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Method

Vladimir Sladek1, Jan Sladek1 and Chuanzeng Zhang2

Abstract: This paper concerns the stability, conver-
gence of accuracy and cost efficiency of four various
formulations for solution of boundary value problems in
non-homogeneous elastic solids with functionally graded
Young’s modulus. The meshless point interpolation
method is employed with using various basis functions.
The interaction among the elastic continuum constituents
is considered in the discretized formulation either by col-
location of the governing equations or by integral satis-
faction of the force equilibrium on local sub-domains.
The exact benchmark solutions are used in numerical
tests.
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1 Introduction

Complying with general physical principles, the stan-
dard computational methods, such as the FDM (based
on direct discretization of the governing equations) and
FEM (formulation based on global variational princi-
ples), serve as versatile tools in numerical solution of
boundary value problems (BVP) for field equations in
various continua theories. The use of finite size el-
ements is a physically reasonable methodology, since
the mesh based methods with polynomial interpolation
within the elements exhibit convergence of accuracy of
numerical results to exact solutions with mesh refine-
ment. The mesh reduction is achieved in the boundary
integral equation method (BIEM), since the unknowns
are localized on the boundary alone because of the uti-
lization of the fundamental solutions of governing equa-
tions in this semi-analytical method. Nevertheless, there
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are some shortcomings of these methods in some appli-
cations. First of all, since the mesh generation is not fully
automated, some difficulties may appear in solving prob-
lems with free or moving boundary when re-meshing is
required. Another difficulty appears in problems with
large distortions of discretization elements or separation
of the continuum especially in fluid problems. The pure
boundary formulation fails if the fundamental solution is
not available.

A great attention is paid to the research of meshless meth-
ods, since there are still problems to be solved. The
amount of applications of meshless methods is also in-
creased rapidly giving either solutions of new problems
or comparisons in accuracy and efficiency with standard
methods. Meshless methods can be categorized into two
major categories [Liu (2003)]: (i) strong-form meshless
methods (based on meshless approximation and colloca-
tion of the governing equations); (ii) weak-form meshles
methods (based on meshless approximation and integral
treatment of the governing equations). Each of the ap-
proaches has its own advantages as well as shortcomings.
The strong-form methods are truly meshless and simple
to implement. However, they are often unstable and less
accurate. On the other hand, weak-form meshless meth-
ods based on global formulations are not truly mesh-
free because the background mesh is required for inte-
gration over the analysed domain. Recently, Atluri and
his co-workers presented a family of robust truly mesh-
less methods based on the local weak Petrov-Galerkin
formulation for the solution of boundary value problems
governed by arbitrary partial differential equations (see
e.g. [Atluri and Shen (2002), Atluri (2004)]). Depend-
ing on the choice of the test and the trial functions, the
Meshless Local Petrov-Galerkin (MLPG) method results
in various meshless formulations for both domain and
boundary-integral equations of PDEs. These methods
have certain advantages over the mesh-based FEM and
BEM in many currently available computer codes.

The meshless weak-form methods exhibit better stability
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and accuracy. On the other hand, the numerical evalua-
tion of shape functions at the integration points is very
time consuming. The advantages of both the weak and
strong meshelss formulations tried to utilize Liu and Gu
in their meshfree weak-strong form method [Liu et al
(2003)]. The weak-form is applied on the Neumann part
of the boundary with prescribed natural boundary con-
ditions, while on the rest of the body the strong-form is
applied with decreasing the amount of integration points
dramatically.

Much effort has also been devoted to the development of
new interpolation techniques. An overview of the mesh-
less approximations can be found in the books [Atluri
and Shen (2002), Atluri (2004)]. The widely used clas-
sical radial basis functions (RBFs) give good conver-
gence in strong formulations only at the cost of instabil-
ity. Then, domain decomposition and regularization are
required [Zhou et al (2003)]. Another drawback is a high
sensitivity on the selection of the shape parameter values
[Xiao et al (2003), Rippa (1999), Wang et al (2002)]. In
the local point interpolation method (PIM) [Liu and Gu
(2001), Liu (2003)] a set of points is used to approximate
a field variable in a neighborhood of a point.

