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A New Locking Free Higher Order Finite Element Formulation for
Composite Beams.

M.V.V.S. Murthy1, S. Gopalakrishnan2,3 and P.S. Nair4

Abstract: A refined 2-node, 7 DOF/node beam
element formulation is presented in this paper.
This formulation is based on higher order shear
deformation theory with lateral contraction for
axial-flexural-shear coupled deformation in asym-
metrically stacked laminated composite beams. In
addition to axial, transverse and rotational degrees
of freedom, the formulation also incorporates the
lateral contraction and its higher order counter-
parts as degrees of freedom. The element shape
functions are derived by solving the static part
of the governing equations. The element consid-
ers general ply stacking and the numerical results
shows that the element exhibits super convergent
property. The efficiency of the element in cap-
turing both the static and dynamic inter-laminar
stresses is demonstrated. The accuracy of the ele-
ment to capture free vibration and wave propoga-
tion responses with small problem sizes is also
demonstrated.

Keyword: Laminated composite, Higher or-
der theory, Shear deformation, lateral contrac-
tion, Asymmetric ply stacking, Wave propoga-
tion, High frequency.

1 Introduction

Fiber reinforced laminated composite construc-
tions are in extensive use in many structural ap-
plications in aerospace, automotive and civil en-
gineering industry. The nature of laminated con-
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struction gives rise to higher ratio of extensional
moduli to shear moduli. Composites usually fail
due to delamination mode of failure. This is
caused due to interlaminar stresses (both normal
and shear) developed in the composite. The pres-
ence of axial-bending coupling in composites ac-
celerates the process of delamination formation.
Also minute discontinuties can cause the delam-
intation in composite. Prediction of interlami-
nar stresses in beams ( τxz and σzz ) is one of
the challenging tasks in the analysis of compos-
ites. There are three well known beam theories
available for analysis, namely the Euler-Bernoulli
Theory (EBT), the Timoshenko beam theory also
known as First order Shear deformation Theory
(FSDT) and the Higher order Shear Deformation
Theory (HSDT). In the EBT, the displacement
field is such that it gives both τxz and σzz equal
to zero. In FSDT, although τxz is not equal to
zero, the solution always yields constant interlam-
inar stress, which is not the true state. HSDT,
although gives better prediction of interlaminar
stresses compared to FSDT, it still does not con-
sider the lateral contraction effects due to Pois-
son’s ratio, which is one of the important parame-
ter in contributing to the interlaminar stresses.

Alternately, the layer-wise concept can be consid-
ered to determine the interlaminar stresses accu-
rately. Here the main disadvantage is that the de-
grees of freedom involved is directly dependent
on the number of layers and hence as the layers
grow, the cost of computation also proportionally
increases. Pioneering works in this aspect can
be found in Kim and Atluri (1994) and Reddy
(1997).

To further understand the need for higher order
finite element(FE) formulation, the three existing
theories are reviewed here. EBT theory is suited
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for only long thin beams, where shear deforma-
tion is not significant. Since the slopes are de-
rived from transverse displacements, the FE for-
mulation, it requires C1 continuity. FSDT on
the other hand requires computation of shear cor-
rection factors, which are in many cases quite
cumbersome. Generally the method employed
for the computation of shear correction factor
is by equilibrating the calculated strain energy
to the actual strain energy as shown in Kouri
and Atluri (1993). Whitney (1973) derived the
shear correction factors for composite with gen-
eral ply-stacking for static analysis, while for dy-
namic analysis Doyle (1997) & Mahapatra and
Gopalakrishnan (2003) have derived the same for
isotropic and composite waveguides respectively.
Introduction of shear deformation destroys the as-
sumption of plane sections remaining plane af-
ter bending and hence in FSDT, the slope is in-
terpolated independently and not derived from
transverse displacement. Hence, C0 continuity
is sufficient for FE formulation. However, when
FSDT element is used for thin beam cases, the
element will give responses that are many order
smaller than the correct response. This problem
is called the shear locking problem and FSDT fi-
nite elements require special treatment to allevi-
ate this problem. HSDT proposed by Heyliger
and Reddy (1988) do not require shear correction
factor as it approximates the shear stresses across
the beam depth accurately. Again, this theory
interpolates the slopes independent of transverse
displacement. However, higher order degrees of
freedom are required to be introduced to take care
of improved interlaminar stress predictions. As
before, this element will lock if proper care is not
taken. The effect of locking (both shear locking
and the thickness locking) has been extensively
dealt by Li, Soric, Jarak, and Atluri (2005) based
on the meshless local Petro-Galerkin formualtion.
The simplest explanation of locking and the vari-
ous means to elminate it are discussed by Atluri
(2005).

All the theories (EBT, FSDT and HSDT), how-
ever do not take into account, the effect of lat-
eral contraction, which contributes to the trans-
verse normal stress(σzz). This stress is required to

model the peeling effect of the laminate. There
are several HSDT reported in the literature. In
the above paragraphs, we have discussed only the
HSDT proposed by Heyliger and Reddy (1988).
This is because we have used the results from
the above theory for comparison of results ob-
tained by the formulation presented in this pa-
per. However, HSDT proposed by Lo, Chris-
tensen, and Wu (1977a,b) considers the effect of
lateral contraction. Vinayak, Prathap, and Na-
ganarayana (1996a,b) have formulated beam el-
ements based on the above theory using field con-
sistent approach.

As mentioned before, one of the major problems
encountered by C0 beam elements is the shear
locking problem when used for thin beams. This
problem is well researched and there are many pa-
pers reported in the archival literature. Methods
like assumed strain field and reduced integration
has been used in the past. A locking free hybrid
assumed-strain, plate element is derived within
the framework of the FSDT and is presented by
Cazzani, Garusi, Tralli, and Atluri (2005). Here
the stresses are derived by integrating the equilib-
rium equations in each lamina. Similarly, Koiter’s
asymptotic method is combined with the assumed
strain solid shell element formulation for post-
buckling analysis of sandwich structures which
has been presented by JihanKim, YongHyupKim,
and Lee (2004) and is shown that this element
is free of locking behaviour. Other methods like
choosing an appropriate polynomial for the field
variables, a priori, locking can be eliminated. The
approach employed here is that instead of choos-
ing an arbitrary polynomial for the field variable
we derive this by solving the static part of the
governing differential equations. The solutions
thereby, is then used as interpolating function for
element formulation. As the derived polynomial
satisfies the govering differential equations, lock-
ing is automatically eliminated. In addition, many
constants in the interpolating functions of the field
variables becomes functions of material and sec-
tional properties of the beam. In this paper, we
present this novel approach to formulate a higher
order 2-node composite beam element that has 7
degrees of freedom per node, out of which 4 are
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higher order degrees of freedom, which also in-
cludes the lateral contraction, while other three
represent the usual axial, transverse and rotation
degrees of freedom. The major difference is that
the equilibrium is satisfied by assuming suitable
displacement field for the four higher order de-
grees of freedom and equilibrium equations corre-
sponding to axial,transverse and rotation degrees
of freedom are solved exactly.

