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Elastic Torsion Bar with Arbitrary Cross-Section Using the Fredholm
Integral Equations

Chein-Shan Liu12

Abstract: By using a meshless regularized in-
tegral equation method (MRIEM), the solution of
elastic torsion problem of a uniform bar with ar-
bitrary cross-section is presented by the first kind
Fredholm integral equation on an artificial circle,
which just encloses the bar’s cross-section. The
termwise separable property of kernel function al-
lows us to obtain the semi-analytical solutions of
conjugate warping function and shear stresses. A
criterion is used to select the regularized parame-
ter according to the minimum principle of Laplace
equation. Numerical examples show the effec-
tiveness of the new method in providing very ac-
curate numerical solutions as compared with the
exact ones.

Keyword: Laplace equation, Elastic torsion,
Fredholm integral equation, Lavrentiev regular-
ization, Fourier series, Artificial circle

1 Introduction

The elastic torsion of bar is a classical problem in
the theory of elasticity [Timoshenko and Good-
ier (1961); Little (1973)]. This problem may be
formulated either in terms of the Neuman bound-
ary value problem of the Laplace equation for the
warping function, the Dirichlet boundary value
problem of the Laplace equation for the conjugate
warping function, or the Dirichlet boundary value
problem of the Poisson equation for the stress
function. The second formulation seems a good
starting point of the present paper.

Although the exact solutions have been found
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for some popular bars with simple cross-section
shapes like as circle, ellipse, rectangle, triangle,
etc., in general, for a given arbitrary shape of the
bar the finding of the closed-form functions of its
torsion, shear stresses as well as rigidity is not an
easy task.

Indeed, the explicit solutions are the exception,
and if one were to choose an arbitrary shape of
bar in use then the geometric complexity com-
mences and then typically the numerical solutions
would be indispensable. The series solutions, dif-
ferent coordinate systems, special functions and
complex variables have all been used in the elas-
tic torsion problems.

The most widely used numerical methods are fi-
nite difference, finite element and boundary ele-
ment methods. For a complicated shape of the
cross-section by using those methods we usually
require a large number of nodes and elements to
match the geometrical shape. For the uniform bar
with polygon cross-section, there were much ad-
vanced methods to treat it as reviewed by Has-
senpflug (2003). For the solutions of compli-
cated torsion problems the boundary collocation
method was also applied by many people as can
be seen in the paper by Kolodziej and Fraska
(2005); on the other hand, there also appeared
the complex polynomial method and the complex
variable boundary element method as advocated
by Aleynikov and Stromov (2004).

Various numerical methods for solving the
Laplace equation are rapidly developed in the last
three decades. Recently, Young, Chen and Lee
(2005) have proposed a novel meshless method
for solving the Laplace equation in arbitrary plane
domain. On the other hand, Liu (2007) has pro-
posed the meshless regularized integral equation
method to solve the Laplace problem in arbitrary
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plane interior or exterior domain, and Liu (2006)
has first applied it to solve the elastic torsion prob-
lems.

There were two different boundary integral equa-
tion methods for the Laplace equation [Chen and
Wu (2006)]. One is the double-layer method and
another is the Green’s boundary formula. Both
of these two methods and some details about the
numerical methods of them are described by Jas-
won and Symm (1977). Our method is differ-
ent from that two methods, and the new method
is more easy to handle because it is a boundary
integral equation on a given artificial circle, in-
stead of those on the contour. Very early, Jaswon
and Ponter (1963) have formulated the elastic tor-
sion by using the Green’s boundary formula as
the first kind Fredholm integral equation for the
Dirichlet boundary value problem, and the second
kind Fredholm integral equation for the Neumann
boundary value problem. Unfortunately, these in-
tegral equations possess a logarithmic singularity
and the kernel functions are not separable.

To the author’s best knowledge, there has no re-
port in the open literature to connect the elastic
torsion problem with arbitrary shape into this spe-
cially simple type integral equation on a circle
with a degenerate kernel. We are going to de-
velop a new approach in this paper, such that we
only need to solve a simple second kind Fredholm
integral equation to offer an effective resolution
of this problem. The new method would provide
us a semi-analytical solution, and renders a more
compendious numerical implementation to solve
the elastic torsion problem in an arbitrary plane
domain.

