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Neural Network Mapping of Corrosion Induced Chemical Elements
Degradation in Aircraft Aluminum
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Abstract: A neural network (NN) model is de-
veloped for the analysis and prediction of the
mapping between degradation of chemical ele-
ments and electrochemical parameters during the
corrosion process. The input parameters to the
neural network model are alloy composition, elec-
trochemical parameters, and corrosion time. The
output parameters are the degradation of chemi-
cal elements in AA 2024-T3 material. The NN is
trained with the data obtained from Energy Dis-
persive X-ray Spectrometry (EDS) on corroded
specimens. A very good performance of the neu-
ral network is achieved after training and valida-
tion with the experimental data. After validat-
ing the NN model, simulations were carried out
to obtain the trends in element degradation with
varying pH values, and the results showed correct
trends. The preliminary results obtained demon-
strate that through a comprehensive study, a bet-
ter corrosion resistant material can be designed by
controlling the degradation of the chemical ele-
ments during the corrosion process through neural
network methods.
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1 Introduction

General corrosion and especially pitting corro-
sion is known to be one of the major dam-
age mechanisms affecting the integrity of many
aerospace metals. Corrosion pits generally ini-
tiate due to some chemical or physical hetero-
geneity at the surface, such as inclusions, sec-
ond phase particles, flaws, mechanical damage, or
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dislocations. The aircraft aluminum alloys con-
tain numerous constituent particles, which play
an important role in corrosion pit formation [Wal-
lace and Hoeppner (1985)]. To better understand
particle-induced pitting corrosion in 2024-T3 and
7075-T6 aluminum alloys, optical microscopy,
Scanning Electron Microscopy (SEM) and Trans-
mission Electron Microscopy (TEM) techniques
have been used [Wei, Liao and Gao (1998)]. Due
to an aircraft’s special service environments (e.g.
salt water), electrochemical reactions are possible
and corrosion pits are readily formed between the
constituent particles and the surrounding matrix
in these alloys. It is well known that corrosion
pitting has a strong effect on the fatigue life of
aluminum alloys used in aircraft structures [Wei,
Liao and Gao (1998); Hoeppner (1979); Simon,
Khobaib, Matikas, Jeffcoate and Donley (2000)].
Fatigue cracks usually initiate from the corrosion
pit sites. Under the interaction of cyclic load and
the corrosive environment, cyclic loading facili-
tates the pitting process, and corrosion pits, act-
ing as geometrical discontinuities, lead to crack
initiation and propagation and then final failure
[Harmsworth (1961); Piascik and Willard (1994);
Wei, Liao and Gao (1998); Jones and Hoeppner
(2006)]. Corrosion can lead to accelerated fail-
ure of structural components under fatigue load-
ing conditions. Understanding and predicting cor-
rosion damage is very important for the structural
integrity of aircraft materials and structures.

Many researchers have studied pitting corrosion
for several decades and the details can be found in
several books [Marcus and Oudar (1995); Shreie,
Jarman and Burstein (1994); Harlow and Wei
(1998)]. Many aluminum and stainless steel al-
loys contain thin oxide layers on the metal sur-
face which greatly reduce the corrosion rate. Pit-
ting corrosion, a result of localized breakdown of
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Table 1: Elemental composition of the AA 2024-T3 specimens tested

Element Element 

Symbol

Atomic

Weight

Oxidation

#

Mass Percent 

(%)

Aluminum Al 26.985 3 93.0 

Copper Cu 63.456 2 4.50 

Magnesium Mg 24.305 2 1.45 

Manganese Mn 54.938 2 0.57 

Iron Fe 55.847 3 0.25 

Silicon Si 28.085 4 0.11 

Zinc Zn 65.38 2 0.09 

Titanium Ti 47.90 3 0.02 

Chromium Cr 51.996 4 0.01 

such films, results in accelerated dissolution of the
underlying metal. The corrosion mechanisms de-
pend on the material composition, electrolyte and
other environmental conditions [Shreie, Jarman
and Burstein (1994); Harlow and Wei (1998)].
Most of the previous work on corrosion has been
focused on chemical processes and electric cur-
rents and potentials, and simulations models [Har-
low and Wei (1998); Palakal, Pidaparti, Reb-
bapragada and Jones (2001); Malki and Baroux
(2005); Pidaparti, Palakal and Fang (2005)]. Sev-
eral authors have applied other methods such as
boundary element methods [Aoki, Amaya, Urago
and Nakayama (2004)] and cellular automata [Pi-
daparti, Puri, Palakal and Kashyap (2005)] for
corrosion problems. Neural Networks (NN) has
also been applied to pitting corrosion [Lu and
Urquidi-Macdonald (1994)]. Even though ANN
doesn’t contain any empirical or deterministic
models or explain the physics of the localized cor-
rosion, it is still being used to predict future be-
havior with various parameters.

