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Fourier Analysis of Mode Shapes of Damaged Beams

Kanchi Venkatesulu Reddy1 and Ranjan Ganguli2

Abstract: This paper investigates the effect of
damage on beams with fixed boundary conditions
using Fourier analysis of the mode shapes in spa-
tial domain. A finite element model is used to
obtain the mode shapes of a damaged fixed-fixed
beam. Then the damaged beams are studied us-
ing a spatial Fourier analysis. This approach con-
trasts with the typical time domain application
of Fourier analysis for vibration problems. It is
found that damage causes considerable change in
the Fourier coefficients of the mode shapes. The
Fourier coefficients, especially the higher har-
monics, are found to be sensitive to both damage
size and location and amplify the changes in the
mode shape due to the damage. Therefore, we for-
mulate a damage index in the form of a vector of
Fourier coefficients which is robust and unique for
a given damage size and damage location. The ef-
fect of noise in the mode shape data is considered
and it is found that Fourier coefficients provide a
useful indication of damage even in the presence
of noise. Various damage levels are considered
and it is found that higher modes are needed to
detect small amount of damage.

Keyword: Beam, Damage Detection, Vibration
Analysis.

Nomenclature

ai,bi Fourier coefficients
Ai a value of Fourier coefficient ai,

above undamaged value
−Ai a value of Fourier coefficient ai,

below undamaged value
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Bi a value of Fourier coefficient bi,
above undamaged value

−Bi a value of Fourier coefficient bi,
below undamaged value

D continuum damage variable
E Young’s modulus
E0 undamaged Young’s modulus
I area moment of inertia of the beam cross

section
K stiffness matrix
L length of the beam
m mass per unit length of the beam
M mass matrix
n number of dof in FEM model
p period in spatial domain
q vector of nodal dofs
w(x, t) transverse displacement of the beam
W modal transverse displacement
x length measured along

the axis of the beam
α noise level
βi ith root of frequency equation
φ mode shape vector

η linear transformation η =
2πx

L
ρ uniform mass density
ω natural frequency

1 Introduction

Structural systems are susceptible to damage dur-
ing their service due to many factors such as in-
service loads, fatigue and environmental effects.
If undetected at an early stage, these damages may
lead to failure of critical components of the struc-
ture or the structural system as a whole, which can
be very costly in terms of human life and property.
Therefore, online monitoring of the health of the
structural systems attracted civil, mechanical and
aerospace engineers in recent years. Numerous
Nondestructive Damage Detection (NDD) meth-
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ods have been proposed and developed using dif-
ferent experimental and theoretical techniques.
Well known examples of such techniques are
ultrasonics, radiography, magnetic particle, dye
penetrant and eddy current techniques. However,
these methods have been applied to small-scale
systems or a specific portion of large structures
(hence also called “local" NDD methods). An-
other requirement of the local methods is that the
structure must be accessible. Since these local
methods can be applied for detecting damage only
on local scale, and that too to the accessible por-
tions of the structure, alternative methods that can
be applied to the entire structure, (called global
NDD methods), are gaining acceptance. The es-
tablished global methods include thermography
and acoustic emission.

However, the global methods using dynamic re-
sponse of the structure have also gained signifi-
cant attention in the past two decades. The basic
idea behind these vibration response based global
methods is that the changes in physical proper-
ties of the structure such as mass, stiffness and
damping causes a change in dynamic character-
istics such as natural frequency, damping ratio
and mode shape of the structure. Therefore, by
measuring these damage indicators, one should be
able to predict the changes in physical properties
resulting from damage.

Depending on the specific parameter of interest,
there exists three different classes of dynamic
damage detection methods. The first class of
damage detection methods include those methods
which use changes in natural frequency for dam-
age detection. The appealing feature of this class
of methods is the ease in measuring the natural
frequencies. Some of the works in this class of
methods are due to Viola et al (2001). Salawu
(1997) gives a state of art review of methods
which use frequency changes for damage detec-
tion. However, these methods have at least two
limitations for their practical applicability Jeong-
Tae et al (2003).

a. Since frequency change depends on square
root of stiffness change, the changes in fre-
quency caused due to damage are small.

b. Environmental conditions such as tempera-
ture, and moisture content can easily alter the
frequency of the structure.