The other parts of the present paper are arranged
as follows. In Section 2 we derive the first kind
Fredholm intergral equation along a given arti-
ficial circle. In Section 3 we consider a direct
regularization of the first kind Fredholm intergral
equation. Then, we derive a two-point boundary
value problem, which helps us to derive a semi-
analytical solution of the second kind Fredholm
intergral equation in Section 4. In Section 5 we
propose by using the conjugate gradient method
to solve the normal linear equations system and
give a criterion to select the regularized parame-

ter. In Section 6 we use some examples to test the
new method, and several contour levels of conju-
gate warping function and normalized shear stress
are plotted. Finally, we give conclusions in Sec-
tion 7.

2 The first kind Fredholm integral equation

It is known that the torsion of an elastic bar comes
to Dirichlet’s problem for the Poisson equation

Δφ (x,y) = −2, (x,y) ∈ Ω, (1)

φ (x,y) = 0, (x,y) ∈ Γ, (2)

where φ is the stress function and Γ is the contour
which enclosed the bar’s cross-section in a plane
domain Ω � (x,y).

If one introduces the conjugate warping function
u(x,y) [Little (1973)]:

u(x,y) = φ (x,y)+
1
2
(x2 +y2), (3)

then one will obtain the following Dirichlet’s
problem for the Laplace equation

Δu(x,y) = 0, (x,y) ∈ Ω, (4)

u(x,y) =
x2 +y2

2
, (x,y) ∈ Γ. (5)

The warping function v together with u constitute
an analytic complex function, and they satisfy the
Cauchy-Riemann equations:

vx = uy, vy = −ux. (6)

If the bar is oriented along the z-direction and as-
sume that the shear modulus is G and β is the
twist angle per unit length, then the shear stresses
in the cross-section along the x- and y-direction
are, respectively,

τxz = Gβ (uy−y), τyz = −Gβ (ux−x). (7)

It is easy to derive

τ :=

√
τ2

xz +τ2
yz

Gβ
=

√
(ur − r)2 +u2

θ /r2, (8)

where τ is a normalized shear stress.
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In this paper we will propose a new method to
solve the problem which consists of the Laplace
equation and Cauchy data on a non-circular
boundary:

Δu = urr +
1
r

ur +
1
r2 uθθ = 0, (9)

u(ρ ,θ ) = h(θ ), 0 ≤ θ ≤ 2π , (10)

where h(θ ) is a given function, and r = ρ(θ ) is a
given contour describing the shape of the bar. The
contour Γ by using the polar coordinates is given
by Γ = {(r,θ )|r = ρ(θ ), 0 ≤ θ ≤ 2π}. Here, we
do not require to impose any smooth requirement
on the shape function ρ(θ ), in addition the conti-
nuity.

We replace Eq. (10) by the following boundary
condition:

u(R0,θ ) = f (θ ), 0 ≤ θ ≤ 2π , (11)

where f (θ ) is an unknown function to be deter-
mined, and R0 is a given positive constant, such
that the disk D = {(r,θ )|r≤ R0, 0 ≤ θ ≤ 2π} can
cover the entire domain Ω of the considered prob-
lem. Specifically, we may let

R0 = ρmax = max
θ∈[0,2π]

ρ(θ ). (12)

Here, the basic idea is to replace the original
boundary condition (10) on a complicated con-
tour by a simpler boundary condition (11) on a
specified circle, which being much simpler than
the given contour. However, the price we should
pay is that we require to derive a new equation to
solve f (θ ). If this task can be performed and if
the function f (θ ) is available, then the advantage
of this replacement is that we have a closed-form
solution in terms of the Poisson integral:

u(r,θ ) =
1

2π

∫ 2π

0

R2
0 − r2

R2
0−2R0r cos(θ −ξ )+ r2

· f (ξ )dξ . (13)

In the above, R0 is the radius of an artificial cir-
cle, and f (θ ) is an unknown function to be de-
termined on this artificial circle. Because R0 is
uniquely determined by the contour of the consid-
ered problem by Eq. (12), we do not worry how to
choose a suitable R0.

