test function.

Applying the Gauss divergence theorem to the local
weak-form and considering the Heaviside step function
for the test function u∗(x) one can obtain

Z

Ls+Γsp

Q(x, p)dΓ = −
Z

Γsq

Q̃(x, p)dΓ, (15)

where

Q(x, p) = D jn j =
(
e jkluk,l −h jkψ,k

)
n j.

Since mechanical and electrical fields are coupled in the
constitutive equations (5) and (6), we have to deal with
the Laplace-transforms of both the mechanical and elec-
trical fields simultaneously.

In the MLPG method the test and the trial functions are
not necessarily from the same functional spaces. For in-
ternal nodes, the test function is chosen as the Heavi-
side step function with its support on the local subdo-
main. The trial functions, on the other hand, are chosen
to be the moving least-squares (MLS) interpolation over
a number of nodes spread within the domain of influence.
The approximated functions for the mechanical displace-
ments and the electric potential can be written as [Atluri
(2004)]

uh(x, p) = ΦΦΦT (x) · û(p) =
n

∑
a=1

φa(x)ûa(p),

ψh(x, p) =
n

∑
a=1

φa(x)ψ̂a(p), (16)

where the nodal values ûa(p) and ψ̂a(p) are fictitious pa-
rameters for the displacements and the electric potential,
respectively and φa(x) is the shape function associated
with the node a. The number of nodes n used for the ap-
proximation is determined by the weight function wa(x).
A 4th order spline type weight function is applied in the
present work

wa(x) =

{
1−6

(
da

ra

)2
+8

(
da

ra

)3 −3
(

da

ra

)4
, 0 ≤ da ≤ ra

0, da ≥ ra

(17)

where da = ‖x−xa‖ and ra is the size of the support do-
main. It is seen that the C1−continuity is ensured over
the entire domain, therefore the continuity conditions of
the tractions and the electric charge are satisfied.

The traction vectors t i(x, p) at a boundary point x ∈ ∂Ωs

are approximated in terms of the same nodal valuesûa(p)
as

th(x, p) = N(x)C
n

∑
a=1

Ba(x)ûa(p) +N(x)L
n

∑
a=1

Pa(x)ψ̂a(p),

(18)

where the matrix N(x) is related to the normal vector n(x)
on ∂Ωs by

N(x) =
[

n1 0 n2

0 n2 n1

]
,



Meshless Local Petrov-Galerkin Method for Plane Piezoelectricity 113

and the matrices Ba and Pa are represented by the gradi-
ents of the shape functions as

Ba =

⎡
⎣ φa

,1
0
φa

,2

0
φa

,2
φa

,1

⎤
⎦ , Pa =

[
φa

,1
φa

,2

]
.

Similarly the electrical charge Q(x, p) can be approxi-
mated by

Q
h(x, p) = N1(x)G

n

∑
a=1

Ba(x)ûa(p)

−N1(x)H
n

∑
a=1

Pa(x)ψ̂a(p), (19)

where the matrices G and H are defined in eq. (6) and

N1(x) =
[

n1 n2
]
.

Obeying the boundary conditions at those nodal points
on the global boundary, where the displacements and the
electrical potential are prescribed, and making use of the
approximation formula (16), one obtains the discretized
form of the boundary conditions as

n

∑
a=1

φa(ζ)ûa(p) = ũ(ζ, p) for ζ ∈ Γu, (20)

n

∑
a=1

φa(ζ)ψ̂a(p) = ψ̃(ζ, p) for ζ ∈ Γp. (21)

Furthermore, in view of the MLS-approximation (18)
and (19) for the unknown quantities in the local
boundary-domain integral equations (13) and (15), we
obtain their discretized forms as

n

∑
a=1

⎛
⎝ Z

Ls+Γsu

N(x)CBa(x)dΓ− Iρp2
Z

Ωs

φa(x)dΩ

⎞
⎠ ûa(p)

+
n

∑
a=1

⎛
⎝ Z

Ls+Γsu

N(x)LPa(x)dΓ

⎞
⎠ ψ̂a(p)

= −
Z

Γst

t̃(x, p)dΓ−
Z

Ωs

F(x, p)dΩ, (22)

n

∑
a=1

⎛
⎝ Z

Ls+Γsp

N1(x)GBa(x)dΓ

⎞
⎠ ûa(p)

−
n

∑
a=1

⎛
⎝ Z

Ls+Γsp

N1(x)HPa(x)dΓ

⎞
⎠ ψ̂a(p)

= −
Z

Γsq

Q̃(x, p)dΓ, (23)

which are considered on the sub-domains adjacent to in-
terior nodes as well as to the boundary nodes on Γst and
Γsq. In eq. (22), Iis a unit matrix defined by

I =
(

1 0
0 1

)
.

Collecting the discretized local boundary-domain inte-
gral equations together with the discretized boundary
conditions for the displacements and the electric poten-
tial, we get the complete system of linear algebraic equa-
tions for the computation of nodal unknowns which are
the Laplace-transforms of the fictitious parameters ûa(p)
and ψ̂a(p). The time dependent values of the trans-
formed quantities can be obtained by an inverse Laplace-
transform. There are many inversion methods available
for the Laplace-transform. In the present analysis the Ste-
hfest algorithm [Stehfest (1970)] is used.