The paper is organized as follows. First the gov-
erning equations for higher order composite beam
is derived and this is followed by the finite ele-
ment formulation and then a detailed section on
Numerical results are presented where the ele-
ment is tested for various problems in statics, free
vibration and wave propogation problems. The
results from the formulated element are compared
with 2D FEM and also with results available in lit-
erature. Wave solutions are compared with 2D FE
solution.

2 Governing Differential Equations

Considering the HSDT as reported by Lo, Chris-
tensen, and Wu (1977a), the axial and trans-
verse displacement fields are expressed as, {d} =
{U(x,y, z, t),W(x,y, z, t)}T

U(x,y, z, t) = u0(x, t)+zθ (x, t)+z2θ (x, t)+z3θ (x, t) ,

(1a)

W(x,y, z, t)= w0(x, t)+zψ(x, t)+z2ψ(x, t) , (1b)

where U and W are the displacements in X and
Z directions at any material point in the (X ,Z)
plane. u and w are the longitudinal and trans-
verse displacements along the the beam reference
plane (X ,Y ). θ is the rotation of the normal to
the cross-section about Y -axis z is the depth of the
material point measured from the beam reference
plane along positive Z-axis. θ , θ represents the
warping effect and ψ and ψ represents the con-
traction/expansion effect as shown in Fig. 1.

The strains can be written as,

εxx =
∂u
∂x

+ z
∂θ
∂x

+ z2 ∂θ
∂x

+ z3 ∂θ
∂x

(2a)

εzz = ψ +2zψ (2b)

Figure 1: Beam cross-section in Y −Z plane.

γxz = θ +
∂w
∂x

+ z(2θ +
∂ψ
∂x

)+ z2(3θ +
∂ψ
∂x

) .

(2c)

The constitutive relation is derived from the con-
stitutive law assuming plane stress condition in
the X − Z plane, The constitutive relation for a
general orthotropic laminate is given by,⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σxx

σyy

σzz

τyz

τxz

τxy

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

Q11 Q12 Q13 0 0 Q16

Q21 Q22 Q23 0 0 Q26
Q31 Q32 Q33 0 0 Q36

0 0 0 Q44 Q45 0
0 0 0 Q45 Q55 0

Q16 Q26 Q36 0 0 Q66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

εxx

εyy

εzz

γyz

γxz

γxy

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

,

(3)

The expressions for Qi j, transformed elasticity
matrix from material coordinate to the laminate
coordinate in the X −Z plane can be found in stan-
dard texts (e.g. Reddy (1997)) and is given as,
Q11 = Q11 c4−4 Q16 c3 s+2 (Q12+2 Q66) c2 s2−
4 Q26 c s3 +Q22 s4

Q12 = Q12 c4 +2 (Q16−Q26) c3 s+(Q11 +Q22−
4 Q66) c2 s2 +
2 (Q26−Q16) c s3 +Q12 s4

Q13 = Q13 c2 −2 Q36 c s+Q23 s2
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Q16 = Q16 c4 + (Q11 − Q12 − 2 Q66) c3 s +
3 (Q26−Q16) c2 s2 +
(2 Q66 +Q12 −Q22) c s3−Q26 s4

Q22 = Q22 c4 +4 Q26 c3 s+2 (Q12+2 Q66) c2 s2 +
4 Q16 c s3 +Q11 s4

Q23 = Q23 c2 +2 Q36 c s+Q13 s2

Q26 = Q26 c4 + (Q12 − Q22 + 2 Q66) c3 s +
3 (Q16−Q26) c2 s2 +
(Q11−Q12 −2 Q66) c s3−Q16 s4

Q33 = Q33

Q36 = (Q13−Q23) c s+Q36 (c2 − s2)
Q44 = Q44 c2 +Q55 s2 +2 Q45 c s
Q45 = Q45 (c2 − s2)+(Q55−Q44) c s
Q55 = Q55 c2 +Q44 s2 −2 Q45 c s
Q66 = 2 (Q16 −Q26) c3 s +(Q11 + Q22−2 Q12 −
2 Q66) c2 s2 +
2 (Q26−Q16) c s3 +Q66 (c4 + s4)
where c = cos(θ ) and s = sin(θ ).
Assuming that the beam deforms in the X − Z
plane, we have σyy, τyz and τxy are zero. From
Eq. 3 we have,

σyy = 0 → [
Q11 Q22 Q23 Q26

]
⎧⎪⎪⎨
⎪⎪⎩

εxx

εyy

εzz

γxy

⎫⎪⎪⎬
⎪⎪⎭ = 0

(4a)

τyz = 0 → [
Q44 Q45

]{
γyz

γxz

}
= 0 (4b)

τxy = 0 → [
Q16 Q26 Q36 Q66

]
⎧⎪⎪⎨
⎪⎪⎩

εxx

εyy

εzz

γxy

⎫⎪⎪⎬
⎪⎪⎭ = 0

(4c)

Equations 4a-4c and Eq. 3 yield,

εyy =
(Q16Q26−Q12Q66)

(Q22Q66−Q
2
26)

εxx+
(Q26Q36−Q23Q66)

(Q22Q66−Q
2
26)

εzz

(5a)

γyz =
Q45

Q44
γxz (5b)

γxy =
(Q16Q22 −Q12Q26)

(Q
2
26 −Q22Q66)

εxx +
(Q22Q36−Q23Q26)

(Q
2
26 −Q22Q66)

εzz

(5c)

Subsituting equations 5a-5c into Eq. 3 we get the
constitutive matrix as,

⎧⎨
⎩

σxx

σzz

τxz

⎫⎬
⎭ =

⎡
⎣ Q

∗
11 Q

∗
13 0

Q
∗
13 Q

∗
33 0

0 0 Q
∗
55

⎤
⎦

⎧⎨
⎩

εxx

εzz

γxz

⎫⎬
⎭ ,

(6)

where the relations for Q
∗
11,Q

∗
13,Q

∗
33 and Q

∗
55 are,

Q
∗
11 = Q11 +Q12

[
(Q16Q22 −Q12Q26)

(Q
2
26 −Q22Q66)

]

+Q16

[
(Q16Q22−Q12Q26)

(Q
2
26−Q22Q66)

]
(7a)

Q
∗
13 = Q13 +Q12

[
(Q36Q26 −Q23Q66)