In the present study, we concern with the stability, con-
vergence of accuracy and cost efficiency of four various
formulations for solution of boundary value problems
(BVP) in non-homogeneous elastic solids with function-
ally graded Young’s modulus. For meshless implementa-
tions we shall use PIM based on: (i) classical RBFs; (ii)
compactly supported RBFs with assuming the radius of
the support domain as the shape parameter [Xiao (2004)];
(iii) combination of polynomials and multiquadrics. The
interpolation functions possess the Kronecker delta prop-
erty, hence the degrees of freedom (DOFs) are nodal val-
ues of displacements. Each approximation point is asso-
ciated with a center of approximation which is a nodal
point. Thus, savings in the CPU-time are achieved. The
Dirichlet (essential) boundary conditions are considered
via collocation and the Neumann (natural) boundary con-
ditions either via collocation or by the integral force equi-
librium on local sub-domain. The interaction among the
DOFs is considered either in strong form (by collocation
of the governing equations at interior nodes) or in a weak
form (by satisfaction of the force equilibrium on local
sub-domains). In numerical tests we consider such ex-
amples for which exact solutions are available. The nu-
merical results are obtained also for the LIE formulation

implemented by the approximation on standard quadri-
lateral quadratic elements. The cost efficiency is assessed
by the CPU times.

2 Integral equation formulation

In the case of elastic bodies under static loadings con-
ditions, the governing equations are given by the force
equilibrium which is written in the differential form as

σi j, j(x)+Xi(x) = 0, in Ω, (1)

where σi jis the stress tensor due to cohesive forces as
a response to external loadings and Xi(x)is the density
of body forces. The relationship between the inherent
forces and deformations of the linear elastic continuum
is given by the generalized Hooke’s law

σi j(x) = ci jkl(x)uk,l(x), (2)

where uk(x)are the Cartesian components of the dis-
placement field and the tensor of material coefficients
may be position dependent in non-homogeneous media.
In the case of isotropic media, it is defined only by two
coefficients, e.g. the Young modulus E(x)and the Pois-
son ratio νwhich is usually constant. Then, the constitu-
tive law can be written as

ci jkl(x) = E(x)co
i jkl ,

co
i jkl =

1
2(1+ν)

(
δikδ jl +δil δ jk +

2ν
1−2ν

δi jδkl

)
, (3)

where the new parameter νis defined by the Poisson ratio
as

ν =
{

ν/(1+ν), for plane stress conditions
ν , otherwise

. (4)

Finally inserting (3) and (2) into (1), we obtain the gov-
erning PDE for the displacements

E(x) co
i jkl uk,l j(x)+E, j(x) co

i jkl uk,l(x) = −Xi(x) . (5)

The standard boundary conditions prescribe either the
displacements or tractions on the Dirichlet and Neumann
part of the boundary, respectively

ui(η) = ũi(η) at η ∈ ∂ΩD,

n j(η)ci jkl(η)uk,l(η) = t̃i(η) at η ∈ ∂ΩN . (6)
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The fundamental solution for the governing equation is
defined as the solution of Eq. (5) due to the point
forcesXi(x) = δimδ(x− y), (m = 1, ... , d) in an infinite
space with the dimensionality d. Apparently, the funda-
mental solution of the PDE with variable coefficients is
not available in closed form in the case of general mate-
rial non-homogeneity. Consequently, the pure boundary
formulation based on integral equations is not available.
It seems that each numerical solution of BVP in elas-
tic media with arbitrary non-homogeneity should utilize
both the boundary and interior degrees of freedom.

Assuming a certain domain-type approximation for field
variables, one can evaluate also approximated gradients
and/or higher order derivatives of field variables. Thus,
prescribed boundary conditions can be recast into dis-
cretized equations and what we need is to find proper
relationships among the nodes. These can be obtained ei-
ther in local form by simple collocation of the governing
PDEs at nodal points (strong form) or in integral form by
integrating the governing PDE over local sub-domains
Ωc ⊂ Ω(weak form). The latter is a reverse way of the
derivation of the governing PDEs from the general phys-
ical balance principles of a continuum theory where such
principles take the form of integral equations holding for
all arbitrary but small material domains Ωc. Thus, inte-
gration of Eq. (1) leads to∫
Ωc