The second class of dynamic damage detec-
tion methods include those methods which use
changes in the damping ratio. The effect of
debonding on modal damping of sandwich pan-
els was investigated by Peroni et al (1991). They
showed that the damage caused a slight increase
in the damping coefficient for some modes. Lai
and Young (1995) reported extensive work on
damage detection in composite structures includ-
ing the effect of high temperature and prolonged
exposure to humidity. They showed that, while
delamination decreases the natural frequency of
the fundamental mode, it increases the damp-
ing. However, they concluded that change in the
damping coefficient is an unreliable parameter to
be a basis for damage detection.

The third class of dynamic damage detection
methods consists of methods which use changes
in mode shapes of the structure for damage detec-
tion. Extensive research has been done on using
mode shape changes for damage detection. The
appealing feature of this class of methods is that
changes in mode shape are much more sensitive
to local damage than changes in natural frequency
Jeong-Tae et al (2003). Various methods in this
class basically differ in terms of the methodol-
ogy adopted for magnifying the changes in mode
shape caused by damage. Rizos and Aspragathos
(1990) looked at using the changes in the mode
shapes for damage detection in beams by measur-
ing displacements at two points. Wang and Deng
(1999), Chang and Lien-Wen (2005) and Douka
et al (2003), applied wavelet analysis for detect-
ing the damage from mode shape changes. Some
researchers, like Ratcliff and Bagaria (1998) and
Yoon et al (2005) have looked at using algo-
rithms such as the gapped polynomial to magnify
changes in mode shapes due to damage. Pandey
et al (1991) used the modal curvature to amplify
the effect of damage. Damage detection using ro-
tation mode shapes was considered by Abdo and
Hori (2002). Some other works are due to Parloo
et al (2003) and Ratcliff (1997). A detailed re-
view of vibration-based NDD methods has been
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provided by Dimarogonas (1996). However us-
ing mode shape changes also has some drawbacks
as given below.

a. Damage being a local phenomenon may not
significantly influence the mode shape of
lower modes that are usually measured from
the vibration test for large structures.

b. The extracted mode shapes are affected by
the environmental noise from such sources
as ambient loads and inconsistent sensor po-
sitions.

c. The number of sensors and choice of sensor
co-ordinates may have a crucial effect on the
accuracy of damage detection procedure.

However, in recent years major advances have
been realized in the field of structural dynamics
and mechanical vibration measurements. The in-
troduction of Scanning Laser Doppler Vibrome-
ters(SLDV) Khan et al (2000), has revolution-
ized the dynamic testing and analysis due to its
advantages such as its fast scanning capability and
its non-contacting feature. Mode shape measure-
ment and data analysis methods have therefore
became well developed and this enables to easily
overcome the above said limitations.

A natural question that arises is that, “why do we
need so many damage detection methods and why
one more when we have numerous methods al-
ready ?". This is well answered by the recent
round-robin study conducted by Farrar and Jau-
regui (1996). In this study, the relative perfor-
mance of prominent vibration based NDD meth-
ods such as (1) changes in flexibility method
Pandey and Biswas (1994), (2) mode shape cur-
vature method Pandey et al (1991), (3) change
in uniform flexibility shapes curvature method
Zhang and Aktan (1995), (4) change in stiff-
ness method Zimmerman and Kaou (1995) and
(5) damage index method Stubbs (1992), are dis-
cussed. On the basis of 16 damage cases studied
using numerical and experimental data, even the
best performing algorithm identified in that study,
failed to identify certain damage cases at certain
damage locations. Hence though there exist nu-
merous vibration based NDD methods, no single

method was shown to be completely effective in
all situations. It can also be noticed that most
of the methods developed to date are primarily
useful for detecting damages of large size. Also
they adopt a two stage approach for damage de-
tection. In the first stage the damage localized and
in the second stage the damage size is determined
or vice-versa. Therefore there is a need for de-
velopment of a robust damage index which can
be used for detection up to small damage levels
and should uniquely identify both damage loca-
tion and damage size in one stage.

