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Mechanics of Elastomer–Shim Laminates

A. H. Muhr1

Abstract: The mechanics of laminates of elas-
tomer and shims of high modulus material are re-
viewed. Such structures are often built to provide
engineering components with specified, and quite
different, stiffnesses in different modes of defor-
mation. The shims may either be rigid or flexible,
flat or curved, but are usually close to inextensi-
ble, being made of a high modulus material such
as steel. On the other hand, rubber has an excep-
tionally low shear modulus, about one thousandth
of its bulk modulus, so that shear of the rubber
layers and flexure of the high modulus layers (if
thin) are the dominant mechanisms of deforma-
tion of the composite. In comparison, extension
of the layers and changes to their separation are
highly constrained.
Modes of failure are addressed as well as force-
deformation behaviour. For compression normal
to the laminations, the shear in the rubber results
in in-plane tension in the shims, possibly leading
to tensile failure. For tension normal to the lam-
inations, the elastomer can cavitate, which would
relieve the shear in it and hence the in-plane com-
pressive stress applied to the shim. In flexure,
shear in the rubber can apply in-plane compres-
sive stress to the shims and cause buckling failure.

Keyword: Rubber, shape factor, laminates, in-
stability, buckling, cavitation, fracture, damping.

1 Introduction

Rubber is a significant engineering material in
its own right, and many interesting aspects of
the mechanical characteristics of rubber compos-
ites with shims, cords and filler particles have
been intensively investigated over the years. Such
"reinforcement" is used in rubber to increase its
stiffness, often anisotropically by intention, and
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its load bearing capacity. Two alternative ap-
proaches are used to describe the characteristics
of the rubber-reinforcement composite: detailed
solutions to problems with prescribed geometry,
or approximations of the global characteristics,
based for example on weighted averages of the
constituent properties, finite element simulations
of representative volume elements of the compos-
ite, or empirical equations. The second approach
usually aims to generate the parameters in an elas-
tic continuum model of the composite, in general
anisotropic.

It has been pointed out by Spencer [1972] that
classical anisotropic elasticity theory can be un-
suitable for describing the mechanical proper-
ties of cord-rubber composites, because of the
near-incompressibility of the rubber and near-
inextensibility of the cords. This means that the
cords can "channel" stress from one point to a far
distant point, in conflict with St Venant’s principle
and hence with continuum elasticity theory.

Thus the first approach – detailed solutions for
prescribed geometries - is valuable wherever the
problems are tractable. It has the merit of provid-
ing not only stiffnesses, but also details of local
stresses in the two materials forming the compos-
ite, and hence giving insight into failure. For ex-
ample, despite its very low shear modulus, rub-
ber pads used as cushions between concrete sur-
faces can generate large enough tensile stresses in
the concrete to crack it [Coveney, Fuller & Muhr,
1989]. The solutions that have been derived for
such systems may act as models for mechanisms
that could be significant in composite materials at
different scales. Rubber-based macro-composites
use either cords or shims as the reinforcement;
this paper serves to collate work on the mechan-
ics of rubber-shim composites. Some of this work
has not previously been published.
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By “shim” we mean a material with a much higher
modulus than rubber, formed such that two of its
dimensions are much greater than the third dimen-
sion (the thickness). The shims may be either flat
or dished, rigid or flexible.

The analysis will be linear, despite the fact that
rubber can undergo very large elastic strains and
so it is normal to use non-linear finite element
packages for modelling rubber components. His-
torically, however, classical elasticity theory has
been found to be very useful for rubber-shim com-
posites. The approach has the merits of (1) an-
alytical tractability (2) delivering relatively sim-
ple analytical formulae which at the very least
serve the useful purpose of predicting the stiff-
nesses for small deflections, and, if experience
shows the non-linearity is not great, extrapolate
to make useful approximate predictions at larger
deformations. In fact extrapolation to large defor-
mations is reasonably reliable, because the shims
constrain the mode of straining of rubber to be
predominantly simple shear, and this mode has
nearly linear stress-strain behaviour, at least for
unfilled rubber.

2 Mechanics Of Rubber Laminates With
Rigid Shims

2.1 General form of equations for describing
the force-deflection behaviour of an elastic
component

We seek a set of linear constitutive rules describ-
ing the forces and moments required to achieve
the usual six spatial degrees of freedom of motion
of a rigid shim, bonded to a layer of rubber, rela-
tive to a reference point, the adjacent shim being
regarded as fixed in position.

The constitutive rules will give the relationship
between a generalised relative displacement vec-
tor x, consisting of three translation components
(in the x, y and z directions) and three rotational
components (about the x, y and z axes), and the
equivalently generalised force vector f. Assum-
ing linearity, the rules may be written as a matrix
equation

f = Kx (1)

where K is a 6× 6 matrix of stiffnesses. Trans-
lations are free vectors, whereas rotations require
not only the angle of rotation and the direction
of the axis of rotation to be defined, but also the
position of the axis of rotation. Force is a posi-
tioned vector, and may be resolved into a force of
the same magnitude and direction acting on a cho-
sen point, and a couple, given by the moment of
the force (acting at its original position) about the
chosen point. To define x and f unambiguously
not only the directions of the coordinate axes need
to be defined, but also their origin, which is taken
to be the point of application of f as well as the
point through which the rotation axes pass. One
of the shims (the moving one) together with this
point of application may be considered to com-
prise a rigid body, which is displaced by x rela-
tive to the other shim under the action of f. This
implies that the diagonal terms K11,K22 and K33

depend only on the directions of the coordinate
axes, whereas the remaining terms also depend on
the point of application (the origin). In any case,
following Schapery & Skala [1976], we can say
that K is symmetric to be consistent with a strain
energy function U for the rubber:

Ki j =
∂U

∂xi∂x j
=

∂U
∂x j∂xi

= Kji (2)

If x is chosen to be a simple displacement paral-
lel to an axis of symmetry, the resultant f will be
coaxial with it. If there are three orthogonal axes
of symmetry with a common inter-section (centre
of rigidity), and a coordinate system is chosen to
be coaxial with them and with the origin at the
intersection, then K will be diagonal. The cen-
tre of rigidity has the property that a force acting
in line with it results in a coaxial displacement,
and no rotation. Equivalently, a couple produces
a coaxial rotation about the centre of rigidity, and
no displacement of it.