(Q22Q66 −Q
2
26)

]

+Q16

[
(Q36Q22−Q23Q26)

(Q
2
26−Q22Q66)

]
(7b)

Q
∗
33 = Q33 +Q23

[
(Q36Q26 −Q23Q66)

(Q22Q66 −Q
2
26)

]

+Q16

[
(Q36Q22−Q23Q26)

(Q
2
26−Q22Q66)

]
(7c)

Q
∗
55 = Q55 −

Q
2
45

Q44
(7d)

The strain energy and kinetic energy are then ex-
pressed as

S =
1
2

∫ ∫
(σxxεxx +σzzεzz +τxzγxz)dAdx ,

T =
1
2

∫ ∫
ρ(U̇

2
+Ẇ

2
)dAdx , (8)

where A is the area of cross-section of the beam.
The Lagrangian is given by,

L = (T −S) , (9)

Using Hamilton’s principle which is given by,

δ
∫ t2

t1
Ldt = 0 (10)
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following seven governing differential equations
are obtained corresponding to seven degrees of
freedom and they can be expressed as

− I0ü− I1θ̈ − I2θ̈ − I3
¨θ +A11

∂ 2u
∂x2 +B11

∂ 2θ
∂x2 +D11

∂ 2θ
∂x2

+F11
∂ 2θ
∂x2 +A13

∂ψ
∂x

+2B13
∂ψ
∂x

= 0; (11a)

− I0ẅ− I1ψ̈ − I2ψ̈ +A55
∂θ
∂x

+2B55
∂θ
∂x

+3D55
∂θ
∂x

+B55
∂ 2ψ
∂x2 +D55

∂ 2ψ
∂x2 +A55

∂ 2w
∂x2 = 0 (11b)

− I1ü− I2θ̈ − I3θ̈ − I4
¨θ +B11

∂ 2u
∂x2 +D11

∂ 2θ
∂x2 +F11

∂ 2θ
∂x2

+H11
∂ 2θ
∂x2 +A13

∂ 2ψ
∂x2 +2D13

∂ 2ψ
∂x2 −A55θ −2B55θ

−3D55θ −B55
∂ψ
∂x

−D55
∂ψ
∂x

−A55
∂w
∂x

= 0 (11c)

− I1ẅ− I2ψ̈ − I3ψ̈ +A55
∂θ
∂x

+2D55
∂θ
∂x

+3F55
∂θ
∂x

+D55
∂ 2ψ
∂x2 +F55

∂ 2ψ
∂x2 +B55

∂ 2w
∂x2 −A13

∂u
∂x

−B13
∂θ
∂x

−D13
∂θ
∂x

−F13
∂θ
∂x

−A33ψ −2B33ψ = 0(11d)

− I2ü− I3θ̈ − I4θ̈ − I5
¨θD11

∂ 2u
∂x2 +F11

∂ 2θ
∂x2 +H11

∂ 2θ
∂x2

+J11
∂ 2θ
∂x2 +D13

∂ψ
∂x

+2F13
∂ψ
∂x

−2B55θ −4D55θ

−6F55θ −2D55
∂ψ
∂x

−2F55
∂ψ
∂x

−2B55
∂w
∂x

= 0(11e)

− I3ü− I4θ̈ − I5θ̈ − I6
¨θF11

∂ 2u
∂x2 +H11

∂ 2θ
∂x2 +J11

∂ 2θ
∂x2

+L11
∂ 2θ
∂x2 +F13

∂ψ
∂x

+2H13
∂ψ
∂x

−3D55θ −6F55θ

−9H55θ −3F55
∂ψ
∂x

−3H55
∂ψ
∂x

−3D55
∂w
∂x

= 0(11f)

− I2ẅ− I3ψ̈ − I4ψ̈D55
∂θ
∂x

+2F55
∂θ
∂x

+3H55
∂θ
∂x

+F55
∂ 2ψ
∂x2 +H55

∂ 2ψ
∂x2 +D55

∂ 2w
∂x2 −2B13

∂u
∂x

−2D13
∂θ
∂x

−2F13
∂θ
∂x

−2H13
∂θ
∂x

−2B33ψ −4D33ψ = 0 (11g)

where (̇ ) indicates temporal derivative. The cross-
sectional stiffness coefficients associated with the
above equations are

[Ai j Bi j Di j Fi j Hi j Ji j Li j] = b
∫ +h/2

−h/2
Qi j

[
1z z2 z3 z4 z5 z6]dz ,

(12)

and similarly the cross-sectional inertial coeffi-
cients are

Ii = b
∫ +h/2

−h/2
ρzidz , i = 0, · · · ,6 . (13)

and the Force Boundary equations at the two ends
(x = 0,L) of the beam are, prescribed as

u0 = u0(prescribed) or

[
A11

∂u
∂x +B11

∂θ
∂x +D11

∂θ
∂x

+F11
∂θ
∂x +A13ψ +2B13ψ

]
(prescribed)

, (14a)

w0 = w0(prescribed) or[
A55θ +2B55θ +3D55θ

+B55
∂ψ
∂x +D55

∂ψ
∂x +A55

∂w
∂x

]
(prescribed)

, (14b)

θ = θ(prescribed) or[
B11

∂u
∂x +D11

∂θ
∂x +F11

∂θ
∂x

+H11
∂θ
∂x +B13ψ +2D13ψ

]
(prescribed)

, (14c)

ψ = ψ(prescribed) or[
B55θ +2D55θ +3F55θ

+D55
∂ψ
∂x +F55

∂ψ
∂x +B55

∂w
∂x

]
(prescribed)

, (14d)

θ = θ (prescribed) or[
D11

∂u
∂x +F11

∂θ
∂x +H11

∂θ
∂x

+J11
∂θ
∂x +D13ψ +2F13ψ

]
(prescribed)

, (14e)

θ = θ (prescribed) or
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[
F11

∂u
∂x +H11

∂θ
∂x +J11

∂θ
∂x

+L11
∂θ
∂x +F13ψ +2H13ψ

]
(prescribed)

, (14f)

ψ = ψ(prescribed) or[
D55θ +2F55θ +3H55θ

+F55
∂ψ
∂x +H55

∂ψ
∂x +D55

∂w
∂x

]
(prescribed)

, (14g)

From equations (11), it is very clear that there ex-
ists a very strong inertial and stiffness coupling in
the behaviour of the beam. We use the governing
equations (11) and the associated force boundary
conditions (14) for the element formulation.