In this work, the authors formulate a damage
index in the form of a vector of Fourier coef-
ficients obtained by spatial Fourier analysis of
mode shapes of damaged beams. The rationale
for the present work is as follows. Many impor-
tant structures can be represented as a beam that
is fixed or pinned at one or both ends. For such
structures, the boundary conditions lead to a mode
shape which satisfy the condition w(x)|x=0 =
w(x)|x=L = 0, where w(x) is lateral displacement
of the mode shape. One can therefore assume that
the mode shape for such structures is a periodic
function in the spatial domain with period p=L.
Therefore, the mode shape can be expanded in a
spatial Fourier series. Most often Fourier analy-
sis is done in the time domain and it seems to the
authors that no work has looked at spatial Fourier
analysis of damaged beams in which Fourier coef-
ficients are used to magnify the changes in mode
shape caused by damage. In this study, we show
that damage in a fixed-fixed beam leads to a sub-
stantial change in the spatial Fourier coefficients
of mode shapes. These changes can be used to de-
tect small damage levels even in presence of noise
in the measurement.

2 Analytical model for mode shapes

The equation of motion of an Euler-Bernoulli
beam is

EI(x)
∂ 4w(x, t)

∂x4 +m(x)
∂ 2w(x, t)

∂ t2 = f (x, t) (1)

For a uniform beam we can obtain frequencies
and mode shapes as an exact solution. Setting
f (x, t) = 0 for free vibration and assuming w(x, t)



82 Copyright c© 2007 Tech Science Press CMC, vol.5, no.2, pp.79-97, 2007

as, w(x, t) = W(x)(iωt), eq.(1) yields

d4W
dx4 −ω2 m

EI
W = 0 (2)

The above is an ordinary differential equation of
4th order in space. The general solution of this
equation is of the form

W(x) = Asin(λ x)+Bcos(λ x)+C sinh(λ x)
+ Dcosh(λ x) (3)

Where λ =
(

mω2

EI

)1/4

and ω is natural fre-

quency. Solving eq.(3) with appropriate bound-
ary conditions gives the frequency equation. Sub-
stituting the roots of this frequency equation,

(β )i, i = 1,2, .....n, in λ =
(

mω2

EI

)1/4

, where

λ =
β
L

, we obtain the ith frequency. Substituting

λ in eq.(3) gives the mode shape corresponding to
the ith mode.

3 Finite element model for mode shapes

Damage in a uniform beam leads to a reduction
in stiffness at the damage location thereby mak-
ing it non-uniform. For free vibration analysis of
non-uniform beams the finite element method is
used. The beam is discretized into a number of
beam elements, with displacement and slope as
nodal degrees of freedom and cubic interpolation
functions.

For an n degree of freedom system, the equation
of motion in discrete form is obtained after assem-
bly of the element matrices and application of the
boundary conditions.

Mq̈+Kq = 0 (4)

Here M is the n×n mass matrix of the system, K
is the n×n stiffness matrix of the system, q is the
n×1 vector of nodal degrees of freedom. We seek
a solution of the form q = Φ(iωt), which results in
the eigenvalue problem.

KΦ = ω2MΦ (5)

Solving this eigenvalue problem we get n eigen-
values which represent the n natural frequencies
of the system. The associated eigenvectors along
with shape functions give the mode shape corre-
sponding to that mode.