2.2 Derivation of constitutive equations for a
planar laminar element

Consider now a disc of rubber of radius a and
thickness h bonded between two flat rigid discs,
with h << a (Fig. 1).
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Figure 1: Disc of rubber bonded between two
shims

The centre of rigidity coincides with the geomet-
ric centre of the laminate, and this will be taken
as the centre of coordinates. Thus K will be diag-
onal and we shall use just one index to denote its
six components. The rubber will, to first approxi-
mation, deform by shearing parallel to the shims;
the bond prevents lateral slip at the boundary. For
deflection in the x and y directions the strain will
be nominally homogenous simple shear, whereas
for torsion about the z axis the shear strain is in
the circumferential direction and proportional to
the distance from the z-axis, leading to:

K1 = K2 =
πGa2

h
(3)

K6 =
πGa4

2h
(4)

Strictly speaking , the right-hand side of Eq.(3) is
an upper bound for the left, because the bound-
ary condition of zero shear strain on the free rub-
ber surface (a small area) is not met. However,
for a >> h, it is a tight upper bound (Gregory
& Muhr, 1999). On the other hand, Eq.(4) is the
exact solution, despite the strain field being non-
uniform.

Deflection parallel to the z-axis will involve a
more complicated distribution of simple shear
strain. Following Rocard [1937], we could guess
a displacement field u that meets the requirements
that ur = 0 at z = ±h/2, uz = 0 at z = 0 and the total

volume is constant:

uz =
3
2

ez

(
1− 4z2

3h2

)

⇒ ez =
∂uz

∂ z
=

3
2

e

(
1− 4z2

h2

)

ur = −3
4

er

(
1− 4z2

h2

)

⇒ er =
∂ur

∂ r
= −3

4
e

(
1− 4z2

h2

)

γrz =
(

∂ur

∂ z
+

∂uz

∂ r

)
=

6erz
h2

(5)

where e = uz(h/z)
h/z is the average compressive

strain.

According to the Ritz methd, an upper bound
for the compression stiffness K3 may be obtained
from the total energy associated with this strain
field:

1
2

K3(eh)2 < G

h/2∫
−h/2

a∫
0

(2e2
r +e2

z + γ2
rz)2πrdrdz

⇒ K3 <
3πa2G

h

(
6
5

+2S2
)
≈ 6πa2GS2

h
(6)

where S, the “shape factor”, is given by

S =
area of loaded face

area of rubber free to bulge
=

a
2h

(7)

It is known [Coveney, Fuller & Muhr, 1989; Ro-
card, 1937; Gent & Meinecke, 1970] that Eq. (6)
is rather a tight upper bound, so that for engineer-
ing purposes it may be taken as an equality if 3
< S < 10. Yeoh (1985) has provided a suitable
equation for 0 < S < 0.5. For 0.5 < S < 3 the
approximate form of Gent & Lindley (1959) with
1, rather than 6/5, added to the term in brackets
on the right hand side of Eq. (6) is adequate. For
higher values of S it is necessary to include the ef-
fect of compressibility of the rubber, as discussed
later in this section.

Similarly, for a tilt of θ/2 of each endplate about
the y-axis we can guess the following displace-
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ment field:

u =
3θ
16h

(
1− 4z2

h2

)(
3x2 +y2 −a2)

⇒ e1 =
9θx
8h

(
1− 4z2

h2

)

v =
3θxy

8h

(
1− 4z2

h2

)

⇒ e2 =
3θx
8h

(
1− 4z2

h2

)

w = −3θxz
2h

(
1− 4z2

3h2

)

⇒ e3 = −3θx
2h

(
1− 4z2

h2

)

⇒ γ12 =
∂u
∂y

+
∂v
∂x

=
3θy
4h

(
1− 4z2

h2

)

⇒ γ13 =
∂u
∂ z

+
∂w
∂x

= −3θ z
2h3

{
3x2 +y2 −a2 +h2(1− 4z2

3h2 )
}

⇒ γ23 =
∂v
∂ z

+
∂w
∂y

= −3θxyz
h3

(8)

and arrive at the upper bound:

1
2

K5θ 2 < G
∫∫∫

{(e2
1 +e2

2 +e2
3)

+
1
2
(γ2

12 + γ2
13 + γ2

23)}dxdydz

⇒ K5 <
πGa2

h

(
S2a2

2
+

21a2

20
+O(h2)

)

≈ πGS2a4

2h

(9)

Thus the stiffness matrix for the laminate is

K ≈ πa2G
h

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 6S2 0 0 0

0 0 0 S2a2

2 0 0
0 0 0 0 S2a2

2 0

0 0 0 0 0 a2

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(10)

Some of the components of K are larger than
others by a factor of S2, so that the stiffness is
strongly anisotropic. This is exploited in many
designs of rubber engineering components. The

reason for the upper bound values to become too
loose to be good estimates for the stiffnesses is
that if S > 10 then the contribution of bulk com-
pression K of the rubber to the total deflection can
no longer be regarded as negligible, the bulk mod-
ulus of rubber being about 2000MPa; the criterion
could instead be expressed as GS2 << K.

More insight may be gained by considering the
stresses within the rubber layer. Consider an ele-
mental column of the material of cross section δx.
δy running from z = -h/2 to z = h/2. The shear
stresses required to bow the column will be bal-
anced by a pressure p within the rubber, giving:

∂ p
∂x

= −G
∂ 2u
∂ z2 ;

∂ p
∂y

= −G
∂ 2v
∂ z2 (11)

⇒ ∂ 2p
∂x2 +

∂ 2 p
∂y2 = −G

∂ 2

∂ z2

(
∂u
∂x

+
∂v
∂y

)
(12)

Preservation of the volume of the element gives:

2w(h/2) =

h/2∫
−h/2

(
∂u
∂x

+
∂v
∂y

)
dz (13)

Combining Eqs. (11) and (12), and assuming that
p is independent of z, or, equivalently, that the
bulge profiles are parabolic in z, gives [Gent &
Meinecke (1970), Adkins (1954)]:

∂ 2 p
∂x2 +

∂ 2 p
∂y2 = −24Gw(h/2)

h3 ≡ 12Ge
h2 (14)

By solving Eq. (14) we may find the pressure
distribution in the rubber, and the shear stresses
on the shims may then be found by integrating
Eq. (11). These stress distributions may be inte-
grated to give the total forces on the shims, and
also used to calculate the local stresses in the
shims. Gent, Henry & Roxbury (1974) confirmed
the parabolic pressure distribution across a com-
pressed bonded pad experimentally.