3 Finite Element Formulation

Consider a beam of length L, thickness h and
width b. Each node supports 7 degrees of free-
dom namely the axial degree of freedom u0, the
transverse degree of freedom w0, slope θ , lateral
contraction ψ and higher order degrees of free-

dom θ , θ , and ψ respectively. It is well known
that the introduction to lateral contraction will re-
sult in the exponential (hyperbolic) term being
present in both the axial and transverse displace-
ment field ( Gopalakrishnan (2000), Chakraborty
and Gopalakrishnan (2003)). However these hy-
perbolic terms contribute, very little to the over-
all response. Hence in the present case, we can
assume a linear interpolation functions for higher
order degrees of freedom; which is given by,

θ =C1x+C2; θ =C3x+C4;ψ =C5x+C6; ψ =C7x+C8 .

(15)

The main objective here is to use the above as-
sumed variation and obtain a solution for u0, w0

and θ , such that the equilibrium equations are sat-
isfied. Considering only the static part of the first
3 governing equations we have them as;

+A11
∂ 2u
∂x2 +B11

∂ 2θ
∂x2 +D11

∂ 2θ
∂x2

+F11
∂ 2θ
∂x2 +A13

∂ψ
∂x

+2B13
∂ψ
∂x

= 0 (16a)

A55
∂θ
∂x

+2B55
∂θ
∂x

+3D55
∂θ
∂x

+B55
∂ 2ψ
∂x2 +D55

∂ 2ψ
∂x2 +A55

∂ 2w
∂x2 = 0 (16b)

B11
∂ 2u
∂x2 +D11

∂ 2θ
∂x2 +F11

∂ 2θ
∂x2

+H11
∂ 2θ
∂x2 +A13

∂ 2ψ
∂x2 +2D13

∂ 2ψ
∂x2

−A55θ −2B55θ −3D55θ

−B55
∂ψ
∂x

−D55
∂ψ
∂x

−A55
∂w
∂x

= 0 (16c)

Differentiating Eq. (16c), substituting Eq. (16a)
for ∂2u

∂x2 and Eq. (16b) in Eq. (16c) we get,

∂ 3θ
∂x3 =

(A11F11 −B11D11)
(B2

11−A11D11)
∂ 3θ
∂x3 +

(A11H11−B11F11)
(B2

11−A11D11)
∂ 3θ
∂x3

+
(A11B13 −B11A13)
(B2

11 −A11D11)
∂ 2ψ
∂x2 +

(2A11D13−2B11B13)
(B2

11−A11D11)
∂ 2ψ
∂x2

(17)

Substituting Eq. (15) into Eq. (17), the solution
for θ is given as,

θ = C9
x2

2
+C10x+C11. (18)

Considering Eq. (16a), substituting for the deriva-
tives of θ , θ , θ , ψ , ψ from Eq. (15) and Eq. (18),
the axial displacement variation can be obtained
as,

u0 =−A13

A11
C5

x2

2
− 2B13

A11
C7

x2

2
− B11

A11
C9

x2

2
+C12x+C13

(19)

By substituting for the derivatives of θ , θ , θ , ψ ,
ψ from Eq. (15) and Eq. (18) in Eq. (16b), the
transverse displacement variation can be written
as,

w0 =−C9
x3

6
+(−C10− 2B55

A55
C1− 3D55

A55
C3)

x2

2
+C′

14x+C14.

(20)

where C′
14 and Cj, j=1, · · ·, 14 are arbitrary con-

stants. From equations ( (18) - (20)), we see
tha, slope interpolation is an order lower than
the transverse displacement. This is one of the
primary requirement for the element to be shear
locking free. There are 15 constants in total and
14 boundary conditions, 7 on each node. Hence
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there is a single dependent constant, which needs
to be expressed in terms of other independent con-
stants. Using Eq. (16c) and substituting for all the
functions from Eq. (15), Eq. (18), Eq. (19) and
Eq. (20), the dependent constant C′

14 can be ex-
pressed as,

C′
14 = α1C5+α2C7+α3C9− 2B55

A55
C2− 3D55

A55
C4−C11.

(21)

where,

α1 =
[
−B11A13

A11A55
+

B13

A55
− B55

A55

]
(22a)

α2 =
[
−2B11B13

A11A55
+

2D13

A55
− D55

A55

]
(22b)

α3 =
[
− B2

11

A11A55
+

D11

A55

]
(22c)

Note that the dependent constant is a function of
material and sectional properties of beam. Sub-
stituting for C′

14 in Eq. (20) the final form of the
displacement field equations are given as,

u0 = −A13

A11
C5

x2

2
− 2B13

A11
C7

x2

2

− B11

A11
C9

x2

2
+C12x+C13 (23a)

w0 = −2B55

A55
C1

x2

2
− 2B55

A55
C2x− 2D55

A55
C3

x2

2

− 2D55

A55
C4x+α1C5x

+α2C7x+(α3x− x3

6
)C9−C10

x2

2
−C11x+C14(23b)

θ = C9
x2

2
+C10x+C11 (23c)

ψ = C5x+C6 (23d)

θ = C1x+C2 (23e)

θ = C3x+C4 (23f)

ψ = C7x+C8 (23g)

From equation (23b), we can see that as beam be-
comes thin, in the penalty limit, the shear rigidity

A55 tends to infinity, in which case, we recover the
cubic polynomial interpolating functions of the
Euler-Bernoulli beam. Note that we have 14 inde-
pendent constants Cj, j = 1 , · · · ,14; which needs
7 boundary conditions, to be evaluated at the 2
nodes of the beam in the finite element system so-
lution. It is evident that we have satisfied the static
part of the governing equations.

The displacement field can be expressed as
{u, w, θ , ψ , θ , θ , ψ}T = [Ns]{ue} where [Ns]
is the element shape function matrix in physical
coordinate system and is of the form, [Ns](7×14) =[
[N]u [N]w [N]θ [N]ψ [N]θ [N]θ [N]ψ

]T
. and

{ue}(14×1) is the element nodal displacement vec-
tor.

Using these shape functions the total displace-
ment field can be written as,{

U
W

}
2×1

= [N]2×14{ue}14×1 (24)

where,

[N]2×14 = [Z]2×7[Ns]7×14 =
[

NU
1×14

NW
1×14

]
(25)

and

[Z]2×7 =
[

1 0 z 0 z2 z3 0
0 1 0 z 0 0 z2

]
(26)

Next using the derived shape function, the strain
displacement matrix [B] is obtained, which is
given by,

[B](3×14) =

⎡
⎢⎣

∂ [NU ]
∂x

∂ [NW ]
∂z

∂ [NU ]
∂z + ∂ [NW ]

∂x

⎤
⎥⎦ (27)

The stiffness matrix is given by the usual expres-
sion,

[K]e(14×14) =
∫ L

0

∫
A
[B]T [Q][B]dAdx , (28)

Next the consistent mass matrix is formulated.
We formulate the matrix using the same shape
functions used to derive the stiffness matrix. The
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consistent mass matrix is evaluated as;

[M](14×14) =
∫ L

0

∫
A
[N]T ρ [N]dAdx

= b
∫ L

0

∫ h
2

−h
2

[Ns]T [Z]T ρ [Z][Ns]dx. (29)

the quantity, I = b
∫ h

2
−h
2
[Z]T ρ [Z] is the matrix con-

taining inertia terms given by Eq. (13).