Pitting corrosion is a very complex process and
may involve many mechanisms. While much
is understood regarding corrosion damage from
electrochemical factors, and alloy microstructure,
there are no studies dealing with the modeling of
chemical elements degradation due to corrosion
in aircraft aluminum alloys (AA). For the past
few years, the first author has been studying the
structural integrity and durability issues related
to aging aircraft materials and structures. The
present project is aimed at developing computa-

tional simulation models to investigate the evolu-
tion of chemical elements degradation in the cor-
rosion process. The developed algorithms sup-
ported by experiments might be useful for manip-
ulating various parameters for material design ap-
plications.

Figure 1: Typical specimen of AA 2024-T3 used
in electrochemical experiments for corrosion

The objective of this study is to develop a neu-
ral network (NN) model for the analysis and pre-
diction of the mapping between degradation of
chemical elements and electrochemical parame-
ters during the corrosion process. Experimen-
tal data obtained from controlled electrochemical
conditions on AA 2024-T3 specimens along with
the chemical element degradation data obtained
through EDS technique were used for training and
testing of the neural network model. The non-
linear relationship between the chemical elements
degradation and material loss as a function of time
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was studied using the developed neural network.

4 hours 

8 hours 

12 hours 

48 hours 

24 hours 

Figure 2: Degradation of aluminum material over
a specimen corroded at 4, 8, 12, 24, and 48 hours

2 Experiments

AA 2024-T3 (5 x 5 cm in size, 1.5 mm thick)
alloy specimens precut from a 12” x 12” sheet
were used in electrochemical experiments to sys-
tematically corrode over pre-specified times. The
nominal composition of chemical elements in
AA 2024-T3 along with their atomic weight is
given in Table 1. All samples were coated
with nail polish except for small circles where
corrosion is allowed to take place as shown
in Fig. 1. A solution of sodium chloride
(NaCl) was prepared using sodium chloride crys-
tals and deionized water. A stirrer was used
to thoroughly mix the sodium chloride with the
deionized water. Electrochemical measurements
were conducted using the GAMRY-Electrostatic
Potential-Potentiostatic Instruments PC3/300 po-
tentiostat/galvanostat/ZRA with Framework (ver-
sion 3.11) and DC 105 program. Once all
the electrodes are placed correctly on various
part of the electrochemical cell, the GAMRY-
Electrostatic Potential-Potentiostatic was run. All
the experiments were conducted at room temper-
ature. Several specimens were corroded for a va-
riety of durations ranging from 1 hr to 48 hrs in
2 molar NaCl electrolyte solution. For each time
step, the material loss and corrosion rate is ob-
tained from the program.

Energy Dispersive X-ray Spectrometry (EDS)
was used to determine the chemical elements
present after corrosion through point analysis and
elemental mapping on corroded specimens. A
typical chemical element map obtained for Al ele-
ment at various times of corroded specimens from
EDS is shown Fig. 2. Table 2 shows the origi-
nal data of counts per second of all the alloy el-
ements in AA 2024-T3 was obtained from EDS
measurements on corroded specimens at various
times. This data was used in developing the neu-
ral network model.

3 Neural Network Modeling

The objective here is to develop neural network
models to map degradation of the chemical ele-
ments in aircraft aluminum (AA 2024-T3) with
various electro-chemical parameters during the
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Table 2: Chemical elemental degradation data (normalized from point counts/sec) of the AA 2024-T3 cor-
roded specimens using EDS technique

Time

(hrs)

Al Cl Ba O C Cu S % Material 

Loss

0 1 1 1 1 1 1 1 0.00 

4 0.61 0.89 0.65 0.6 0.77 0.6 0.8 35.42 

6 0.43 0.86 0.6 0.5 0.67 0.45 0.75 49.73 

8 0.29 0.89 0.56 0.45 0.56 0.33 0.66 60.77 

12 0.15 1 0.28 0.4 0.33 0.17 0.5 74.00 

14 0.13 0.95 0.25 0.38 0.3 0.15 0.45 76.43 

18 0.12 0.8 0.23 0.36 0.26 0.14 0.35 79.00 

20 0.11 0.7 0.22 0.35 0.25 0.13 0.31 80.62 

22 0.11 0.68 0.22 0.33 0.23 0.12 0.27 81.33 

24 0.11 0.67 0.2 0.33 0.22 0.11 0.25 81.70 

26 0.1 0.67 0.19 0.31 0.22 0.09 0.25 82.68 

28 0.1 0.67 0.18 0.3 0.22 0.07 0.25 82.92 

48 0.09 0.67 0.17 0.23 0.22 0.06 0.25 84.41 

Artificial
Neural

Network

Alloy Composition 

Time

Electrochemical
Parameters

Input Output

Element Degradation 
per alloying element 

Figure 3: Schematic model of artificial neural network for prediction of degradation behavior due to metal
corrosion

corrosion process. A brief summary the neural
network approach is given below.