σi j, j(x)dΩ(x) = −
∫
Ωc

Xi(x)dΩ(x). (7)

By applying the Gauss divergence theorem to Eq. (7) and
bearing in mind the definition of tractions ti = σi jn j, we
obtain an integral form of the balance principle as

∫
∂Ωc

ti(η)dΓ(η) = −
∫
Ωc

Xi(x)dΩ(x) or

∫
∂Ωc

n j(η)ci jkl(η)uk,l(η)dΓ(η) = −
∫
Ωc

Xi(x)dΩ(x), (8)

where n j(η) denotes the Cartesian components of the
unit outward normal vector at η on the boundary ∂Ωcof
the sub-domain Ωc. Eq. (8) is the integral expression of
the force equilibrium in an arbitrary material domain Ωc.
Hence, it is a physically admissible constraint that can be
used as a coupling equation in the computation of the un-
known DOF of the discretized problem. Recall that the
local integral equations (8) are non-singular, since there

are no singular fundamental solutions involved in con-
trast to the singular integral equations employed in the
boundary integral equation method.

3 Meshless approximations of field variables

Let the displacements ui(x) be approximated within a
sub-domain Ωs ⊂ (Ω∪∂Ω). If both Ωs and Ω have the
same dimension, then we call the approximation as a
domain-type approximation. One of the possibilities to
achieve a domain-type approximation is to use standard
finite size domain elements like in FEM which of course
is not a meshless approximation [Sladek et al (2005b)].

In all meshless approximation techniques, shape func-
tions have to be defined for the approximation of the field
variable ui(x) within a sub-domain Ωs using only nodes
scattered arbitrarily in the analyzed domain without any
predefined mesh to provide a connectivity of the nodes.
Assuming a finite series representation of the field vari-
able in a sub-domain Ωq surrounding the nodal point xq,
the approximated field can be written as

ui(x)|Ωq =
Nq

∑
a=1

B(q,a)(x)ca
i (xq) (9)

where B(q,a)(x) are the basis functions defined in the
Cartesian coordinate space, Nqis the number of nodes in
the support domain of the point xq, and ca

i (xq) are the
expansion coefficients at a given point xq.

In this paper, we shall pay attention to Point Interpo-
lation Methods (PIM) [Liu (2003)] based on using ei-
ther pure radial basis functions (RBFs) of various kinds
[PIM(RBF)]or a combination of polynomials and mul-
tiquadrics taken as RBFs [PIM(P+RBF)]. The displace-
ment field is interpolated within Ωq in terms of its nodal
values and certain shape functions. Then, the DOFs of
the discretized domain-type formulation are given by the
nodal values of displacements. The boundary conditions
and the interaction among the DOFs can be satisfied ap-
proximately by spreading a sufficient amount of knots on
the global boundary and in the interior of the analyzed
domain. Since in most engineering applications, a com-
plete solution throughout the analyzed domain is needed,
the use of domain-type approximations could be efficient
because of simple and low cost post-processing calcula-
tions.
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3.1 Meshless PIM(RBF)

The radial basis functions are defined as gq(x) =
g(|x−xq|)with xq ∈ Ωq ⊂ Ω. Let the interpolation do-
main around the nodal point xq, Ωq

i , be defined as a cir-
cle with the radius ri(xq). Then, the number of nodes
involved in Ωq

i is given as

Nq =
Nt

∑
a=1

H (ri(xq)−|xa −xq|),

where H(z)is the Heaviside unit step function and Nt is
the total number of nodes. Let n(q,a)be the global num-
ber of the a-th local node among the Nqnodes adjacent to
the node xq. If |x−xq| = min

∀a
|x−xa|, we shall assume

the approximation of displacements at x ∈ Ωq as

ui(x)≈
Nq

∑
a=1

αag
(∣∣∣x−xn(q,a)

∣∣∣) . (10)

The node xqwill be called as center of approximation for
approximation at x ∈ (Ω∪∂Ω).