4 Spatial Fourier analysis

As an example, consider the case of a beam fixed
at both ends. The boundary condition for a fixed-
fixed beam are given by

W(0) = 0, W(L) = 0,

dW(0)
dx

= 0,
dW(L)

dx
= 0

(6)

Solving eq.(3) with these boundary conditions
gives the frequency equation and equation for
mode shape as eq.(7) and eq.(8) respectively.

cos(λ L)cosh(λ L) = 1 (7)

The first, second and third roots of the transcen-
dental equation eq.(7) which corresponds to first,
second and third modes of vibration are obtained
as 4.730040745, 7.853204624 and 10.995607838
respectively. Substituting this in eq.(8) gives
the corresponding mode shapes as shown in the
Fig. (1).

W(x) =
{

cos

(
β x
L

)
−cosh

(
β x
L

)}

−
{

cos(β )−cosh(β )
sin(β )− sinh(β )

}

·
{

sin

(
β x
L

)
− sinh

(
β x
L

)}
(8)

It can be observed from Fig.1 that W(x)|x=0 =
W(x)|x=L = 0. Hence the mode shapes are pe-
riodic in space(x) with period p = L. Since the
mode shapes are periodic, they can be expressed
in the form of Fourier series as in eq.9, taking the

linear transformation η =
2πx

L
which transforms

the problem from x ∈ [0,L] to η ∈ [0,2π ].
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W(η) = a0 +
m

∑
i=1

{ai cos(iη)+bi sin(iη)} (9)

where ai, i = 0,1,2, ....m and b j, j = 1,2,3, .....m
are Fourier coefficients. To obtain Fourier co-
efficients for the exact and finite element mode
shapes, they are uniformly sampled at a number
of discrete points. The mode shapes are normal-
ized with respect to highest value. By fitting a
curve similar to that in eq.(9), one gets the Fourier
coefficients.

5 Numerical results

Consider a beam with the following properties;
E=200 GPa, I=2000 mm4, A=240 mm2, ρ=7800
kg/m3 and L=600 mm. The natural frequencies
and mode shapes are computed using the method-
ology described in the previous section. Fig. 1
shows the first three mode shapes for the selected
example. The beam is divided into 20 finite ele-
ments of equal length. Numerical results for the
FEM analysis are validated with the exact solu-
tions.

5.1 Fourier analysis of undamaged beam

The Fourier analysis of different mode shapes of
an undamaged fixed-fixed beam are considered
in this section. Fourier coefficients for mode 1,
2 and 3 of an undamaged fixed-fixed beam ob-
tained using analytical as well as FE model are
given in Tab.1, 2 and 3, respectively. The FE so-
lution matches exactly with the analytical solution
to five decimal places. Hence the developed FE
model represents the mode shape with sufficiently
good accuracy. From Tab.1 and Tab.3 it can be ob-
served that, since all b j, j=1,2,...m, are zero, the
first and third mode shapes are cosine functions.
Also from Tab.2 it can be observed that, since all
ai, i=1,2,...n, are zero, the second mode shape is
a sine function. In general it is observed that all
odd number of mode shapes are cosine functions
and all even number of mode shapes are sine func-
tions. Furthermore, it is observed that the steady
and first harmonics are most dominant and other
harmonics decrease rapidly for higher harmonics

as shown by ε in the Tab.1 through Tab.3. Here ε
is a small number of magnitude 0.1.

Table 1: Fourier coefficients for first mode of
fixed-fixed beam

.
Coefficient Analytical Normalized Order of FE Value

Value Value magnitude
a0 0.52316 1.00000 1 0.52316
a1 -0.49505 -0.96420 1 -0.49505
b1 0.00000
a2 -0.02143 -0.04097 ε2 -0.02143
b2 0.00000
a3 -0.00416 -0.00796 ε2 -0.00416
b3 0.00000
a4 -0.00131 -0.00251 ε3 -0.00131
b4 0.00000
a5 -0.00054 -0.00103 ε3 -0.00054
b5 0.00000
a6 -0.00026 -0.00049 ε3 -0.00026
b6 0.00000
a7 -0.00014 -0.00027 ε4 -0.00014
b7 0.00000
a8 -0.00008 -0.00016 ε4 -0.00008
b8 0.00000
a9 -0.00005 -0.00010 ε4 -0.00005
b9 0.00000
a10 -0.00003 -0.00007 ε4 -0.00003
b10 0.00000