For the case of compression of the disc p is found
to be

p =
12S2Ge

a2 (a2−x2 −y2) (15)

For the case of tilting about the y-axis, p is found
to be

p =
12S3Gθx

a3 (x2 +y2 −a2) (16)
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Chalhoub and Kelly [1990] have generalised
equation (14) to include the compressibility of the
rubber; e on the right hand side is simply replaced
by e− (p/K), representing the fractional loss in
volume of the element due to the movement to-
gether of the shims, less that due to bulk com-
pression, which determines the rate of increase
in the bulge as x and y are increased. Papoulia
& Kelly [1996] have shown that this generalized
equation may also be obtained from the Hellinger-
Reissner variational principle. A cruder way of
taking bulk compression into account, for esti-
mates of the stiffness of the laminate, is to add the
compliances from the incompressible case and the
case of uniform bulk compression [Gent & Lind-
ley, 1959].

2.3 Constitutive equations for a spherical lam-
inar element

z

x

â2â1

b

a

Figure 2: Section in xz plane through a spherical
laminar element (z is the axis of revolution)

The theory for planar laminates has been moti-
vated by their application as bridge bearings, an-
tivibration bearings for buildings and seismic iso-
lation bearings, and an extensive literature ex-
ists on mathematical expressions describing their
force-deformation behaviour. Similar laminates,
but with spherically dished shims, are used for
rocket thrust nozzles, helicopter rotor bearings
and flexjoints for offshore oil platforms, but most
work on their mechanics had been expounded
only in company reports until recently [Baumann,
2005].

A spherical laminar element is shown in Fig. 2; it
is a portion of a full sphere, as is typical, limited

by angles β1 and β2. Because it is only a portion,
it has only one axis of symmetry, taken here as
the z-axis. Modes of deformation are most eas-
ily described taking the origin of the axes to co-
incide with the centre of the sphere through the
centre of the rubber layer, having radius c. Then
the Ritz approach, and assumption of incompress-
ibility, leads to the following stiffness matrix:

K ≈ πc4G
h⎛

⎜⎜⎜⎜⎜⎜⎜⎝

α3
1

h2 0 0 0 α2
c 0

0 α3
1

h2 0 α2
c 0 0

0 0 α4
h2 0 0 0

0 α2
c 0 α1 + α3

3 0 0
α2
c 0 0 0 α1 + α3

3 0
0 0 0 0 0 α1 − α3

3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
(17)

where

c = a+
h
2

= b− h
2

α1 = cosβ1 −cosβ2

α2 = cos2 β1 −cos2 β2

α3 = cos3 β1 −cos3 β2

α4 = 4α3

+ 6{α1α5+α2[cosβ2 ln(tan β1
2 )−cosβ1 ln(tan β2

2 )]}
ln(tan β2

2 )−ln(tan β1
2 )

α5 =
∫ β1

β2

sin2θ ln(tan
θ
2

)dθ

(18)

In Eq. (17) the derivation of K66 has been pro-
vided by Baumann [2005] whereas the other coef-
ficients were originally derived by Schapery [see
2006] who also provided solutions for the nearly
incompressible case. It is apparent from Eq. (17)
that the translational stiffnesses are all subject to
the shape factor effect, because of the curvature
of the laminate, whereas the rotational stiffnesses
are not, because the origin of the coordinate axes
coincides with the centre of curvature. Schapery
[see 2006] started with physically reasonable dis-
placement fields, satisfying boundary conditions
and containing unspecified constants and func-
tions, as in the Ritz method. However, he did not
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evaluate the unknowns by minimization of strain
energy, so the derived stiffnesses do not have the
status of strict upper bounds. Complete evalua-
tion of the strain energy integral is very involved,
as may be appreciated even for the relatively sim-
ple case of Eq. (9). Instead, Schapery simplified
the problem by neglecting terms of second order
in h/a, and derived forces and moments by inte-
grating stresses over surfaces, rather than from the
energy. In any case, this is necessary for calculat-
ing the off diagonal elements of K.

3 Mechanics of Beam-columns of Laminates

3.1 Theory

In order to make a component with, for example,
a very high compression stiffness and a low shear
stiffness, rubber laminates are often manufactured
together in a stack. For sufficiently low loads
the compliances may be calculated by adding the
compliances of the individual layers. However, at
higher loads the internal degrees of freedom result
in an effect of axial load on lateral stiffness, and
at sufficiently high axial load the bearing can be-
come unstable, the lateral stiffness falling to zero.
This behaviour, akin to buckling of an Eulerian
strut but taking into account the very low shear
stiffness and high bending stiffness, can be under-
stood from an appropriate beam-column theory
[Gent, 1964; Schapery & Skala, 1976; Thomas,
1983].

Figure 3: Beam-column with θ (orientation of
shims) as internal variable

The laminated beam-column is treated as a con-
tinuum, with the stiffnesses calculated as in sec-
tion 2.2 smeared out, so that the beam has stiff-
nesses of unit length of Ki j(t+h), where t is the
thickness of a shim, and so (t+h) is the length of
the column taken up by one layer of rubber and
one shim. Following Schapery & Skala [1976],
we may consider the axial load P to be first ap-
plied, and the length L, and bending and shear
stiffnesses of unit length to be functions of P but
otherwise the analysis to be linear. At any posi-
tion z along the axis of the column a cross section
is acted on by the forces P and Q, and the moment
M (Fig. 3). The objective is to find the lateral de-
flection u of the centreline as a function of z, and
to estimate the local stresses throughout the beam.
The angle θ that the shims make to the x-axis is
an internal variable. The profile du/dz of the beam
is related kinematically to θ and the shear strain γ
by

kinematics:
du
dz

= γ cosθ + sinθ ≈ γ +θ (19)

In the absence of body forces, P and Q are inde-
pendent of z, but M varies according to

static equilibrium: M = M1 −Pu−Qz (20)

where M1 is the value at z = 0. Schapery & Skala
[1976] developed equations for M(z); note that
u(z) may readily be found from M(z) using Eq.
(20) and the boundary conditions. Eqs. (19) to
(28) summarise Schapery & Skala’s theory [1976]
which is generalised from earlier publications [eg
Gent, 1964] and includes the possibility that K is
not diagonal (eg for dished shims).