By utilizing the technique of separation of vari-
ables we are apt to write a Fourier series expan-
sion of u(r,θ ) satisfying Eqs. (9) and (11):

u(r,θ ) = a0

+
∞

∑
k=1

[
ak

(
r

R0

)k

coskθ +bk

(
r

R0

)k

sinkθ

]
,

(14)

where

a0 =
1

2π

∫ 2π

0
f (ξ )dξ , (15)

ak =
1
π

∫ 2π

0
f (ξ )coskξdξ , (16)

bk =
1
π

∫ 2π

0
f (ξ ) sinkξdξ . (17)

By imposing the condition (10) on Eq. (14) we
obtain

a0 +
∞

∑
k=1

[
ak

(
ρ
R0

)k

coskθ +bk

(
ρ
R0

)k

sinkθ

]

= h(θ ). (18)

Substituting Eqs. (15)-(17) into Eq. (18) leads to
the first kind Fredholm integral equation:∫ 2π

0
K(θ ,ξ ) f (ξ )dξ = h(θ ), (19)

where

K(θ ,ξ ) =
1

2π

+
1
π

∞

∑
k=1

Bk [coskθ coskξ + sinkθ sinkξ ] (20)

is a kernel function, and

Bk(θ ) :=
ρk(θ )

Rk
0

. (21)

Up to this point, we have derived an integral
equation (19), whose kernel has a special struc-
ture of the degenerate type. If the coefficients
Bk are constants, from Eq. (19) we can derive
a closed-form solution for f (θ ). Regrettably,
Bk are not constants and usually they are the
functions of θ due to the non-circular nature of
the considered problem. Although we have en-
countered this difficulty, it would be appreciated
this type formulation in the below.
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3 The second kind Fredholm integral equa-
tion

In order to obtain f (θ ) we have to solve the first
kind Fredholm integral equation (19). However,
this integral equation is known to be ill-posed. We
assume that there exists a regularized parameter
α > 0, such that Eq. (19) can be improved by

α f (θ )+
∫ 2π

0
K(θ ,ξ ) f (ξ )dξ = h(θ ), (22)

which is known as one of the second kind Fred-
holm integral equation. The above regularization
method to obtain a regularized solution by solving
the singularly perturbed equation is usually called
the Lavrentiev regularization method [Lavrentiev
(1967)].

Here, we first prove that the kernel function in
Eq. (22) is integrable. By definition (20),

|K(θ ,ξ )| ≤ 1
2π

+
1
π

∞

∑
k=1

|coskθ coskξ + sinkθ sinkξ | (23)

can be achieved, because of ρ ≤ R0 by Eq. (12).
For each k, the term |coskθ coskξ + sinkθ sinkξ |
is an integrable function on [0,2π ]× [0,2π]. The
linear combination of integrable functions is also
an integrable function, due to the linearity of L2

space; hence, the right-hand side of Eq. (23) is
integrable. This implies that K(θ ,ξ ) is an inte-
grable function, such that K(θ ,ξ ) ∈ L2

[0,2π]×[0,2π ].

In addition, we suppose that h(θ )/α ∈ L2
[0,2π] for

some α > 0. This requirement is always feasible,
if the function h(θ ) ∈ L2

[0,2π ], which can be satis-
fied for the most physical applications.

Then, by employing the second Fredholm integral
theorem [Mikhlin (1964)], it asserts that Eq. (22)
has a unique solution given by

f (θ ) =
1
α

h(θ )−
∫ 2π

0
H(θ ,ξ )

1
α

h(ξ )dξ , (24)

where H(θ ,ξ ) is a resolvent kernel.

In general, it is also difficult to find the resolvent
kernel function H(θ ,ξ ), since H(θ ,ξ ) itself must
satisfy a resolvent integral equation. We will pro-
pose a constructive method to solve Eq. (22) semi-
analytically. For this purpose, we assume that the

kernel function can be approximated by m terms
with

K(θ ,ξ ) =
1

2π

+
1
π

m

∑
k=1

Bk [coskθ coskξ + sinkθ sinkξ ] . (25)

This assumption is for the convenience of our
derivation, but is not an essential one.

By inspection we have

K(θ ,ξ ) = P(θ ) ·Q(ξ ), (26)

where

P(θ ) :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
B1 cosθ
B1 sinθ

B2 cos2θ
B2 sin2θ

...
Bm cosmθ
Bm sinmθ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Q(ξ ) :=
1
π

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2

cosξ
sinξ

cos2ξ
sin2ξ

...
cosmξ
sinmξ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(27)

are 2m+1-vectors. The dot between P and Q de-
notes the inner product, which is sometimes writ-
ten as PTQ for convenience, where the superscript
T signifies the transpose.