Hence,

ui(xn(q,b)) =
Nq

∑
a=1

gbaαa, gba = g
(∣∣∣xn(q,b)−xn(q,a)

∣∣∣)

and finally,

ui(x) =
Nq

∑
a=1

ui(xn(q,a))ϕ(q,a)(x),

ϕ(q,a)(x) =
Nq

∑
b=1

(g−1)bag
(∣∣∣x−xn(q,b)

∣∣∣). (11)

Thus, the displacement field in Ωq is approximated in
terms of nodal values and the shape functions ϕ(q,a)(x).
Recall that in the case of RBFs the inverse matrix g−1 is
non-singular and ϕ(q,a)(xn(q,b)) = δab. Since the inverse
moment matrices can be computed in advance and can
be employed properly in evaluation of the shape func-
tion after finding the center of approximation for an arbi-
trary point x∈ (Ω∪∂Ω), it is not needed to compute such
matrices repeatedly at each approximation point what re-
sults in certain savings in the CPU-times.

As regards the choice of the RBFs, we shall consider var-
ious kinds including:

(i) Multiquadrics (MQ) [Hardy (1990)] : g(r) =(
(r/L)2 +(s/L)2

)m
, r = |x−xq|, m = 1/2

(ii) Gaussian: g(r) = e−(sr/L2)2

(iii) Duchon’s Thin Plate Splines (TPS): g(r) =
(r/L)2 ln((r + s)/L)
compactly supported RBFs

(iv) Wendland C2: g(r) = (1− r/s)4
+ (4r/s+1)

(v) Wendland C4: g(r)= (1− r/s)6
+ (35(r/s)2+18r/s+

3)
(vi) Wu C4: g(r) = (1− r/s)6

+ (5(r/s)5 + 30(r/s)4 +
72(r/s)3 +82(r/s)2 +36r/s+6) ,

where the radius of support domain sis considered as the
shape parameter and

(·)+ =
{

(·), i f (·)≥ 0
0 , i f (·) < 0

andLis a length parameter.

3.2 Meshless PIM(P+RBF)

The use of polynomials as the basis functions in PIM ex-
hibits many excellent properties with respect to the con-
sistency and accuracy of the method, as long as the mo-
ment matrix is invertible [Liu (2003)]. Unfortunately,
the singularity of the moment matrix is dependent on the
nodal points distribution. In [Liu (2003)], several tech-
niques have been proposed to avoid a singular moment
matrix. One way to avoid singular moment matrix in the
polynomial PIM is to use a radial-polynomial basis [Liu
(2003), Sladek et al (2005a)]. Then,

ui(x)|Ωq =
Nq

∑
a=1

Rn(q,a)(x)α(q,a)
i +

M

∑
a=1

Pa(x)β(q,a)
i , (12)

where Nqis determined as in previous subsection and
M < Nqis the number of monomials. The choice M = 6
corresponds to the utilization of a complete quadratic
polynomial basis

Pa(x) ∈ {
1, r1, r2, r1r2, r2

1, r2
2

}
, ri = xi −xq

i , (13)

while the RBFs are chosen as multiquadrics

Rn(x) =
(
|x−xn|2 + s2

)m
, m = 1/2. (14)

Collocating eq. (12) at xn(q,b)

Rb jα j
i +Pb jβ j

i = ub
i , (b = 1, ... , Nq),
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Rb j = Rn(q, j)(xn(q,b))

and assuming an additional condition

αm
i Pma = 0, (a = 1, ... , M), Pba = Pa(xn(q,b)),

one can get the expression for approximation of displace-
ments in term of nodal values and shape functions

ui(x)|Ωq =
Nq

∑
a=1

ui(xn(q,a))ϕ(q,a)(x).

with the explicit expression for the shape functions being
given elsewhere [Sladek et al (2005a)]. The Kronecker-
delta property is satisfied once again.

Once having a domain-type approximation of displace-
ments, one can get also the approximations for deriva-
tives of displacements

ui, j(x)
∣∣
Ωq =

Nq

∑
a=1

ui(xn(q,a))ϕ(q,a)
, j (x),

ui, jk(x)
∣∣
Ωq =

Nq

∑
a=1

ui(xn(q,a))ϕ(q,a)
, jk (x), (15)

which are expressed in terms of the nodal values of dis-
placements and the derivatives of the shape functions.

4 Discretized equations

In view of the Kronecker-delta property of the shape
functions, it is very simple to implement the prescribed
boundary conditions on the Dirichlet part of the bound-
ary

ui(xc) = ũi(xc) at xc ∈ ∂ΩD, (16)

while on the Neumann part, we can consider two alterna-
tives.