4 Numerical results and discussions

Several numerical experiments are designed to
bring out the essential features of the formulated
element. Although the strong reason for formulat-
ing this locking free element is to show its utility
in accurately capturing the interlaminar stresses,
the versatility of this element is demonstrated for
static, free vibration and wave propagation prob-
lems. The main objective of this section is to
show that the formulated element requires fewer
degrees of freedom to capture the static, free vi-
bration and wave propagation response as com-
pared to many other similar elements reported in
the literature, or in other words, demonstrate its
super convergent property. While static and free
vibration results are compared with the results
published in the literature and 2D FE solutions,
the wave propagation response are compared with
2D FE solutions.

4.1 Static analysis

Here a study based on deflection and stresses are
made with the current element and highlighting
the essential features of the current element com-
pared to that of the other existing elements re-
ported in the literature. In particular locking free
performance of the study is demonstrated.

4.1.1 Static deflection: Shear and thickness
locking studies

As mentioned in the earlier section one of the
major concern in the finite element formulation
based on the shear deformation theories is the
shear locking and thickness locking problems,
which gives deflections that are many order lower
than the actual deflection.
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Figure 2: Convergence rate of the C0 element
compared to the present element for L

h = 5.

Here three different experiments are performed.
First two cases relate to isotropic beams and the
third case is for a composite beam. In the first
case for L/h=5, a cantilever beam with the follow-
ing non-dimensional material and sectional prop-
erties are considered. Young’s modulus, E = 10.0,
width, b = 1.0, ν=0.0 and the non-dimensional tip
load P = 1.0.

The convergence of solution is shown in Fig. 2.
The results are compared with conventional C0

formulated element, employing full integration
for the stiffness matrix. From the figure, we see
that a single element of the present formulation
gives a converged solution.

According to Li, Soric, Jarak, and Atluri (2005),
zero Poisson’s ratio does not address the thickness
locking phenomena. In order to study the formu-
lated element for thickness locking, a beam with
non-zero Poisson’s ratio is considered. The same
material properties as given in Li, Soric, Jarak,
and Atluri (2005) is considered here, which are as
follows, Young’s Modulus E = 1,000,000, length
L = 10, ν = 0.25 and a unit width b = 1 are used.
The beam is a cantilever under tip load P. The re-
sults are compared with the theoretical solutions,
as given in Li, Soric, Jarak, and Atluri (2005),
which is as follows,
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Figure 3: Comparison of the tip displacement of
cantilever beam loaded at the tip.

w =
P(1−ν)

6bEI

[
x2(3L−x)+

3ν
1−ν

(L−x)
(

y− h
2

)2

+
(4+ν)
(4−4ν)

h2x

]
(30)

where I is the moment of inertia and given as,

I =
bh3

12

for plane strain case,

E = E ν = ν

and for plane stress case,

E =
(1+2ν)
(1+ν)2 E ν =

ν
(1+ν)

Fig. 3 shows transverse displacement for L
h = 5

(very thick beam case) and L
h = 10000(very thin

beam case). The later is an extreme case to
demonstrate the locking free performance of the
formulated element. been generated. The results
are close to that of the theoretical solution.

The third case is for the simply supported
composite beam with a sinusoidal load p =
p0 sin(mπx

L ), applied on the top surface with m = 1
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Figure 4: Non-dimensionalized deflection, w’ for
a beam with simply support condition under sinu-
soidal load.

and p0 = 1. The material properties are as given
below, E1 = 0.25×108 psi, E2 = E3 = 0.1×107

psi, G12 = G13 = 0.5×106 psi, G23 = 0.2×106

psi, ν12 = ν13 = ν23 = 0.25. The results of nor-

malized deflection w′ = 100E2h2w(l/2,0)
p0L4 for differ-

ent L
h ratios are generated and are compared with

the exact elasticity solutions given by, Pagano
(1969). A very good agreement with the exact
solutions can be observed from Fig. 4.

4.1.2 Interlaminar stresses

The results of the interlaminar stresses obtained
from the formulated element is compared with
those availabe in literature. A comparison is
made with Vinayak, Prathap, and Naganarayana
(1996a), where the authors used higher order fi-
nite elements (BM3 and BM4), which is based on
the same beam theory as considered here. BM3
is a 3 noded beam element and BM4 is a 4 noded
beam element. The same material properties and
the geometric properties as used in this paper, is
used here to perform the present numerical exper-
iments. For Isotropic beam:
The geometry of the beam is given by length L =
10.0, thickness h = 1.0 and width b = 1.0. The
Young’s modulus is assumed as E = 1000.0, Pois-
son’s ratio ν = 0.0 and a uniformly distributed
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Table 3: Comparison of Transverse shear stress τxz for beam under uniformly distributed load at x =5.5

z/h L
h =10 L

h = 1

Present Vinayak(1996) Present Vinayak(1996)
-0.5 0.0 0.0 0.0 0.0
-0.4 2.4312 2.4299 0.2611 0.2547
-0.3 4.3203 4.3199 0.4517 0.4503
-0.2 5.6696 5.6700 0.5859 0.5861
-0.1 6.4792 6.4800 0.6637 0.6623
0.0 6.7490 6.7500 0.6851 0.6800
0.1 6.4792 6.4800 0.6500 0.6414
0.2 5.6693 5.6700 0.5585 0.5496
0.3 4.3199 4.3199 0.4106 0.4084
0.4 2.4306 2.4299 0.2064 0.2232
0.5 0.0 0.0 0.0 0.0

Table 1: Comparison of axial stress σxx in a
isotropic cantilever beam with uniformly dis-
tributed load on the top surface for L/h=10 at x
= 5.5.

z/h Vinayak(1996) Vinayak(1996) Present
BM4 BM3

0.5 60.550 60.800 60.901
0.4 48.584 48.784 48.792
0.3 36.522 36.672 36.636
0.2 24.388 24.488 24.444
0.1 12.206 12.256 12.228
0.0 0.0 0.0 0.0

load (udl), p = 1.0 is used to load the beam on
the top surface. A mesh of 10 elements is used for
both in the present case and in the above paper.
The test is done on a cantilever beam, that is fixed
at one end and free at the other end. The results
are shown in Table 1.