3.1 Neural network basics

Neural networks (NNs) are intelligent arithmetic
computing elements that can represent complex
functions with continuous-valued as well as dis-
crete outputs, and large number of noisy inputs,
by learning from examples [Russell and Norvig
(1995); Anderson and McNeill (1992); Alek-
sander and Morton (1995); Principe, Euliano and
Lefebvre (2000); Beale and Jackson (1990); Or-
chard (1991); Swingler (1996); Bulsari and Kallio

(1995)]. The network uses systems of non-linear
basis functions to relate the input to the desired
output as shown in Fig. 3. Because of the use of
these non-linear functions and the statistical na-
ture of the model, neural networks can be applied
to solve a variety of problems that are not possi-
ble with analytical methods. Although the idea of
neural networks has been around for some time,
it has undergone a recent surge of usage in many
fields from medical to material science [Principe,
Euliano and Lefebvre (2000); Beale and Jackson
(1990); Bulsari and Kallio (1995)].

Neural Networks consist of arrays of processing
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Figure 4: Neural Network Architecture developed for the analysis and prediction of chemical element degra-
dation behavior during the corrosion process

elements called neurons or nodes. The neurons
are arranged in layers that process that data as its
passes through the network. The neurons are in-
terconnected through links called synapses. Each
synapse is given a weight factor that is determined
after the network is trained. Weights are the pri-
mary means of long-term storage in neural net-
works, and learning usually takes place by updat-
ing these weights. The weights are adjusted so as
to bring the network’s input/output behavior more
in line with that of the phenomena being modeled
by the network. There are multiple types of net-
work architectures. The most popular method for
learning in multi-layer networks is called back-
propagation, which was first invented by Bryson
and Ho in 1969. More details about the neural
networks and their concepts can be found in Ref.
[Russell and Norvig (1995)].

3.2 Neural network architecture

In this study, a multi-layer, feed-forward neu-
ral network with back-propagation learning algo-
rithm is developed to investigate the degradation
of chemical elements due to corrosion process
in aircraft aluminum. Figure 4 illustrates the ar-

chitecture of the developed network for mapping
chemical degradation during the corrosion pro-
cess. The input parameters to the neural network
model are alloy composition, electrochemical pa-
rameters, and time. The composition includes
the most commonly present elements in struc-
tural grade aluminum alloys. The electrochemical
parameters inputted include the pH value at the
time of corrosion, the electrolyte concentration,
the corrosion potential, and the temperature. Each
of these parameters is assumed and held constant
over time. The desired duration of the corrosion
simulation is also inputted in hours. The outputs
of the neural network are the degradation amount
of each alloying element inputted.

The neural network model developed in this study
is intended to be capable of analyzing multiple
alloys with various chemical elements in their
composition. Currently, the network is capable
of analyzing a single aluminum alloy, namely,
AA 2024-T3, which is commonly used struc-
tural alloy in the aerospace industry. The model
inputs the seven elements (Al, Ba, C, Cl, Cu,
O, and S) that make up the AA 2024-T3 alloy.
The four electrochemical parameters are inputted
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along with time. Altogether there are 12 input
nodes for the created network. The current neu-
ral network model has 2 hidden layers having 15
nodes each. This configuration was reached af-
ter a few iterations of a single hidden layer net-
work proved to give less than adequate results
[Swingler (1996)]. For the seven alloy elements,
there are seven output nodes. Each outputs the
degradation curve of one of the alloying elements.
Therefore, a 12-15-15-7 neural network architec-
ture was developed and trained and tested to vali-
date the model.

3.3 Neural network training and testing

A neural network is usually trained using a large
dataset of input/output pairs. In this study, experi-
mental datasets obtained from EDS imaging tech-
niques was used to train the network using a back-
propagation algorithm, specifically the batch gra-
dient decent function (traingd) [Aleksander and
Morton (1995); Principe, Euliano and Lefebvre
(2000); Swingler (1996)]. Each of the input vari-
ables is normalized so that all the data lie be-
tween 0 and 1, which is recommended for proper
training of neural networks [Beale and Jackson
(1990)].