B-1. Collocation of the prescribed tractions (strong-form
method)

n j(xc)ci jkl(xc)
Nc

∑
a=1

uk(xn(c,a))ϕ(c,a)
,l (xc) = t̃i(xc)

at xc ∈ (∂ΩN −∂ΩD) . (17a)

B-2. Integral treatment of traction (natural) conditions
(weak-form method)

In view of Fig. 1 with assuming the body forces to be
absent, we may write the integral form for the force equi-
librium as

co
i jkl

Nc

∑
a=1

uk(x(c,a))
∫
Lc

n j(η)ϕ(c,a)
, l (η)dΓ = −

∫
Γc

N

t̃i(η)dΓ.

(17b)

c c
N N

c c cL N

Figure 1 : Sketch of the boundary node on the Neumann
part of the global boundary ∂ΩN ⊂ ∂Ω

Now, the physical information about the boundary con-
ditions is recast into the discretized formulation for so-
lution of the BVP by collocation of the boundary condi-
tions with using the approximation of the field variables
and what we need, is to introduce coupling among the
DOFs in a physically correct way. We shall consider two
alternatives for incorporation of this interaction.

I-1. Collocation of the governing PDEs (strong-form
method)

Taking into account the approximations given by eq.
(15), we can discretize the PDE (5) collocated at interior
nodes xcas

co
i jkl

Nc

∑
a=1

uk(xn(c,a))
[
E(xc)ϕ(c,a)

,l j (xc)+E, j(xc)ϕ(c,a)
,l (xc)

]
= −Xi(xc) = 0. (18)

Although there is no integration in this approach, the sec-
ond derivatives of the shape functions are needed. There
exists a trade-off principle which says that good conver-
gence can only be achieved at the cost of instability. To
overcome this problem, one can either use domain de-
composition to subdivide the global problem into smaller
systems of equations [Zhou et al (2003)] or to use com-
pacted supported RBFs with effectiveness supports. An-
other expected drawback in classical RBFs is the selec-
tion of shape parameters.
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I-2. Integral equations on local sub-domains (weak-form
method)

One may choose arbitrarily the size and shape of sub-
domains on which the integral form of force equilibrium
is considered. Nevertheless, one aims to choose the size
of the interpolation domains much smaller than the size
of the global domain, in order to get a sparse system ma-
trix of the discretized equations. Furthermore, the size
of the sub-domains should be much smaller than the size
of the interpolation domains to achieve stability of the
approximation on sub-domains. Therefore we select a
small circular sub-domain Ωcaround each interior node
xcwith Ωc ⊂ Ω. Then, the local integral equation collo-
cated at an interior node xcis given as

co
i jkl

Nc

∑
a=1

uk(x(c,a))
∫

∂Ωc

n j(η)ϕ(c,a)
, l (η)dΓ = 0, (19)

where the integration over the circular boundary ∂Ωc can
be performed very easily. The localization of the integra-
tion on the boundary of the sub-domain yields a signifi-
cant reduction of the number of integration points and fi-
nally also the portion of the computational time spent by
evaluation of the shape functions at integration points.

5 Numerical examples

In order to test the proposed numerical methods, we con-
sider examples for which analytical solutions are avail-
able. The body forces are vanishing in Ω, the Poisson
ratio is constant ν = 0.25, plane stress conditions are as-
sumed and the gradation of the Young modulus is given
by a prescribed function E(x) = Eo f (x).

In the study of the convergence and accuracy of the nu-
merical results with respect to the increasing density of
nodal points, we use the global % error defined as

GPE = 100

{
Nt

∑
a=1

Δua
i Δua

i

}1/2

/

{
Nt

∑
a=1

uex
i (xa)uex

i (xa)

}1/2

,

Δua
i = unum

i (xa)−uex
i (xa) , (20)

where Nt is the total number of nodes on the closed do-
main Ω∪∂Ω.

In most of the presented computations, we shall use a
homogeneous distribution of nodes with

ha = min
∀b

{∣∣xa −xb
∣∣} = const = h.

The radius of the interpolation domain and the radius
of circular sub-domains have been taken as ri(xa) =
3.001ha and rs(xa) = 0.9ha.