The results shows good agreement with both BM3
and BM4 model of Vinayak, Prathap, and Na-
ganarayana (1996a) BM3 and BM4 elements.
The results of transverse normal stress for the
same model is presented in Table 2 and even here

Table 2: Comparison of Transverse normal stress
σzz under uniformly distributed load on top sur-
face and on mid-plane for L/h=10 at x = 5.5.

z/h Vinayak(1996) Present σzz(ls)
-0.5 -0.097 -0.0967 -0.1
-0.4 0.0226
-0.3 0.1419
-0.2 0.2613
-0.1 0.3806
0.0 0.492 0.4999 0.5
0.1 0.6192
0.2 0.7386
0.3 0.8579
0.4 0.9772
0.5 1.081 1.0965 1.1

the close agreement between the two elements can
be noticed. As given in Pratap (1993), it is known
that finite element displacement method solutions
seek strains/stresses in a least square sense and
hence the values predicted in the least squares
sense σzz(ls) has been given in the table for com-
parison. Similarly Table 3 shows a comparison of
the transverse shear stress for the present element
for two different L

h namel L
h =10 and L

h =1 respec-
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tively.

It can be seen that the results are in good agree-
ment. It can be noted that the results for L

h =
10 case of Vinayak, Prathap, and Naganarayana
(1996a) is symmetric about the mid-plane. This is
because the load would have been placed on the
mid-plane of the beam and is to be treated as an
imaginary case. The cantilever beam model has
70 degree of freedom(dof) with the present ele-
ment formulation as opposed to 140 dof for BM3
and 210 dof for BM4 respectively. Tables 1, 2, 3
demonstrate the fast convergence property of the
element, which saves the computational time.

For Composite beam:
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Figure 5: Variation of bending stress for a sinu-
soidal load on a beam with L

h = 4.

A orthotropic graphite/epoxy material beam with
the following material properties as given in
Pagano (1969) is considered here, E1 = 0.25×108

psi, E2 = E3 = 0.1×107 psi, G12 = G13 = 0.5×
106 psi, G23 = 0.2× 106 psi, ν12 = ν13 = ν23 =
0.25. The boundary condition is simply supported
and a sinusoidal load, p = p0 sin(mπx

L ) is applied
on the top surface with m = 1 and p0 = 1. First the
case of a unidirectional composite beam with 00

ply and L
h = 4 is considered. The results of inter-

laminar stresses and normal stresses are shown in
Fig. 5, Fig. 6 and Fig. 7 along with those of the ex-
act elasticity solution of Pagano, Pagano (1969).
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Figure 6: Variation of transverse shear stress for a
sinusoidal load on a beam with L

h = 4.
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Figure 7: Variation of transverse normal stress for
a sinusoidal load on a beam with L

h = 4.

The figures show that the results of the present
element are very close to the elasticity solutions.
The normalized values are given as,

σ ′
xx =

σxx(L/2, z)
p0

σ ′
zz =

σzz(L/2, z)
p0

.

τ ′
xz =

τxz(0, z)
p0

. (31)

Next, a symmetric ply stacking of [0◦/90◦/0◦]
composed of 3 layers and all plies are of equal
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thickness with L
h = 10.0 is considered. The re-

sult of non-dimensional axial stress σ ′
xx is com-

pared in Table 4 with that of the exact solutions of
Pagano (1969) and of Vinayak, Prathap, and Na-
ganarayana (1996a). The nondimensional quan-
tity is given as in Eq. 31. From Table 4 it can be

Table 4: Comparison of non-dimensional normal
stress σ ′

xx in a composite beam [0◦/90◦/0◦] with
sinusoidal load on the top surface, with simply
supported boundary condition for L/h=10

z/h Elasticity Present Vinayak(1996)
-0.5 -72.820 -72.160 -71.958
-0.4 -52.923 -50.777 -50.678
-0.3 -32.830 -34.033 -34.013
-0.2 -16.103 -20.766 -20.806
-1/6 -11.282 -16.580 -16.972
1/6 11.590 16.929 16.734
0.2 16.410 20.795 20.584
0.3 32.830 34.124 33.856
0.4 51.282 50.954 50.611
0.5 72.820 72.449 72.006
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Figure 8: Variation of bending stress, σxx(L
2 , z),

for a beam with simply support condition under
uniformly distributed load for different ply con-
figuration.
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Figure 9: Variation of Transverse stress, τxz(0, z),
for a beam with simply support condition under
uniformly distributed load for different ply con-
figuration.
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tion under uniformly distributed load for different
ply configuration.

seen that the performance of the present element
is very good.

Similarly an uniformly distributed load(udl) of
1.0 is applied to a composite beam of L

h = 15,
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which is simply supported with different ply con-
figurations [0◦/90◦/90◦/0◦], [0◦/90◦] and [0◦] .
The stresses are measured at σxx(L

2 , z), τxz(0, z)
and σzz(L

2 , z) and are shown in Fig. 8, Fig. 9 and
Fig. 10. The parabolic nature of transverse shear
stress, the cubic nature of normal stresses and the
stress jumps for the asymmetric composite can be
observed.

4.2 Free vibration analysis

Here different numerical experiments are per-
formed to compare the performance of the present
element with the element based on HSDT of
Heyliger and Reddy (1988), HSDT of Kant,
Marur, and Rao (1998) and HSDT of Marur and
Kant (1996) respectively. The total displacement
field of HSDT of Heyliger and Reddy (1988) is
given as,

U(x,y, z, t) = u0(x, t)+zθ (x, t)+c0z
3
(

θ (x, t)+
∂w(x, t)

∂x

)
,

(32a)

W(x,y, z, t) = w0(x, t) , (32b)

The displacement field of HSDT of Kant, Marur,
and Rao (1998) is given as,

U(x,y, z, t) = u0(x, t)+zθ (x, t)+z2θ (x, t)+z3θ (x, t) ,

(33a)

W(x,y, z, t) = w0(x, t)+zψ(x, t)+z2ψ(x, t)+z3ψ(x, t) ,

(33b)

and of HSDT of Marur and Kant (1996) is given
as,

U(x,y, z, t) = u0(x, t)+zθ (x, t)+z2θ (x, t)+z3θ (x, t) ,

(34a)

W(x,y, z, t) = w0(x, t) , (34b)

To study the behavior of the present finite element
model for free vibration, we first consider a sym-
metric cross-ply [0◦/90◦/0◦] beam and a asym-
metric beam [0◦/90◦] with the following mate-
rial properties; E1/E2 = 40, G12 = G13 = 0.6E2,

G23 = 0.5E2, ν12 = 0.25.
The non-dimensional natural frequency is used as
comparative quantity and is given by,

ω2 = ωL2
√

ρ
E2h2 , (35)

where ω is the natural frequency. The results are
presented in Table 5 for [0◦/90◦/0◦] ply stack-
ing and Table 6 for [0◦/90◦] ply stacking and
are compared for various L

h and various boundary
conditions ( C-C clamped-clamped, H-H Hinge-
Hinge, C-H Clamped-Hinge,& C-F clamped-Free
). A mesh of 10 elements of current formulation
is used. Heyliger and Reddy (1988) has gener-
ated results using state space concept. The non-
dimensional natural frequencies of the present el-
ement is compared with the results reported in
Heyliger and Reddy (1988), and with the MSC
Nastran CQUAD4 2D finite elements (FE). The
total degrees of freedom involved in the 2D FE
formulation is around 2000.