NN Training
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Figure 5: Comparison of NN predictions and the
experimental data after training the network

For computer implementation, we have used the
Matlab tool box due to its graphics capabilities.
The feed-forward network was created with the
‘newff’ function. There are many transfer func-
tions available in MATLAB software. After some
experimentation with “tansig” and “logsig” trans-
fer functions, the “logsig” transfer function was
chosen due to nature of the output desired in the
neural network modeling. The learning rate was
set reasonably low at 0.05 to ensure convergence
of the algorithm. Number of epochs was set at
500 and a convergence goal of 1e-5 was used.
A database was constructed by collecting exper-
imental data from EDS measurements and pro-
cessing it to the input/output required from the
network. In total, 91 pairs of input/output data
was used for NN training. We realize that this data
set is not very large, but we believe it is sufficient
to develop a converged network for the inputs
specified. A set of experimental data obtained in
section 2 was set aside for validating/testing the
developed neural network.

4 Results and Discussion

NN Testing
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Figure 6: Validation and testing of NN predictions
with the experimental data after training the net-
work

The performance of the neural network was vali-
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dated after training the network. Figure 5 shows
the comparison of results between NN predictions
and the experimental data after training the net-
work. Most of the elements are trained well to
the experimental data. It can be seen from Fig.
5 that a good correlation is obtained between the
NN predictions and the experimental data with a
correlation coefficient of 0.9974.

To test/validate the generalization performance of
the trained NN in capturing the degradation be-
havior, the NN predicted values along with ex-
perimental data that was not used in training are
shown in Figure 6. A very good agreement
was found between the predicted values from the
trained neural network and the experimental data
with a correlation coefficient of 0.997. Testing
proved that the network could reproduce the be-
havior for a set of data not used in the training
process. This testing also demonstrates that neu-
ral networks should be able to extract the relation-
ship and rules and then apply these rules to obtain
reasonable predicted results.

Further validation and testing was performed to
see how the trained network could handle situa-
tions that are within or outside the range of trained
data. This includes interpolation and extrapola-
tion of the alloy element degradation behavior
during the corrosion process. The NN predicted
results are compared in Figs. 7 and 8 along with
the experimental data. It can be seen from Figs.
7 and 8 that the trained network was able to cap-
ture the degradation behavior within and outside
the range of trained experimental data and por-
tray trends accurately. These validations are fur-
ther testimony that the developed neural network
was able to predict the degradation behavior rea-
sonably well.

In order to observe the effects of the various input
electro-chemical parameters on the degradation
behavior, several cases can be simulated using the
trained neural network. The effect of changing
other electrochemical parameters was examined
but due to lack of training involving the varia-
tion of these parameters no change was noted in
the neural network prediction. However, since
pH is very sensitive as compared to other electro-
chemical parameters in the corrosion process [Pi-
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Figure 7: Further testing of NN predictions with
the experimental data (extrapolation)
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Figure 8: Further testing of NN predictions with
the experimental data (interpolation)
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Figure 9: Effect of acidic pH change on degrada-
tion behavior of aluminum element obtained from
NN simulation

daparti, Palakal and Fang (2005)], a simulation
experiment was conducted by retraining the neu-
ral network. Based on the experimental observa-
tions and data in the literature [[Marcus and Oudar
(1995); Shreie, Jarman and Burstein (1994); Har-
low and Wei (1998)], a pH of 7 which is neutral is
not going to affect the specimen corrosion. With
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this knowledge a second dataset was created for
a pH value of 7 that contained no corrosion. It is
also known that high basic pH values will exhibit
corrosion. To train the network for this behavior
a third dataset was created using the existing data
for a pH of 3 and setting the input pH to 11, due
to lack of any other data. The network was fur-
ther trained with the two datasets to introduce the
behavioral change due to pH variation. The ef-
fect of changing pH on the degradation behavior
is shown in Figure 9. It can be seen from Fig. 9
that the NN predicts the correct trends with vary-
ing pH values in the model. However, more ex-
perimental data is needed for further analysis and
prediction. Overall, the results presented in Figs.
7-9 demonstrate the use of neural networks for
the analysis and prediction of chemical element
degradation during the corrosion process.

5 Summary and Conclusions

A neural network model is developed for the
analysis and prediction of the mapping between
degradation of chemical elements and the elec-
trochemical parameters during the corrosion pro-
cess. The NN model is validated and tested
with data obtained from Energy Dispersive X-
ray Spectrometry (EDS) measurements on cor-
roded specimens at various times. The results
obtained from the study indicate that overall, the
neural network predictions compared reasonably
well with the experimental data obtained. Sim-
ulations were carried out to obtain the trends in
element degradation with varying pH values, and
the results showed correct trends. The preliminary
results obtained demonstrate that through a com-
prehensive study with more experimental data, a
better corrosion resistant material can be designed
by controlling the degradation of the chemical el-
ements during the corrosion process using the de-
veloped neural network model.
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