With the aid of Eq. (26), Eq. (22) can be decom-
posed as

α f (θ )+
∫ θ

0
PT(θ )Q(ξ ) f (ξ )dξ

+
∫ 2π

θ
PT(θ )Q(ξ ) f (ξ )dξ = h(θ ). (28)

Let us define

u1(θ ) :=
∫ θ

0
f (ξ )Q(ξ )dξ , (29)

u2(θ ) :=
∫ θ

2π
f (ξ )Q(ξ )dξ , (30)

and then Eq. (28) can be expressed as

α f (θ )+PT(θ )[u1(θ )−u2(θ )] = h(θ ). (31)



Elastic Torsion Bar with Arbitrary Cross-Section Using the Fredholm Integral Equations 35

Taking the differentials of both Eqs. (29) and (30)
with respect to θ , we obtain

u′
1(θ ) = Q(θ ) f (θ ), (32)

u′
2(θ ) = Q(θ ) f (θ ). (33)

Inserting Eq. (31) for f (θ ) into the above two
equations we obtain

αu′
1(θ ) = Q(θ )PT(θ )[u2(θ )−u1(θ )]

+ h(θ )Q(θ ), (34)

αu′
2(θ ) = Q(θ )PT(θ )[u2(θ )−u1(θ )]

+ h(θ )Q(θ ), (35)

u1(0) = 0, u2(2π) = 0, (36)

where the last two conditions follow from
Eqs. (29) and (30) immediately. The above
equations constitute a two-point boundary value
problem.

4 Semi-analytical solution

In this section we will find a semi-analytical so-
lution of f (θ ). From Eqs. (32) and (33) it can be
seen that u′

1 = u′
2, which means that

u1 = u2 +c, (37)

where c is a constant vector to be determined. By
using the second condition in Eq. (36) we find that

u1(2π) = u2(2π)+c = c. (38)

From Eqs. (29) and (38) it follows that

c =
∫ 2π

0
f (ξ )Q(ξ )dξ , (39)

whose mathematical meaning is that c is a vector
of the Fourier coefficients of the unknown func-
tion f (θ ).

Substituting Eq. (37) into (34) we have

αu′
1(θ ) = h(θ )Q(θ )−Q(θ )PT(θ )c. (40)

Integrating the above equation and using the first
condition in Eq. (36) it follows that

αu1(θ ) =
∫ θ

0
h(ξ )Q(ξ )dξ −

∫ θ

0
Q(ξ )PT(ξ )dξc.

(41)

Taking θ = 2π in the above equation and im-
posing the condition (38), we obtain a governing
equation for c:

Rc =
∫ 2π

0
h(ξ )Q(ξ )dξ , (42)

where

R := αI2m+1 +
∫ 2π

0
Q(ξ )PT(ξ )dξ (43)

is a constant (2m+1)× (2m+1) matrix.

By Eqs. (39) and (42) we have

∫ 2π

0
f (ξ )Q(ξ )dξ = R−1

∫ 2π

0
h(ξ )Q(ξ )dξ , (44)

which describes the relation between the Fourier
coefficients of two boundary functions f (θ ) and
h(θ ).

On the other hand, from Eqs. (31) and (37) we
have

α f (θ ) = h(θ )−c ·P(θ ). (45)

For each selected α , after obtaining c by numer-
ical method, we can use Eq. (45) to calculate the
boundary function f (θ ) along an artificial circle
with radius R0, from which we can insert any
specified (r,θ ) into the series solution (14) up to
k = m to calculate u(r,θ ).

By inserting

ur =
m

∑
k=1

(
kak

rk−1

Rk
0

coskθ +kbk
rk−1

Rk
0

sinkθ
)

, (46)

uθ

r
=

m

∑
k=1

(
kbk

rk−1

Rk
0

coskθ −kak
rk−1

Rk
0

sinkθ
)

(47)

into Eq. (8) we can calculate the normalized shear
stress. It can be seen that the present approach
has a great advantage to derive the semi-analytical
solutions of both the conjugate warping function
and shear stresses.
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From Eq. (42), it is straightforward to write

c = R−1
∫ 2π

0
h(ξ )Q(ξ )dξ . (48)

Inserting the above equation into Eq. (45) we ob-
tain

f (θ ) =
1
α

h(θ )−
∫ 2π

0
P(θ ) ·R−1Q(ξ )

1
α

h(ξ )dξ .