Table 5: Comparison of non-Dimensional fun-
damental frequency ω2 of a symmetric cross-ply
[0◦/90◦/0◦] beams for various boundary condi-
tions.

L/h H-H C-H C-C C-F
5 2D FE 8.985 9.666 10.598 4.053

Present 8.993 9.687 10.681 4.061
% Error 0.089 0.217 0.783 0.197
Reddy 9.208 10.239 11.603 4.232

% Error 2.482 5.928 9.483 4.416
10 2D FE 13.218 16.028 18.884 5.278

Present 13.224 16.088 18.994 5.282
% Error 0.045 0.374 0.583 0.0758
Reddy 13.614 16.599 19.712 5.495

% Error 2.996 3.563 4.385 4.111

The Tables 5, 6 shows the percentage error of the
responses predicted by the current element and
the element of Heyliger and Reddy (1988) to that
of the 2D finite element result. From these ta-
bles we can see that the HSDT of Heyliger and
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Table 6: Comparison of non-Dimensional fun-
damental frequency ω2 of asymmetric cross-ply
[0◦/90◦] beams for various boundary conditions.

L/h H-H C-H C-C C-F
5 2D FE 5.655 7.029 8.472 2.273

Present 5.717 7.266 8.814 2.316
% Error 1.096 3.371 4.037 1.892
Reddy 6.128 8.033 10.026 2.386

% Error 8.364 14.284 18.343 4.971
10 2D FE 6.765 9.550 12.510 2.510

Present 6.802 9.761 12.911 2.525
% Error 0.547 2.209 3.205 0.598
Reddy 6.945 10.129 13.660 2.544

% Error 2.661 6.063 9.193 1.355

Table 7: Comparison of non-dimensional nat-
ural frequencies ω1 of a composite beam
of [0◦/0◦/90◦/90◦/90◦/90◦/0◦/0◦] ply stacking
with simply supported boundary condition for
L/h=15

mode Kant(1998) Present 2D FE
1 2.516 2.4818 2.4817
2 8.669 8.322 8.272
3 16.320 15.495 15.148
4 24.371 23.310 22.189

Reddy (1988) is not able to capture the funda-
mental mode accurately. The performance of the
present element compared to this HSDT is very
good. This can be attributed to the the inclusion of
the lateral contraction in the model, which helps
to simulate the 2-D state of stress better using 1-
D beam model. It can be observed from the tables
that the clamped boundary condition cases give
more error. The reason for this is that the stress
is singular and acts like a re-entrant corner. This
has an impact on natural frequency; as it also de-
pends on the stiffness of the system. This aspect is
clearly explained by RamaMohan, Naganarayana,

Table 8: Comparison of non-dimensional nat-
ural frequencies ω1 of a composite beam
of [0◦/0◦/90◦/90◦/90◦/90◦/0◦/0◦] ply stacking
with simply supported boundary condition for
L/h=5

mode Kant(1998) Present 2D FE
1 1.820 1.6886 1.6834
2 4.528 4.1222 4.0078
3 7.201 6.3244 6.2576
4 9.814 9.4028 8.4668

and Prathap (1994).

Free vibration results for different modes are com-
pared with another HSDT proposed by Kant,
Marur, and Rao (1998). They have presented an-
alytical solutions for computing the natural fre-
quencies. The results are also compared with 2D
FE solutions. The results are generated for differ-
ent ply stacking sequence. The non-dimensional
fundamental frequency in this case for compari-
son is given as,

ω1 = ωL2
√

ρ
E1h2 , (36)

For the first case; the data is taken from Kant,
Marur, and Rao (1998) and are the following.
Material AS4/3501-6/ Graphite-Epoxy, Lamina-
tion scheme [0◦/0◦/90◦/90◦/90◦/90◦/0◦/0◦]; b
= 1 m, E1 = 144.8 GPa, E2 = 9.65 GPa, G12 = 4.14
GPa, ρ = 1389.23 kg/m3. ν12=0.3. Two cases are
considered L=15, h = 1 and L=15, h=3, both with
simply supported boundary condition. 5 beam el-
ements of the present formulation are used to get
the results which are shown in Table 7(L

h =15) and
Table 8(L

h =5) respectively for the first four modes.
The results show that the present element is able
to accurately capture the natural frequencies pre-
dicted by the theoretical solutions.

Results are generated for the second case
with a different lamination scheme given by
[0◦/0◦/90◦/90◦/0◦/0◦] for symmetric case and
[0◦/90◦/0◦/90◦/0◦/90◦] for asymmetric case and
the results are presented in Table 9 for the first
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Table 9: Comparison of non-dimensional natural frequencies ω1 of a thick beam (L/h=5) with simply sup-
ported boundary condition.

mode Kant(1998) Present 2D FE Kant(1996) Present 2D FE
[0◦/0◦/90◦/90◦/0◦/0◦] [0◦/90◦/0◦/90◦/0◦/90◦]

1 1.657 1.5903 1.5768 1.416 1.3569 1.3564
2 3.910 3.7578 3.6086 3.531 3.3827 3.2952
3 6.138 6.0284 5.5689 5.675 5.4876 5.1953
4 8.323 7.8494 7.4925 7.795 7.6063 7.0444

four modes. For the asymmetric case the re-
sults are compared with the HSDT Marur and
Kant (1996) where they have formulated the el-
ement based on the displacement field as given
in the above Eq.(34). The element has 5 dof per
node. The data for this example are given as, L
= 762 mm h = 152.4 mm, b = 25.4 mm, E1 =
0.525 × 106N/mm2, E2 = 0.21 × 105N/mm2,
G12 = 0.105×105N/mm2, ρ = 800kg/m3.

As in the previous case 5 beam elements of the
present formulation is used. The results presented
in Table.9 show good comparison for L

h =5.

4.3 Wave Propagation Analysis

A wave propagation problem is a multi-modal
phenomenon; where phase information is very
important. The frequency content of the forc-
ing function is very high in the wave propagation
problems. At higher frequencies, the wavelength
is small, and this requires the element size to be
comparable to wavelength, so as to capture all the
higher modes accurately. This makes the Finite
Element system size very large.