The constitutive equations are:

moments:

M = B
dθ
dz

+A

(
du
dz

−θ
)
≡ Bθ ′+A(u′ −θ )

(21)

where

B = K55(t +h); A = K15(t +h) = K51(t +h)

shear: Q+Pθ = Rγ +Aθ ′

where R ≡ K11(t +h)
(22)
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Using Eq. (19) to eliminate γ from Eq. (22) gives

Q+Pθ = R
(
u′ −θ

)
+Aθ ′ (23)

Eliminating u′ from Eqs. (21) and (23) leads to

RM = AQ+APθ +Dθ ′

where D ≡ BR−A2
(24)

Eliminating u′ from Eqs. (20) and (23) gives

RM′ = −P{Q+(P+R)θ −Aθ ′}−QR (25)

Eliminating θ ′ from Eqs. (24) and (25) and dif-
ferentiating gives

APM′ −DM′′ = P{BP+D}θ ′ (26)

Eliminating θ from Eqs. (24) and (25) gives

(P+R)M +AM′ = (PB+D)θ ′ (27)

Eliminating θ ′ from Eqs. (26) and (27) leads fi-
nally to:

M′′+q2M = 0

where q2 =
P(P+R)

D

(28)

Solutions of Eq. (28) involve trigonometric func-
tions of qz. In the case of flat, rigid shims and high
axial stiffness, it may be shown that [eg Thomas,
1983] the lateral stiffness of a laminated bearing
of active height L with the end plates constrained
to be horizontal (the usual case for seismic isola-
tion bearings) is given by

Ks =
Q

u(L)
=

P2

2qB tan(qL/2)−PL
(29)

It follows from equation (29) that the lateral stiff-
ness falls monotonically as P is increased, reach-
ing zero for a critical load given by Eq. (30):

Pcrit =
R
2

{√
1+

4π2B
RL2 −1

}
≈ π

L

√
RB (30)

The approximate form of Eq. (30) shows that if
the thickness t of the shims is changed there is
very little effect on the buckling load, since R, B
and L are all proportional to h+ t.

Another important prediction is that the height of
the bearing will drop according to the square of
the lateral deflection [Thomas, 1983]. Neglecting
axial compliance, this follows from the analogue
for w of Eq. (19):

dw
dz

= −γ sinθ +1−cos θ ≈−θ 2

2
−θγ (31)

3.2 Experimental

An extension of a previous experimental study by
Gregory & Muhr (1995) was undertaken, using
the same bearing geometry but a material with
simpler stress-strain behaviour to simplify inter-
pretation of the results.

Cylindrical bearings were made at TARRC from
unfilled natural rubber (EDS19 formulation given
by TARRC [1979 - 1986]) and mild steel rein-
forcing shims and endplates. The bearings were
assembled from unvulcanised calendered rubber
sheet, and metal inserts coated with the Chem-
lok 205/220 bonding system. A pin of 10mm
diameter was inserted through close fitting cen-
tral holes in the endplates, unvulcanised calen-
dered rubber sheet and metal inserts coated with
the Chemlok 205/220 bonding system. A pin of
10mm diameter was inserted through close fitting
central holes in the endplates, unvulcanised cal-
endered rubber sheet and shims, and the mould
endplates, to prevent lateral displacement. The as-
sembly was cured in a press for a sufficient time
to ensure complete vulcanization throughout.

Details of the internal construction of the bear-
ings are given in Table 1. Single shear tests were
conducted on one of each bearing type. Dynamic
strain amplitudes of 100% (or 50% in the case of
zero load) were applied at 0.5Hz and the shear
force and deflection were logged for a range of
fixed loads, up to the level at which the slope of
the load-deflection plot at the origin becomes neg-
ative. Two hundred data points were captured for
each cycle.

It was noted that as the normal load is in-
creased, the hysteresis increases. Since the the-
ory does not include hysteresis, the underlying
force-deformation behaviour was extracted from
the hysteresis loops by constructing the “skeleton
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-150

-100

-50

0

50

100

150

200

250

300

0 100 200 300 400 500
load/ [kN]

sh
ea

r s
tif

fn
es

s/
 [N

/m
m

]

theory, 0.3mm shims theory, 3.3mm shims
tangent, 0.3mm shims secant, 0.3mm shims
tangent, 1.2mm shims secant, 1.2mm shims
tangent, 3.3mm shims secant, 3.3mm shims
theory, 3.3mm shims,modified  L, B

Figure 5: Dependence of shear stiffnesses on normal load (third cycle, 100% shear strain loops)



Mechanics of Elastomer–Shim Laminates 19

Table 1: Construction of test bearings

Number of layers (n) 15
Rubber thickness (h) 2.8mm
Plate diameter (2a) 140mm
Plate thickness (t) 0.3, 1.2 and

3.3mm
Hole diameter 12mm
Cover layer thickness (Δa) 4.5mm
S 12.5
Endplates (ΔL) 20mm, tapped

curve” from the mean of pairs of points on the
“extension” and “retraction” branches of the loops
corresponding (approximately) to the same shear
deflection [Ahmadi & Muhr, 1997]. The skele-
ton curves show progressively more non-linear
behaviour as the normal load is increased (see Fig.
4). For comparison of the experimental data with
the linear beam-column theory it is necessary to
linearise the data by extracting a single stiffness
value. Two methods of linearization were applied:
the tangent stiffness of the skeleton curve at zero
shear, and the secant stiffness at maximum shear,
the latter being the same whether the skeleton
curve or the full loop is used. The tangent stiff-
ness was found by the “trendline” regression fit in
Excel to the 8 data points of the skeleton curve
nearest to zero shear, corresponding to a range of
about +/- 5mm.

Fig. 5 compares the shear stiffnesses calculated in
this way with the linearised theory. It shows that
the shear stiffness for all three bearings is approxi-
mately 250N/mm for no normal load. To fit this to
the geometry given in Table 1 required a value of
0.57MPa for G, about 10% higher than expected
for the material. The theoretical curves in Fig. 5
are constructed using this value, and 2000MPa for
K. They ignore the presence of the central hole; it
will reduce the axial stiffness, [Gent, 1994; Yeoh,
2002] and also the tilting stiffness and hence B. It
is thus rather surprising that the theory underesti-
mates the stability of the bearing with the thickest
shims, since it will be nearest to the assumption of
rigidity of the shims. The reason is believed to be
that B increases significantly as the normal load is
increased, as found by Gregory & Muhr’s [1995]