(49)

Upon viewing P(θ ) ·R−1Q(ξ ) as an approxima-
tion of the resolvent kernel H(θ ,ξ ), we indeed
provide a numerical solution of Eq. (22) as speci-
fied in Section 3.

In summary, the present method used a regular-
ized integral equation to solve the boundary func-
tion f (θ ) along an artificial circle, which just en-
closed the bar’s cross-section. Then, by using
the Fourier series solutions to obtain the potential
function and shear stresses. In this sense, we call
the new method a meshless regularized integral
equation method (MRIEM).

5 The conjugate gradient method

Given the boundary function h(θ ), the right-hand
side of Eq. (42) can be evaluated by, for example,
a trapezoidal quadrature. Hence, from Eq. (42) we
obtain a linear equations system with R calculated
by Eq. (43). The R may be not a positive definite
matrix. Therefore, instead of Eq. (42) we consider
the normal equation:

Ac = b, (50)

where

A := RTR, (51)

b = RT
∫ 2π

0
h(ξ )Q(ξ )dξ . (52)

Eq. (50) is better than Eq. (42), since A is positive
definite.

An effective method to solve linear equations is
the conjugate gradient method, which enhances
the searching direction of minimum by imposing
the orthogonality of the residual vectors at each
different iterative step [Jacoby, Kowalik and

Pizzo (1972)]. The algorithm of conjugate
gradient method can be summarized as follows:

(i) Give an initial c0.

(ii) Calculate r0 = b−Ac0 and p1 = r0.

(iii) For k = 1,2 . . . we repeat the following calcu-
lations:

ηk =
‖rk−1‖2

pT
k Apk

, (53)

ck = ck−1 +ηkpk, (54)

rk = rk−1−ηkApk, (55)

rk =
‖rk‖2

‖rk−1‖2 , (56)

pk+1 = pk + rkpk. (57)

If ck converges according to a given stopping cri-
terion:

‖ck+1−ck‖ < ε , (58)

then stop; otherwise, go to step (iii).

It is known that for the Laplace equation the max-
imum and minimum of u are occurred on the
boundary. This point can be employed to derive
an efficient criterion to select a suitable regular-
ized parameter α . Let

ρmin = min
θ∈[0,2π]

ρ(θ ). (59)

Then, for each given boundary ρ(θ ) the minimum
of u along the contour is given by the boundary
data in Eq. (5) with

umin =
1
2

ρ2
min. (60)

When we insert the value r = ρmin in the numer-
ical solution, we obtain u(ρmin,θ ), of which we
require that the minimum of u(ρmin,θ ) obtained
from the numerical solution is coincident with the
one in Eq. (60); otherwise, we may adjust the reg-
ularized parameter α until the correct minimum is
obtained.
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Table 1: Comparison of exact and numerical solutions of u

x y u-exact û-CBEM |εu|(%)
CBEM

û-PIES |εu|(%)PIES û-MRIEM |εu|(%)
MRIEM

-0.5 0.0 0.645833 0.6557 1.53 0.64585 0.00310 0.645833 0
0.0 0.0 0.666667 0.6763 1.44 0.66668 0.00150 0.666664 0.00045
0.5 0.0 0.687500 0.6969 1.37 0.68751 0.00145 0.687493 0.00102
1.0 0.0 0.833333 0.8417 1.01 0.83336 0.00360 0.833318 0.00180
1.5 0.0 1.229167 1.2302 0.08 1.22809 0.08786 1.229137 0.00244
-0.5 0.5 0.708333 0.7180 1.36 0.70833 0 0.708332 0.00014
0.0 0.5 0.666667 0.6763 1.44 0.66668 0.00300 0.666665 0.00030
0.5 0.5 0.625000 0.6347 1.55 0.62443 0.09120 0.624998 0.00032
-0.5 1.0 0.895833 0.9046 0.98 0.89594 0.01228 0.895830 0.00033

Table 2: Comparison of exact and numerical solutions of τ

x y τ-exact τ̂-BEM |ετ |(%)
BEM

τ̂-CVBEM |ετ |(%)
CVBEM

τ̂-MRIEM |ετ |(%)
MRIEM

-
√

3/3 0.0 0.8660 0.869 0.346 0.953 10 0.8657 0.035
-
√

3/3 0.15 0.8465 0.847 0.059 0.842 0.532 0.8464 0.012
-
√

3/3 0.325 0.7746 0.775 0.052 0.763 1.498 0.7746 0
-
√

3/3 0.525 0.6273 0.630 0.43 0.621 1.004 0.6273 0
-
√

3/3 0.75 0.3789 0.380 0.284 0.404 6.624 0.3790 0.026

6 Numerical examples

6.1 An elliptical cross-section

At first let us consider the torsion of a bar whose
cross-section is an ellipse with semiaxes a and
b, and the contour in the polar coordinates is de-
scribed by