3 Numerical examples

In this section numerical results for the bending of a
square piezoelectric panel are presented to illustrate the
accuracy of the proposed method. The square panel with
a size a×a = 1mm×1mm made of a PZT-4 material is
subjected to a pure bending moment arising from a lin-
early varying stress at the right boundary (Fig. 1). The
lower boundary of the panel is earthed with a vanish-
ing electrical potential. Other boundaries have prescribed
vanishing electrical charge.

The material coefficients corresponding to PZT-4 mate-
rial are following

c11 = 13.9 ·1010Nm−2 , c12 = 7.43 ·1010Nm−2 ,

c22 = 11.3 ·1010Nm−2 , c44 = 2.56 ·1010Nm−2 ,

e15 = 13.44Cm−2 , e21 = −6.98Cm−2 ,

e22 = 13.84Cm−2 ,
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Figure 1 : Bending of a square piezoelectric panel
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Figure 2 : Variation of the mechanical displacement u1

with normalized coordinate x2/a

h11 = 6.0 ·10−9C(Vm)−1 , h22 = 5.47 ·10−9C(Vm)−1 .

The mechanical displacement and the electrical poten-
tial fields on the finite square panel are approximated by
using 121 (11x11) nodes equidistantly distributed. The
local subdomains are considered to be circular with a ra-
dius rloc = 0.08mm. First, static boundary conditions are
considered.

Numerical results for the components of the mechanical
displacements along the line x1 = a/2 are presented in
Figs. 2 and 3. The analytical solution of the problem is
given by Parton et al. (1989). One can observe an excel-
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Figure 3 : Variation of the mechanical displacement u2

with normalized coordinate x2/a

lent agreement of the present results with the exact solu-
tion. To see the influence of the electrical field on the me-
chanical displacements the results for a pure elastic panel
(e15 = e21 = e22 = 0) are given too. For the considered
boundary conditions, the mechanical displacement com-
ponent u1 is increased or reduced depending on the posi-
tion considered, while mechanical displacement compo-
nent u2 is reduced in the piezoelectric panel compared to
a pure elastic one.

Numerical results for the displacement component u2 and
the electric potential along the line x2 = a/2 are given
in Figs. 4 and 5. Again one can observe an excellent
agreement of the present results and the exact solution in
the whole interval considered.

The relative percentage errors and the convergence rates
for three different node distributions are presented in Fig.
6, where s represents the node-distance for regular node
distributions. The relative errors are computed for u2

and ψ at the center of the panel x1 = x2 = a/2. Coarser
and finer node distributions are considered with respect
to previous numerical calculations with 121 nodes. The
total number of boundary and internal nodes in the coarse
distribution is 30 and in the fine one it is 441.

In the next example, we consider the same piezoelectric
panel subject to an impact load with Heaviside time vari-
ation. Both the geometrical and the material parameters
are the same as in the previous static case. For the nu-
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Figure 7 : Time variation of the displacement u2 at the
center of the panel

merical calculations we have used again 441 nodes with
a regular distribution.

The time variations of the normalized displacement com-
ponent u2/ustat

2 and the normalized electric potential
ψ/ψstat at the center of the panel are given in Figs. 7
and 8, which are compared with those obtained by the
FEM-ANSYS computer code. The FEM results have
been obtained by using 3600 quadratic eight-noded el-
ements with1000 time increments. A good agreement
between both results is achieved, which verifies the ac-
curacy of the present meshless method. The static dis-

placement and the static electric potential at the center
of the panel are ustat

2 = −0.990228 · 10−18m and ψstat =
0.22223 ·10−8 V , respectively.

4 Conclusions

A meshless local Petrov-Galerkin method (MLPG) is
presented for plane piezoelectricity. Both static and im-
pact loads are considered. The Laplace-transform tech-
nique is applied to eliminate the time variable in the cou-
pled governing partial differential equations. The ana-
lyzed domain is divided into small overlapping circu-
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Figure 8 : Time variation of the electric potential at the
center of the panel

lar subdomains. A unit step function is used as the
test functions in the local weak-form. The derived lo-
cal boundary-domain integral equations are nonsingu-
lar. The moving least-squares (MLS) scheme is adopted
for approximating the physical quantities. The proposed
method is a truly meshless method, which requires nei-
ther domain elements nor background cells in either the
interpolation or the integration.

The present method is an alternative numerical tool to
many existing computational methods like FEM or BEM.
The main advantage of the present method is its simplic-
ity. Contrary to the conventional BEM, the resent method
requires no fundamental solutions and all integrands in
the present formulation are regular. Thus, no special nu-
merical techniques are required to evaluate the integrals.
The present formulation possesses the generality of the
FEM. Therefore, the method is promising for numerical
analysis of multi-field problems like piezoelectric or ther-
moelastic problems, which cannot be solved effectively
by the conventional BEM. Moreover, the present mesh-
less method seems to be more flexible than the standard
FEM, since an adaptation of the nodal density is easier
than a mesh adaptation.
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