5.2 Fourier analysis of damaged beam

Any structural damage can be modelled by appro-
priately reducing the stiffness of the cross section
at the location of the damage using the continuum
damage variable D = 1− E

E0
, which varies from 0

for an undamaged case(E = E0) to 1 for complete
damage(E = 0). A percent damage value of D is
used in this paper, Where D = 0 percent stands for
no damage and D = 100 stands for complete dam-
age. For numerical results in this paper, a maxi-
mum value of D of 50% is considered.

The FE model developed is used to examine the
impact of damage in the beam on the Fourier co-
efficients of the mode shapes. The Fourier coeffi-
cients, for damage locations varying from element
number 1 to 20 and damage size as characterized
by D, varying from 0 to 50% are computed us-
ing the FE model developed. Fig.3 through Fig.5
show the variation of different Fourier coefficients
for first three modes of a fixed-fixed beam for
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Figure 1: First three mode shapes of an undamaged fixed-fixed beamSome functions of x

different damage size and damage locations. It
is found that Fourier coefficients are sensitive to
damage in the beam. In particular, the higher har-
monics show the considerable influence of dam-
age location. In addition, there is a clear increase
in the magnitude of all coefficients as damage in-
creases from 0 to 50 percent. For mode 1 and
mode 3, the a j coefficients are symmetric and b j

are antisymmetric. For mode 2, the a j coeffi-
cients are antisymmetric and b j are symmetric.
In general for all odd number of modes a j are
symmetric and b j are antisymmetric and for all
even number of modes a j are antisymmetric and
b j are symmetric. The antisymmetric coefficients
are useful for locating damage between two sym-
metric locations of the beam(for example x = 0.2L
and x = 0.8L), where the symmetric coefficients
show the same Fourier coefficients. Thus at least
one symmetric and one antisymmetric mode are
needed to uniquely locate damage in fixed-fixed
beam.

Also it can be noted that the Fourier coefficients
which are zero for undamaged beam (b j for mode

1 and mode 3, a j for mode 2) in Tab.1 through
Tab.3, now attain non zero values due to the pres-
ence of damage. This non-zero values increase
monotonically with damage size. The occurrence
of sine harmonics in the Fourier coefficients of
mode 1 and 3 and cosine harmonics in the Fourier
coefficients of mode 2 are therefore indication
of damage in the beam. It has also been found
that each location-damage size pair has an unique
set of sensitive Fourier coefficients, which can be
considered as an unique damage index for that
particular damage location and damage size. This
will be demonstrated in detail in later sections in
the paper.

6 Numerical experiment

Since detection of damage sizes of less than 50%
is of more engineering interest, we have consid-
ered damage sizes 50%, 40%, 30%, 20%, 15%
and 10% and damage location varying from el-
ement number 1 through 20. In order to simu-
late the experimental noise and errors in measure-
ments and models, we have added noise to the
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Table 2: Fourier coefficients for second mode of
fixed-fixed beam

.
Coefficient Analytical Normalized Order of FE Value

Value Value magnitude
a0 -0.00000
a1 0.00000
b1 -0.91494 1.00000 1 -0.91494
a2 -0.00000
b2 0.19439 -0.21246 ε 0.19439
a3 -0.00000
b3 0.05033 -0.05501 ε 0.05033
a4 -0.00000
b4 0.02079 -0.02272 ε2 0.02079
a5 -0.00000
b5 0.01058 -0.01157 ε2 0.01058
a6 -0.00000
b6 0.00611 -0.00668 ε2 0.00611
a7 -0.00000
b7 -0.00385 -0.00420 ε3 -0.00385
a8 -0.00000
b8 -0.00257 -0.00281 ε3 -0.00257
a9 0.00000
b9 0.00181 -0.00198 ε3 0.00181
a10 -0.00000
b10 0.00132 -0.00144 ε3 0.00132