ρ(θ ) =
ab√

a2 sin2 θ +b2 cos2 θ
. (61)

For this case we have a boundary condition

u(ρ ,θ ) = h(θ ) =
a2b2

2(a2 sin2 θ +b2 cos2 θ )
. (62)

The exact solution of u is known to be [Timo-
shenko and Goodier (1961)]

u(r,θ ) =
a2b2

a2 +b2 +
a2 −b2

2(a2 +b2)
r2 cos2θ . (63)

We have applied the numerical method MRIEM
on this example. The parameters used in this
calculation are m = 10, a = 2, b = 1, and α =
2.1× 10−6, and only nine iterations are used to
calculate c, which starting from an initial c = 0
under a stopping criterion with ε = 10−8.

In Fig. 1(a) the numerical result of u(r,θ ) at r = 1
is compared with the exact one, which is obtained
from Eq. (63) by inserting r = 1. The numerical
error as shown in Fig. 1(b) can be seen in the order
of 10−6 and the numerical solution is very accu-
rate. The major part of the numerical error is due
to the numerical integrations of Eqs. (15)-(17), of
which we have used 150 subintervals in the trape-
zoidal quadratures.

6.2 An equilateral triangle cross-section

Let us consider the torsion of a bar whose cross-
section is an equilateral triangle with length a of
the vertical line as shown in Fig. 2(a). The contour
in the polar coordinates can be described by

ρ(θ ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a
3sin(θ +π/6)

0 ≤ θ < 2π
3 ,

−a
3cosθ

2π
3 ≤ θ < 4π

3 ,

−a
3sin(θ −π/6)

4π
3 ≤ θ < 2π .

(64)

The exact solutions are known to be [Hromadka
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Figure 1: For an elliptical bar (a) comparing nu-
merical solution with exact solution, and (b) plot-
ting the numerical error.

and Lai (1987)]

u(x,y) =
1
2a

(x3 −3xy2)+
2a2

27
, (65)

τxz = −Gβ
(

y+
3xy
a

)
, (66)

τyz = Gβ
(

x+
3y2 −3x2

2a

)
. (67)

In Table 1 we present the exact solutions com-
puted from Eq. (65) at several different points
and the approximated results obtained by a
well-known method–CBEM [Hromadka and Lai
(1987)], the results obtained by Zieniuk (2003)
with the parametric integral equation system
(PIES), and also by our numerical method–
MRIEM, of which a = 3, m = 15, α = 1.03×
10−5 and the stopping criterion with ε = 10−8

were used in the calculations. Table 1 also in-
cludes the relative errors |εu| = |(u− û)/u|. It is
evident that the numerical method MRIEM can
calculate the functions û, which are much accu-
rate than that of the CBEM and are also better
than the PIES. We also plotted the contour curves
of the normalized shear stress in Fig. 2(a). They
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Figure 2: For an equilateral triangular bar with
a = 3 the contour levels of shear stress were plot-
ted in (a), and (b) plotting the numerical error.

are almost coincident with the exact results calcu-
lated from Eqs. (66) and (67).

In Fig. 2(b) the numerical result of u(r,θ ) at r = 1
is compared with the exact one, which is obtained
from Eq. (65) by inserting x = cosθ and y = sinθ .
The numerical error as shown in Fig. 2(b) is in the
order of 10−6 and the numerical solution is very
accurate.

Now, we turn our attention to the comparisons of
the normalized shear stress defined by Eq. (8). At
several points at the bottom of the triangular with
a =

√
3, the exact solutions of shear stress are ob-

tained by substituting Eqs. (66) and (67) and in-
serting the different (x,y) as shown in Table 2 into
Eq. (8). The solutions with CVBEM and with
BEM are obtained by Aleynikov and Stromov
(2004). Our results marked by MRIEM are calcu-
lated by inserting Eqs. (46) and (47) into Eq. (8),
where we use m = 25 and α = 1.1×10−4. Table 2
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also includes the relative errors |ετ |= |(τ− τ̂)/τ |.
It can be seen that the numerical solutions with
MRIEM are much better than the other two meth-
ods.
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Figure 3: For an epitrochoid bar with a = 1 and
b = 1 the contour levels of conjugate warping
function were plotted in (a), and the contour levels
of shear stress were plotted in (b).