Example 1

The considered domain is a square L × L with applied
tension load on the top, fixed bottom in vertical direction
and tractions on the lateral sides are given by the analyt-
ical solution.

 

Figure 2 : Square domain with prescribed boundary con-
ditions

In this example, we consider exponential, power-law
and trigonometric variation of the gradation function
f (x)with δ = 1:

f (x) = exp(2δx2/L),
f (x) = (1+δx2/L)2,

f (x) = (cos(δx2/L)+2sin(δx2/L))2 (21)

The exact solutions are available for each of the consid-
ered non-homogeneities [Sladek et al (2006)].

Fig. 3 shows the results in homogeneous elastic medium
with using 121 uniformly distributed nodes and the inte-
gral equation treatment of traction boundary conditions
in the LIE formulation for solution of BVPs. It can be
seen that only in the case of combination of polynomials
with multiquadrics there is a sufficiently wide interval for
the shape parameter values resulting in stable and accept-
able accuracy, while the use of PIM(RBF) approaches
yields unacceptable accuracy of numerical results in the
shape parameter stability zone. A similar study and com-
parisons have been carried out also in non-homogeneous
media. It can be seen from Fig. 4 that only two of the in-
vestigated PIM(RBF), namely RBF ∈ {Wen - C2, TPS},
yield a sufficiently stable accuracy approaching the accu-
racy in the stability zone by the PIM(P+MQ).
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Figure 3 : Dependence of accuracy on the shape param-
eter of various RBFs used in the LIE approach in homo-
geneous elastic medium

As regards the shape parameter sensitivity in the
PIM(P+MQ) approach within the formulation utilizing
collocation of the governing PDEs, Fig. 5 shows the re-
sults for both the homogeneous and exponentially graded
elastic medium with using 441 uniformly distributed
nodes. As compared with the sensitivity analysis for
LIE formulation (Fig. 6), the differences are remarkable
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Figure 4 : Dependence of accuracy on the shape param-
eter of various RBFs used in the LIE approach in non-
homogeneous elastic medium with exponentially graded
Young’s modulus

in the non-homogeneous medium. Therefore, the accu-
racy in the PIM(P+MQ) – collocation approach can be
strongly dependent on the choice of the shape parameter
used in multiquadrics.

Now, we should like to compare the results of the con-
vergence study in non-homogeneous elastic square do-
main (various gradations with δ = 1) using various com-
putational approaches and optimal values of the shape
parameter. In the case of LIE-PIM(RBF) approaches,
the presented results correspond to the exponential gra-
dation of the Young modulus. It can be seen that the
LIE – PIM(RBF) approaches obeying the integral force
equilibrium on the Neumann part of the global boundary
Fig. 7(b1) do not exhibit convergence of accuracy to zero
with increasing the density of nodal points satisfacto-
rily. Although the LIE – PIM(RBF) approaches obeying
the traction boundary conditions at boundary nodes Fig.
7(b2) exhibit better convergence, only the PIM based on
Wendland C4 compactly supported RBFs yields accept-
able accuracy and convergence rate. However the shown
results correspond to optimal choices of the shape pa-
rameters and the PIM(WEN-C4) is very sensitive with
respect to the selection of the shape parameter. Con-
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Table 1 : Maximal % errors for displacements and stresses computed at interior points

LIE-QE LIE-PIM(P+MQ) PIM(P+MQ)-colloc. 
max % error 

exp. power
law trig. exp. power

law trig. exp. power
law trig.

2 2( / 2, )u L x 0.10 0.15 0.58 0.042 0.042 0.24 0.22 0.34 1.28 

22 2( / 2, )L x 0.18 0.20 0.80 0.047 0.056 0.28 0.29 0.37 1.40 

11 2( / 2, )L x 0.27 0.22 1.08 0.026 0.038 0.30 0.29 0.34 1.30 
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Figure 5 : Dependence of accuracy on the shape param-
eter in the PIM(P+MQ) - collocation approach

cluding, none of the LIE – PIM(RBF) approaches can be
considered reliable from the point of view convergence
and stability of numerical results. Recall that in the case
of PIM(P+MQ) collocation approach the convergence is
achieved (Fig. 7(c)) but it can be instable with respect to
selection of the shape parameter value. It may be interest-
ing to compare the convergence of various meshless im-
plementations with the convergence by LIE formulation
combined with approximation based on standard quadri-
lateral quadratic elements as shown in Fig. 7(d).