plane strain FEA study. Schapery & Skala [1976],
and Stanton, Scroggins, Taylor & Roeder, [1990],
have suggested that allowing for the reduction in L
by the axial compression as the load increases can
significantly increase stability. This is a more po-
tent effect, assuming B and R are unaffected, than
simply that of the decrease in L brought about
by using thinner shims, since t and (qL/2) will
hardly change in the latter case because conse-
quent changes to B and R will largely cancel the
decrease in L (see discussion after Eq. (30)). Fur-
thermore, taking into account that B will rise if the
plates come closer together [Schapery & Skala,
1976; Stanton, Scroggins, Taylor & Roeder, 1990;
Gregory & Muhr, 1995] together with the reduc-
tion in L can plausibly explain the discrepancy be-
tween theory and experiment for the bearing with
3.3mm shims. If B in Eqs. (28) and (29) is re-
placed by B/(1− P/AEc)−3 where Ec is an es-
timate for the compression modulus (eg 6GS2),
to correct approximately for the reduction in h in
the equations used to estimate B, and also L is
replaced by (1− P/AEc)L, the modified theory
fits the stiffness results better (Fig. 5). In this
modified theory, B increases by 29% at 500kN
load; and L is reduced by 12%; the two effects
make contributions of similar magnitudes to the
enhanced stability. Plane strain FEA [Gregory &
Muhr, 1995] shows that R decreases slightly with
axial load; for the present purposes this effect has
been ignored. The improved agreement of the
modified theory with the experimental shear stiff-
nesses for the 3.3mm shims suggests that the non-
linearity of the shear load-deflection behaviour
could be captured by a further refinement of the
theory to include not only the effect of P on B,
but also the effect of the relative tilt between ad-
jacent shims on B. Both effects will increase B
through the approach of the adjacent shims, ef-
fectively increasing the shape factor; however, the
second effect will lead to a non-linear differential
equation for the profile of the deformed bearing,
so that numerical analysis would be necessary to
find a solution. A striking feature of Fig. 5 is
the nearly identical results for bearings with 0.3
and 1.2mm thick shims, especially for the secant
stiffness. This suggests that both shims are effec-
tively close to the “fully flexible” limit, while it
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is known that even the thinnest shims may be re-
garded as inextensible [Gregory & Muhr, 1995].

In their plane strain FEA study, Gregory & Muhr
[1995] showed that the transition from “flexible”
to “rigid” behaviour of the shims takes place over
about a tenfold increase in shim thickness. It
would seem from the present results that 3.3mm
thick shims are near to the rigid end of this transi-
tion.

4 Failure within Laminates with Rigid Shims

4.1 Yielding of shims

Each side of the shim between two compressed
rubber layers will be subjected to radial tractions
τ which may be calculated from Eq. (5). Taking
the thickness t of the shim to be small, the sum
of the tractions is equivalent to a body force 2τ/t.
The problem is then formally identical to that of
a spinning disc, the solution for which has been
given by Timoshenko and Goodier [1970]:

radial stress σr =
3+ν

8
(a2− r2)μ

hoop stress σθ = μ
(

3+ν
8

a2− 1+3ν
8

r2
)

where μ =
24GS2eh

a2t

(32)

and ν is Poisson’s ratio. Taking the third principal
stress as the pressure p, given from Eq. (14) by

p =
12S2Ge

a2 (a2−x2 −y2) (33)

we may calculate the von Mises criterion for fail-
ure of the shim. This is based on the distortional
strain energy density in the general strain state of
interest being less than that in uniaxial tension at
yield:

σV M ≡
√

(σ2
1 −σ2

2 )+(σ2
1 −σ2

3 )+(σ2
2 −σ2

3 )
2

< σY

(34)

where σY is the yield stress in uniaxial tension.
Inserting the maximum stresses from Eqs. (32)

and (33), which occur at the centre of the shim,
leads to

σV M =
(

3+ν
8

− t
2h

)
a2μ ≈ 3+ν

8
a2μ (35)

4.2 Local shear strain within rubber

Eqs. (5) and (8) quantify the shear strain in the
rubber and show that it reaches a maximum at r
= a, the bond edge. Failure of the rubber or its
bond to the shim cannot be quantitatively related
to the shear strain, and catastrophic failure would
require very high strains, calling into question the
validity of the small strain analysis. Nevertheless,
the magnitude of shear strain, calculated accord-
ing to the small strain theory, is used as a guide
for limiting the compression, tilt and shear im-
posed on laminated bridge bearings (EN 1337 part
3 clause 5.3.3). For such purposes, the linearity of
the small strain analysis can be exploited to add
the strain contributions for the different modes of
deflection of the layer. Small strain analysis ac-
tually works remarkably well for laminates, be-
cause the rubber is primarily in simple shear and
the finite shear stress-strain behaviour of rubber is
close to linear.

Fracture mechanics is normally found to be use-
ful for predicting mechanical failure of rubber,
but in the region of the bond at the edge of a
deformed laminate there is a difficulty. The ap-
proximate analysis presented in section 2.2 is in-
consistent with the fact that the shear stress and
the normal tensile stress must be zero at the free
surface of the rubber, and a more detailed analy-
sis shows that there is a stress-singularity where
the free and bonded surfaces meet, in the absence
of a radiused “fillet”. An investigation using fi-
nite element analysis has been carried out and has
revealed that the behaviour is as if a long crack
pre-exists at the bond edge [Lindley & Teo, 1979;
Gough & Muhr, 2005], the energy release rate for
which may be estimated using the results of sec-
tion 2.2. For annular cracks of length c propagat-
ing inwards from the edge at the bottom and top
of a rubber layer in compression, adjacent to the
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bond, the energy release rate T is given by

T = −∂U
∂A

= −∂U
∂c

(
d
dc

2π((a2− (a−c)2)
)−1

=
−1

4π(a−c)
∂U
∂c

(36)

where U, the total strain energy, may be calculated
from the stiffness and the assumption of linearity,
for example in compression we would have

Ucomp ≈ 1
2

K3(eh)2 (37)

whence, from K3 =
6πG

h
(a−c)4

4h2

Tcomp =
3G
4h

(a−c)2e2 ≡Wcomph (38)

where W comp is the total strain energy divided by
the volume of rubber in the uncracked region of
the rubber layer. The energy release rate in tilt-
ing may be estimated in the same way, except that
the crack is more likely to develop as a crescent,
with little crack growth in the neighbourhood of
the axis of rotation.

4.3 Local hydrostatic pressure within rubber

Unfilled rubber cavitates, an elastic instability, if
subjected to a hydrostatic tension of theoretically
5G/2 [Gent & Lindley, 1958]. This may occur
for laminar elements that are put into tension or
tilted. In either case the criterion is that the local
hydrostatic pressure p, calculated from Eq. (5) or
(6) exceeds -5G/2. The theory agreed well with
experiments of bonded rubber blocks in tension
[Gent & Lindley, 1958], so would be expected to
work also for blocks in tilt or a combination of
tension and tilt.