6.3 The epitrochoid-shape bars

Let us consider a more complex torsion problem
of the epitrochoid-shape bar described by

ρ(θ ) =
√

(a+b)2 +1−2(a+b)cos(aθ/b),
(68)

x(θ ) = ρ cosθ , y(θ ) = ρ sinθ , (69)
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Figure 4: For an epitrochoid bar with a = 2 and
b = 1 the contour levels of conjugate warping
function were plotted in (a), and the contour levels
of shear stress were plotted in (b).

which is equipped with a boundary condition

u(ρ ,θ ) = h(θ )

=
1
2
[(a+b)2 +1−2(a+b)cos(aθ/b)]. (70)

For this problem we have no closed-form solu-
tion. Let a = 1,2,3 and b = 1 we can apply the
MRIEM on this problem. For a = 1,b = 1, the
parameters used are m = 25 and α = 0.0025. For
a = 2,3 and b = 1, the parameters used are m = 25
and α = 0.002. In all these calculations the stop-
ping criterion with ε = 10−4 was used.

For each case the contour levels of u and nor-
malized shear stress τ are plotted sequentially in
Figs. 3-5. The values of u plotted are between
the theoretical minimum and maximum given by
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Figure 5: For an epitrochoid bar with a = 3 and
b = 1 the contour levels of conjugate warping
function were plotted in (a), and the contour levels
of shear stress were plotted in (b).

umin = ρ2
min/2 and umax = ρ2

max/2.

6.4 A kite-shaped bar

Then, let us consider the torsion of a bar whose
cross-section is a kite-shape described by

ρ(θ ) =√
(0.6cosθ +0.3cos2θ −0.2)2 +0.36sin2 θ ,

(71)

x(θ ) = ρ cosθ , y(θ ) = ρ sinθ . (72)

For this case we have a boundary condition

u(ρ ,θ ) = h(θ ) =
1
2
[(0.6cosθ +0.3cos2θ −0.2)2 +0.36sin2 θ ].

(73)

By applying the MRIEM on this problem with
m = 25 and α = 0.0025, we have plotted the
contour levels of u and τ in Fig. 6(a) for u =
1.4,1.8,2.2,2.6,3.0, and in Fig. 6(b) for τ =
0.5,1,2,2.5.
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Figure 6: For a kite shaped bar the contour levels
of conjugate warping function were plotted in (a),
and the contour levels of shear stress were plotted
in (b).

6.5 A hypotrochoid bar

Finally, let us consider a hypotrochoid bar de-
scribed by

ρ(θ ) =√
(a−b)2 +c2 +2(a−b)ccos(aθ/b), (74)

x(θ ) = ρ cosθ , y(θ ) = ρ sinθ . (75)

We have applied the MRIEM on this example
with a = 4, b = 1 and c = 0.5, whose contour is
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Figure 7: For a hypotrochoid bar with a = 4, b = 1
and c = 0.5 the contour levels of conjugate warp-
ing function were plotted in (a), and the contour
levels of shear stress were plotted in (b).

shown in Fig. 7. Under m = 30 and α = 0.0027,
the numerical results of the contour levels of u and
τ are plotted in Fig. 7(a) for u = 3.7,4.3,5.0,5.8,
and in Fig. 7(b) for τ = 0.5,1,1.5,1.8.

7 Conclusions

In this paper we have proposed a new method
of MRIEM to calculate the solutions of Laplace
equation in the arbitrary plane domains; espe-
cially, it is very useful for the elastic torsion
problems with complicated shapes of the cross-
section. It was demonstrated that only a few
Fourier terms is required in the calculations; for
most examples, m = 30 is enough. In the regu-
larized sense, we could find a semi-analytical so-
lution of the boundary function on an artificial

circle, and thus by the Fourier series expansion
we can calculate the conjugate warping function
and shear stress at any point inside the domain of
the considered problem. The conjugate gradient
method together with a suitable criterion to pick
up the regularized parameter was used to quickly
calculate the unknown boundary function on an
artificial circle. The numerical examples show
that the effectiveness of the new method and the
accuracy is very good by comparing with the ex-
act solutions.
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