Table 1 summarizes the maximal % errors of numerically
computed displacements and stress tensor components at
interior points along the vertical line (L/2,x2) by using
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Figure 6 : Dependence of accuracy on the shape param-
eter in the LIE-PIM(P+MQ) - approach (121 nodes)

three different techniques:

(i) LIE with 400 standard quadrilateral quadratic ele-
ments (1281 nodes)

(ii) LIE-PIM(P+MQ) with 441 nodes

(iii) PIM(P+MQ)-collocation approach with 961 nodes

where the Young modulus is functionally graded accord-
ing to exponential, power or trigonometric law (21) with
δ = 1.

Figure 8 shows the comparison of the CPU-times for so-
lution of the BVP by four different approaches. It can
be seen that differences between the CPU-times are de-
creasing by increasing the amount of nodes. This can be
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Figure 7 : Convergence study in square domain using: (a) LIE-PIM(P+MQ); (b1) LIE-PIM(RBF) with integral
equation treatment of traction b.c.; (b2) LIE-PIM(RBF) with collocation of traction b.c.; (c) PIM(P+MQ) collocation
of governing PDEs; (d) LIE-QE
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Figure 8 : Comparison of CPU-times for solution of the
BVP by the various approaches

explained by increasing rate of the time needed for so-
lution of system of discretized equations with increasing
the number of DOFs, while the time needed for numer-
ical evaluation of shape functions at integration points
is dominant in problems with small numbers of DOFs.
Note that remarkable savings in the CPU-times with a si-
multaneous increase in accuracy have been achieved by
using Gaussian integration over the angular variable on
circular boundaries of sub-domains (with 12 integration
points for ϕ ∈ [0, 2π]) as compared with the trapezoidal
integration with splitting [0, 2π] into 360 or 720 subin-
tervals. Very low convergence rate has been observed in
the latter approach with increasing the number of subin-
tervals.

Up to now we presented the results obtained with us-
ing uniform distributions of nodes. Fig. 9 illustrates the
stability of accuracy by the LIE-PIM(P+MQ) approach
with respect to the distortion of the uniform distribution
of nodes.

In addition to the BVP in the square domain, we have
analysed also a hollow cylinder subject to interior pres-
sure. The numerical results confirm completely the re-
sults obtained for the square domain.

6 Conclusions

The convergence, accuracy, numerical stability and com-
putational efficiency have been investigated by solving
two kinds of BVPs in square domain and radial cross-
section of the hollow cylinder. The exact solutions are
used as benchmark solutions and four numerical tech-
niques are tested in applications to elasticity problems
in functionally graded media:

(i) LIE supplemented with the approximation based on
the standard quadrilateral quadratic elements

(ii) LIE supplemented with the meshless PIM based on
the combination of polynomials and multiquadrics

(iii) LIE supplemented with the meshless PIM based on
the RBFs alone

(iv) collocation of the governing PDE supplemented with
meshless PIM based on the combination of polynomials
and multiquadrics.

The LIE-PIM(RBF) approaches for various kinds of the
RBFs can be considered as unreliable because of impos-
sible simultaneous satisfaction of the numerical stabil-
ity (because of the strong sensitivity of accuracy on the
shape parameter selection) and acceptable convergence
rate as well as accuracy of numerical results.

The PIM(P+MQ) – collocation PDE approach can be
classified as not reliable because good accuracy and con-
vergence can be achieved only for a narrow interval of
the shape parameter values.

The LIE-PIM(P+MQ) approach as well as the LIE-QE
approach exhibit numerical stability, reasonable accuracy
and convergence to exact solution with increasing the
density of nodes as well as stability with respect to a dis-
tortion of the uniform distribution of nodes.

The CPU-times consumed by meshless approaches are
remarkably higher than the CPU-times consumed by the
QE approach especially for low densities of nodes. The
CPU-times converge to each other with increasing the
density of nodes. The time required for preparation of
boundary data is higher in the case of the QE approach.
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