4.4 Failure in laminar beam-columns

The beam-column theory of Section 3 provides
the shear and tilt of each element (the compres-
sion is common) and may be used together with
the equations for local stresses in the elements
to predict stresses throughout the column. We
can thus predict where and by what mechanism

(shim yield, near-bond cracking of the rubber or
cavitation of the rubber) the stack of elements
might fail if subjected to a given mode of load-
ing. For example, Thomas calculated the hori-
zontal deflection at which the end layer of a lam-
inated isolation bearing; should suffer from cav-
itation [Muhr & Thomas, 1991]. It is interest-
ing to note that local hydrostatic tension is ex-
pected, even for bearings under high compressive
loads, if the shear deflection d is large enough,
because the end layer is subjected to a tilting mo-
ment given by M = (QL+Pd)/2. In experiments
on model bearings the deflection at which the ef-
fect of cavitation is apparent from the shear load-
deflection behaviour is somewhat larger than pre-
dicted [Thomas, 1983], possibly because the re-
duction in tilting stiffness caused by cavitation
is not immediately obvious in the load-deflection
behaviour of the bearing, but manifests itself only
at larger deflections. The model bearings had
very thick “shims”, but experiment and Finite Ele-
ment analyses suggest that for typical bearings the
shims flex under large shear deflections for typical
loads (section 3.2), giving an additional reason for
cavitation to be delayed to larger deflections than
predicted.

5 Mechanics of Rubber Laminates with Flex-
ible Shims

5.1 Beam-columns comprising stacks of lami-
nar elements with flexible shims

In the previous theory sections, the shims were
assumed to be rigid. The thickness of the shims
is not generally chosen to ensure this is so, but
rather, simply to ensure that the von Mises stress
in them (eg Eq. (35)) is less than the yield
stress by an appropriate margin. In practice, for
compactness, ease of handling and economy, the
chosen thickness for the shims is generally lit-
tle thicker than permitted by this criterion, and
flexing of the shims does occur for lateral deflec-
tion of the stack. Kelly [1994] has developed
a plane strain theory that includes shim flexibil-
ity, through an additional internal variable, the
amount of warp, as a function of z. It remains
to check the predictions of this theory against ex-
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periment.

At TARRC theory and experimental validation
have been carried out for a different geometri-
cal arrangement of rubber layers bonded between
flexible shims. This is described in section 5.2.

5.2 Mechanics of flexure of a rubber layer
bonded between flexible shims

Muhr & Thomas [1989] developed design equa-
tions for novel springs based on flexure of rubber-
steel laminates. Since most of the deformation en-
ergy is stored in the rubber, the composite springs
have the attributes of rubber springs, such as fine
control, by choice of elastomer, of stiffness and
damping. However, for a specified deflection ca-
pacity, much lower design stiffnesses can be met
in comparison with conventional rubber springs.

Figure 6: Effect of flexure of a sandwich: lay-
ers 1 and 3 have a much higher elastic modulus
than layer 2 and are assumed not to change length.
Horizontal axis is x, vertical deflection is w, angle
increment is δ θ , (a) free slip-page at interface (b)
no slippage allowed.

Fig. 6 shows how bonding the rubber to the
shims changes its mode of deformation from sim-
ple bending, making little contribution to flexural
stiffness, to shear, making a significant contribu-
tion to beam stiffness. Making the following as-
sumptions:

1. plane strain

2. incompressibility of the rubber

3. centre lines of layers 1 and 3 (the shims) do
not change length

4. radius of curvature >> h1,h2,h3

it follows that the increment δ s to the shear de-
flection of the rubber is related to the increment
in the angle of bending δθ by

δ s =
(

h2 +
h1 +h3

2

)
δθ (39)

Making the further assumptions that

E) without loss of generality, δ s = 0 at θ=0

F) angles are small, so that θ = dw/dx

it follows that the shear strain γ in the rubber is
given by

γ =
s

h2
=

(
1+

h1 +h3

2h2

)
dw
dx

(40)

Figure 7: Element of laminar beam used to de-
rive relationships between shear in the rubber and
axial forces in the shims

The shear tractions applied by the rubber results
in axial forces per unit width tending to extend or
compress the shims. From Fig. 7, it is apparent
that

dF3

dx
= −Gγ

dF1

dx
= Gγ

(41)

Under the action of forces F1 and F3 the shims
will change length, in conflict with assumption
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(C). For the present simplified theory to be valid,
a criterion is required for the condition that these
changes in length are negligible.

Considering the element of length δx depicted in
Fig. 7, we find the axial strains in the shims re-
lieve the shear strain in the rubber according to

dγ
dx

=
(

F1

E1h1
− F3

E3h3

)
1
h2

Differentiating and applying Eq. (41) gives

d2γ
dx2 =

G
h2

(
1

E1h1
+

1
E3h3

)
γ ≡ β 2γ (42)

The solution of Eq. (42), if there is no more bend-
ing, is

γ = γ0 exp(−β x) (43)

The constant 1/β , where β is defined in Eq. (42),
has been termed the “shear length” [Kerwin &
Ungar, 1990]. The criterion for validity of as-
sumption (C) – lack of extension of the metal lay-
ers – is thus

L2β 2 << 1 (44)

where L is the length of the laminate.

Two further assumptions are made to complete the
theory for flexure of the laminate:

G) the axial force in the rubber layer is negligi-
ble

H) the bending moment applied to the rubber
layer is negligible

5.3 Differential equation for the profile of a
laminar beam subject to end loadings only

It follows from the assumptions developed in sec-
tion 5.2 and consideration of Fig. 8 that

M =
F3(h2 +h3)−F1(h2 +h1)

2
+M3 +M1 (45)

The constitutive laws for the moments in the
shims are taken from simple beam theory:

constitutive law for shims Mi =
Eih3

i

12
d2w
dx2 (46)

Figure 8: Contribution of the separate layers to
the overall bending moment M in the composite
beam. M2 and F2 are assumed to be negligible

Differentiating Eq. (45), and making use of Eqs.
(46), (40) and (41) leads to the differential equa-
tion for the composite beam:

dM
dx

= k̃
d3w
dx3 − h̃2 G

h2

dw
dx

where k̃ =
E1h3

1 +E3h3
3

12
and h̃ = h2 +

h1 +h3

2
(47)

k̃ is the combined bending stiffness per unit width
for the shims.

Problems involving flexure of beams under the ac-
tion of a shear force Q and axial force P may be
solved by using Eq. (47) in conjunction with the
usual moment equilibrium equation from simple
beam theory, obtained by differentiating the ana-
logue of Eq. (20):

static equilibrium condition
dM
dx

= −Q−P
dw
dx

(48)

The profile adopted by the laminar beam is not a
cubic polynomial as for simple beam theory (for
the case that P = 0) but can be expressed in terms
of hyperbolic functions cosh(αx) and sinh(αx)
where

α2 =
G
h2

h̃2

k̃
(49)

The dimensionless quantity αL, where L is the
length of the beam between point loads, is a mea-
sure of the relative contributions of rubber, as op-
posed to shims, in controlling the profile. For
large values of αL the shape of the deformed lam-
inar beam consists of relatively straight lines be-
tween the supports. In consequence, in the case
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of a 3-point bend test there is no deflection in the
overhang region (Fig. 9), in contrast to the case
for a conventional beam. Experimental determi-
nations of the behaviour of such laminar beams
are in accord with the theory [Muhr & Thomas,
1989].