The aim of the present section is to study the effi-
cieny of the element to capture not only the wave
propagation response with smaller system size but
also the inter-laminar dynamic stresses. A can-
tilever beam with a tip impact load is considered.
The impact load is a transverse pulse with a peak
amplitude of 4.4 Newtons and 50 μs duration as
shown in the inset of Fig. 11. The Fourier trans-
form (FFT) of the load shows a very high fre-
quency (44 KHz) content as shown in Fig. 11.
Time marching scheme using Newmark α- β in-

tegration method, is employed to obatin the the
solutions of the equilibrium equations.
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Figure 11: Fourier Transform of Impact Pulse
load (inset) using FFT.

The geometric and material properties of the
beam considered is taken as, L = 100 m, b = 1 m,
h = 1 m, Material is AS4/3501-6 graphite epoxy,
E1 = 144.8 GPa, E2 = 9.65 GPa, G12 = G13 =
4.14 GPa, G23 = 3.45 GPa, ρ = 1389.23 kg/m3.
ν12=0.3.

4.3.1 Dynamic response

First the axial response is obtained where the
beam is excited by an impact load applied axially,
at the tip of the cantilever beam. Fig. 12 shows a
plot of the axial velocity with time. The results are
comapred with another HSDT theory of Murthy,
Mahapatra, Badarinarayana, and Gopalakrishnan
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(2005). In both the beam models the beam is mod-
eled with 100 elements. The plot shows no much
deviation between both the theories for the axial
response case. This can be expected since the ax-
ial displacement field, which is same for both the
theories.
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Figure 12: Comparison of Axial velocity response
for L

h = 100.
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Figure 13: Comparison of Transverse velocity re-
sponse for L

h = 100.

Next, we obtain the transverse response where the
impact load is applied in the transverse direction
at the tip of the cantilever beam. The beam is

0 100 200 300 400 500 600 700 800 900 1000
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

Time (μs)

T
ra

ns
ve

rs
e 

ve
lo

ci
ty

 (
in

/s
)

Murthy(2005)
Present
2D Plane Stress

Figure 14: Comparison of Transverse velocity re-
sponse for L

h = 10.

modelled with 1000 elements of Murthy, Mahap-
atra, Badarinarayana, and Gopalakrishnan (2005)
and of the present theory. A very fine mesh of
MSC Nastran CQUAD4 element with 2D plane
stress property is used to compare the results. The
total degrees of freedom (dof) in each of the cases
are as follows; 4000 dof for Murthy, Mahapatra,
Badarinarayana, and Gopalakrishnan (2005) case,
7000 dof for the present case and 12500 dof for
the 2D FE case. Fig. 13 shows the plot of all the
three cases. The results show that present element
and 2D FE show excellent agreement. Murthy,
Mahapatra, Badarinarayana, and Gopalakrishnan
(2005) element show a small period error in the
occurrences of reflection.

A similar plot with L
h =10 for the transverse veloc-

ity is shown in Fig. 14. In this case, smaller L
h

results in shear deformation participating signif-
icantly in the response. This results in decrease
in the wave velocity and hence early arrival of re-
flections as compared to Fig. 13, whose results are
more close to EBT theory. The figure also shows
that the results predicted by Murthy, Mahapa-
tra, Badarinarayana, and Gopalakrishnan (2005)
is completely out of phase and the present element
predicts results very close to the 2D FE solution.
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4.3.2 Dynamic inter-laminar stresses

The inter-laminar stresses developed due to im-
pact load is much higher than those with the static
load. Here the same beam example as mentioned
in the previous section with L/h=100 with a im-
pluse load at the free end, applied transversely in
the Z direction, is considered for generating the
stress history. The beam is made up of 4 layers of
the same AS/3501-6 graphite-epoxy material and
assumed to be tightly glued to each other. The ax-
ial/bending stress history, transverse shear stress
history and the transverse normal stress hsitory at
different ( z

h ) locations through the thickness are
shown in Fig. 15, Fig. 16 and Fig. 17 respectively.
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Figure 15: Axial stress history at the fixed end of
the cantilever for L

h = 100.

From the plots, we can observe that, the peak
stresses occur at 1500 μs. This is the time taken
by the incident pulse to hit the fixed boundary and
generate a reflection. As expected, the transverse
normal stress is negligible. The plot for transverse
shear stress is at the tip of the cantilever beam
and hence peak stresses through the thickness is
shown at 100 μs.
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Figure 16: Transverse normal stress history at the
fixed end of the cantilever for L

h = 100.

5 Conclusions

This paper presents a locking free finite element
formulation for laminated composite beams us-
ing higher order shear deformation theory with
the inclusion of the lateral contraction effect.
The element formulated is shown to have super-
convergent property. This is due to the use of in-
terpolation functions for the axial, transverse and
shear degrees of freedom, which satisfies the cor-
responding governing differential equations ex-
actly. Due to enforcement of equilibrium, many
coefficients in the interpolation function are ma-
terial and section property dependent and hence
in the penalty limit of beam becoming thin, those
constants that were responsible for shear lock-
ing automatically vanish giving a superior perfor-
mance. Hence, the present formulation does not
require special treatments like, field consistency
and reduced integration.

The study has brought forth the cubic accuracy
expected with that of the normal stresses σxx,
σzz and parabolic for the transverse shear stresses
τxz. The transverse stresses reported here, are in
good agreement with exact elasticity solutions of
Pagano (1969) and other works reported in the
available literature.
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Figure 17: Transverse shear stress history at the
tip of the cantilever for L

h = 100.

In addition to its great utility in predicting inter-
laminar stresses, the formulated element will find
its usefulness in solving wave propagation prob-
lems, where the frequency content of input sig-
nal is usually very high (of the order of kHz or
higher). Solution of wave propagation problems
through finite elements requires very fine mesh to
capture higher order modes accurately. Since the
formulated element satisfies the static part of the
governing equation, the stiffness is accurately rep-
resented, although the inertial distribution is ap-
proximate. According to Strang and Fix (1973),
the error introduced due to approximate stiffness
distribution is an order higher than the error due
to approximate mass distribution. This is shown
in the numerical studies of free vibration and the
wave propagation problems, which brought out
the excellent convergent property of the element
when compared with the 2D FEM solutions.

In addition to mechanical loading, thermal load-
ing can result in inter-laminar stresses of sig-
nificant amounts. This is particularly important
in composite beams with unsymmetrical lay up.
The thermal loading can introduce unsymmetri-
cal bending due to stiffness coupling, which can
introduce additional inter-laminar stresses. This

will be considered in the future research work.
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