Figure 9: Three-point bend test of a laminar beam
with a large value of αL; note there is no de-
flection in the overhang region [Muhr & Thomas,
1989]

6 Wrinkling Instability of Flexible Shims
Bonded to Rubber

The dominant mechanism of failure of laminates
with thin shims bonded to a thick rubber core was
found in experimental work to initiate with wrin-
kling of one metal layer if the overall deforma-
tion became sufficiently large [Muhr & Thomas,
1989]. If the laminate was flexed further, the shim
would buckle at the locus of the wrinkles and col-
lapse. It appears that the compressive force ap-
plied by the sheared rubber to the metal results in
an elastic instability similar to that for an Eule-
rian strut. This section provides the details of the
derivation promised by Muhr & Thomas [1989]

Figure 10: Wrinkle in a shim bonded to a layer of
rubber and subjected to a compressive force P

The threshold of elastic instability can be calcu-
lated in the following way. A compressive force

P per unit breadth (calculable, for example, from
integration of Eq. (41)) is assumed to act on the
shim causing it to deform into a sinusoidal rip-
ple of amplitude ε and wavelength λ (see Fig.
10). The changes in energy per unit breadth, plane
strain being assumed throughout, accompanying
this deformation are:

1) The force P moves through a distance Δ and
thus does work P Δ. The distance Δ may be cal-
culated by assuming the centre line of the shim
does not change in length, thus

Δ =
λ∫

0

√
1+

(
dv
dx

)2

dx−λ (50)

where v = ε cos(2πx/λ ),
whence Δ = ε2π2

λ +O(ε4)
Here x is the coordinate parallel to the surface and
y the coordinate normal to it.

2) The flexure of the shim causes elastic energy to
be stored in it. This energy may be calculated as:

UM =
1
2

k

λ∫
0

(
d2v
dx2

)2

dx =
4π4kε2

λ 3 +O(ε4) (51)

where k = Et3/12, t being the thickness of the
shim.

3) The rubber is bonded to the shim so that it be-
comes wrinkled on its surface, storing elastic en-
ergy in the bulk. Observations suggest that the
wrinkles are confined to one metal layer, the other
layer remaining relatively flat. We shall assume
that the energy associated with lateral compres-
sion is negligible, and equate the stored energy to
the work done by the tractions normal to the rub-
ber surface as the wrinkle forms:

UR = −1
2

λ∫
0

σyε cos(2πx/λ )dx (52)

where σy is the stress normal to the surface of
the rubber. The value of σy is determined by first
finding the stress function φ (x,y) which must, for
compatibility with a continuous strain field, sat-
isfy

∂ 4ϕ
∂x4 +2

∂ 4ϕ
∂x2∂y2 +

∂ 4ϕ
∂y4 = 0 (53)



Mechanics of Elastomer–Shim Laminates 25

and in terms of which the stresses may be found:

σx =
∂ 2φ
∂y2

σy =
∂ 2φ
∂x2

τxy = − ∂ 2φ
∂x∂y

(54)

and hence, using the generalized Hooke’s law, the
strains may also be found:

∂u
∂x

=
1

4G
(σx −σy)

∂v
∂y

=
1

4G
(σy −σx)

∂u
∂y

+
∂v
∂x

=
1
G

τxy

(55)

To satisfy the boundary conditions that u = 0, v =
ε cos(2πx/λ ), txy = 0 on y = 0; u = 0, v = 0 on
y = h2, it turns out that:

ϕ(x,y) = εCcos(2πx/λ ) f (y) where

f (y) =
[

1+
2πy
λ

tanh

(
2πh2

λ

)]
cosh

(
2πy
λ

)

−
[

2πy
λ

+ tanh

(
2πh2

λ

)]
sinh

(
2πy
λ

)
(56)

and C =
Gλ cosh

(
2πh2

λ

)
π

[
sinh

(
2πh2

λ

)
− 2πh2

λ

]
whence we find

UR =
π2Cε2

λ
(57)

Finally, the criterion for wrinkling is

PΔ ≥UM +UR (58)

Wrinkling will occur with a wavelength such that
the inequality is satisfied for a minimum value of
P. This critical value of P is found from the condi-
tion that dP/dλ = 0. Although differentiation can
be carried out analytically, the resulting equation
was solved numerically for λ . Substitution of this

value of λ back into Eq. (58), written as an equal-
ity, yields the critical value of P. The value of λ∞
for h2 → ∞ provides a good starting point for the
numerical iteration:

λ∞ = 2π
(

k
G

) 1
3

(59)

The corresponding critical value of P is

P∞ = 3
(
kG2) 1

3 (60)

Experiments were carried out for comparison
with this theory [Muhr & Thomas, 1989]. Lam-
inates with extra thick metal back layers were
made and deformed as shown in Fig. 11. The
deflection at which wrinkling was observed was
measured; the theory can be used to predict this
deflection, from knowledge of G, h2 and k. The
results, shown in Fig. 12, are in good agreement
with the theory.

Figure 11: Arrangement for determining the wrin-
kling force.

7 Finite Element Analysis (FEA) of
Elastomer-Shim Laminates

The laminated structure may be modelled in de-
tail, the discrete materials being modelled explic-
itly, with all material interfaces falling along el-
ement boundaries [eg Gregory & Muhr, 1995].
Alternatively, an equivalent homogeneous mate-
rial may be devised which captures the overall
anisotropic behaviour of the composite, but will
not deliver details of the local strains in each ma-
terial without post processing of the large scale
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Figure 12: Comparison between experimental
wrinkling results and the prediction of equation
(58)

variables [Herrmann & Lim, 1984]. The sec-
ond approach resembles that of the beam-column
theory discussed above, in that the mechanical
properties are "smeared" out to give an equiv-
alent continuum description, but has the advan-
tage, through the FE method, of extension to
more complicated geometry, nonlinear responses
and less restrictive assumptions. By reducing the
number of elements required, it offers consider-
able saving in CPU time over the discrete ap-
proach, but requires four extra degrees of freedom
to capture the local deformation.

The equivalent homogeneous modelling of
elastomer-shim laminates of Herrmann, Hamidi,
Shafigh-Nobari & Lim, [1988] will now be
summarised.

The composite is characterised by choosing the
normal to the shims to coincide with one coor-
dinate axis (eg a Cartesian axis, say z, for flat
shims), and by specifying the thicknesses, say hs

and h f for the stiff and flexible layers respectively,
and the elastic properties of the two materials.

The equivalent homogeneous continuum model
used for FEA of the composite is not a conven-
tional orthotropic model, but specially developed
to enable the unusually large scale of the effects
of free edges to be modelled. In contrast to the
case for other laminates, the scale of penetration

of these effects from the free edges greatly ex-
ceeds the thickness of the layers, because of the
very high ratio of the moduli of rigidity, together
with the high ratio of bulk to shear moduli of
elastomers. This is similar to the point made by
Spencer [1972] for cord-rubber composites: the
shims can channel stress from one point to a far
distant point, in conflict with St Venant’s princi-
ple.

Deformation of the composite is defined by an
augmented set of seven global degrees of freedom
u, v, w, δx, δy , φx, φy. The first three variables are
the "smeared" displacements at any point, equiva-
lent to the actual values at the centres of the shims,
but defined by interpolation elsewhere. They are
not sufficient to calculate local strains in each ma-
terial, but need to be augmented by the variables
δx, δy that quantify the averaged bulge of the elas-
tomer relative to the shims between which it is
sandwiched. In addition, the variables φx, φy are
needed to quantify the rotation of the embedded
normal in the shim, capturing the tendency of the
shims to bend and shear, especially important near
to free edges when the laminate is sheared. Vari-
ables u, v, w, φx, φy only have physical meaning at
the centres of the shims, but the “smeared" nature
of the equivalent homogeneous composite model
treats them, as well as δx, δy, as continuously vari-
able.

Unlike the simple linear interpolation of the
seven global variables across a representative vol-
ume element, the actual material displacement
fields have complicated dependences, expressed
in terms of local scales and values of the global
variables at reference positions, taking into ac-
count plate theory for the shims and equations
such as those of section 2 for the elastomer. The
theory also includes three coefficients, which, for
the linear case, can be expressed in terms of the
seven global variables, but for the non-linear case
are treated as additional unknowns, to be de-
termined for each element. Equations for local
strains in terms of the seven global variables and
three coefficients were derived, and from these the
total deformation energy can be calculated and
used in the principle of minimum potential en-
ergy for equivalent homogeneous FEA of the elas-
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tomer shim composites.

Herrmann, Hamidi, Shafigh-Nobari & Ra-
maswamy [1988] describe the implementation of
the equivalent homogeneous composite model in
FEA and compared results with discrete FEA and
experiment. They concluded that the "theory is
an accurate and computationally efficient analysis
tool". Further FE predictions based on the the-
ory were presented by Herrmann, Ramswamy &
Hamidi [1989]. They included the effect of shim
stiffness on axial stiffness of the bearings, and the
effect of axial load on the shear load-deflection
behaviour. However, the influence of shim flexi-
bility on the latter was not addressed.

8 Discussion

The body of knowledge on mechanical proper-
ties of rigid shims has not been exhausted by the
brief account in this paper. As well as solutions
for the nearly incompressible case, the literature
provides solutions for flat rectangular laminates,
flat elliptical laminates and flat cylindrical lam-
inates with central holes [see reviews by Gent,
1994 and Yeoh, 2002]. Cylindrical bushes present
yet another geometry that has been solved by
Ritz-type methods [eg Busfield & Davies, 2001;
Horton, Gover & Tupholme, 2000]. All these
geometries and accompanying stiffness equations
have been developed to provide engineering com-
ponents whose stiffness matrices can be tailored
to suit particular applications, calling for highly
anisotropic stiffnesses.

There is also some literature addressing non-
linear load-deflection behaviour, which as seen in
section 3.2 is significant for forces or moments re-
sulting in change of thickness of the rubber layers.
Clearly the tangential stiffness must become un-
bounded as the shim spacing reduces to zero, and
a rough way of taking this into account is to cal-
culate the shape factor on the basis of the current
shim separation, rather than the load-free separa-
tion [Lindley, 1966].

The theory for flexible rubber-shim laminar
beams has been motivated by exploitation of rub-
ber to impart damping to steel panels [Kerwin &
Ungar, 1990], as well as by the possibility of us-

ing such structures as “rubber” springs [Muhr &
Thomas, 1989]; many of these publications fo-
cus on the partition of the deformation energy be-
tween rubber and shims.

Instability is also associated with enhanced damp-
ing [Thomas, 1983; Coveney, Muhr & Thomas,
1989; Goodchild & Thomas, 2007], since defor-
mations applied at instability are accompanied by
the usual energy dissipation for the rubber, but the
storage stiffness and hence energy is zero, so the
ratio of the energies (the apparent loss factor, a
measure of damping) has a singularity. This fea-
ture could perhaps be exploited, in combination
with the high strength capability of microcom-
posites, to produce composite materials with en-
hanced damping.

Strength enhancement of microcomposites is be-
lieved to derive from the impossibility of flaws,
in each phase, being greater than the scale of het-
erogeneity. Even for effectively long interlaminar
cracks there is an effect of scale normal to the in-
terlaminar crack growth direction, as is apparent
from Eq. (38).

Cord – rubber composites share some of the char-
acteristics of laminates of rubber with flexible
shims. However, the in-plane extensional stiff-
ness of a plane formed by sets of cords plied at
a bias angle is not isotropic, being very high in
line with any set of cords and much lower in other
directions. Instabilities akin to the wrinkling of
shims can occur if the cord-rubber composites are
subjected to excessive flexure. Glass fibre cords
are less robust in such circumstances than other
types of cord, and are not suitable as reinforce-
ment, for example, for tyres subjected to kerbing.

9 Conclusions

A comprehensive body of theory is available for
relating the strongly anisotropic mechanical prop-
erties, the local stresses, energy release rates and
damping of rubber-shim composites to their de-
tailed geometry.

As for the theory of cord-rubber composites, the
detailed theory gives a better description and more
insight than fitting parameters to an anisotropic
continuum model for the composite. The Ritz
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method has been useful to this end but only in
some cases has it been worked beyond provision
of good approximations, to give rigorous upper
bound stiffnesses.

Specific solutions of the detailed theory pro-
vide useful benchmarks for approximate numer-
ical modeling techniques for related composites.

FEA, whether based on the detailed structure or
an appropriately smeared composite, can be used
to predict behaviour in situations not accessible
to existing theory, such as non-linearity of load-
deflection behaviour.

Failure mechanisms analysed for rubber-shim
composites may give insight into failure mech-
anisms for other composite materials with cord-
like or shim-like inclusions.
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