Table 3: Fourier coefficients for third mode of
fixed-fixed beam

.
Coefficient Analytical Normalized Order of FE Value

Value Value magnitude
a0 0.24056 -0.35294 ε 0.24055
a1 0.53853 -0.79013 1 0.53852
b1 0.00000
a2 -0.68157 1.00000 1 -0.68155
b2 -0.00000
a3 -0.06303 -0.09247 ε -0.06303
b3 -0.00000
a4 -0.01832 -0.02688 ε2 -0.01832
b4 0.00000
a5 -0.00735 -0.01079 ε2 -0.00735
b5 0.00000
a6 -0.00353 -0.00518 ε2 -0.00353
b6 0.00000
a7 -0.00191 -0.00280 ε3 -0.00191
b7 -0.00000
a8 -0.00113 -0.00165 ε3 -0.00113
b8 -0.00000
a9 -0.00071 -0.00104 ε3 -0.00071
b9 -0.00000
a10 -0.00047 -0.00069 ε3 -0.00047
b10 -0.00000

FE mode shape according to eq.(10). Here α is
a measure of noise level and is taken to be 0.01
and the function rand() generates random num-
bers varying from -1 to +1. Fig. 2 shows a sample
ideal and noisy mode shape.

Φ(noisy)(i) = Φ(ideal)(i)+α ∗ rand() (10)

One thousand noisy mode shapes are created for
undamaged and damaged beam using eq.(10), and
Fourier coefficients are obtained as explained in
section 4. Here Φ is the vector containing the
mode shapes. From these thousand cases, two
cases with maximum deviation above and max-
imum deviation below the ideal(noise free) re-
sults are selected for both the undamaged beam
and the damaged beam. Fig.6 through Fig.8 show
the variation of Fourier Coefficients in presence
of noise for first, second and third modes of a
fixed-fixed beam for undamaged and a selected
damage size of 40%. It is clear from these fig-
ures and as shown in the Fig.9 as an example that
there is an undamaged zone between the two hor-
izontal lines where the Fourier coefficients of un-
damaged beam lie. Similarly there is a damaged
zone where the Fourier coefficients of the dam-
aged beam lie. The pattern classification between
the damaged and undamaged beams can be made
for damage location where the ’undamaged’ and
’damaged’ zones do not intersect and are unique.
The undamaged and damaged cases are compared
to find the Fourier coefficients which are out of the
undamaged noise band. For example damage at
element 1, 9, 10, 11, 12 and 20 cause changes in
a2 which lie outside the undamaged band. This
observation leads to the results in Tab.5 in the
mode 1 column. For each damage size and dam-
age location pair thus obtained Fourier coeffi-
cients are the ones which undergo considerable
change due to presence of damage. Tab.4 through
Tab.9 gives the vector of sensitive Fourier coef-
ficients for each damage size and damage loca-
tion pair which is the damage index. In these ta-
bles capital letters A, B are used for the Fourier
coefficients to indicate that these coefficients are
outside the noise band for the undamaged beam
and therefore useful for damage detection. For
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Figure 2: Noisy first mode shape of an undamaged fixed-fixed beam

Table 4: Fourier Coefficients above noise level for 50% damage

Damage Location Mode 1 Mode 2
1 A0,B1,−A2,−A3 A0,−A1,A2,−B2,A3,A4

2 B1 A0,−A1,A2

3 −B2

4 −A0 ,−A1,A2,−B2,A3

5 −A0 ,−A1,B1,A2,−B2,A3,B3,−A4

6 B1 −A1 ,B1,A2,−B2,−A3,B3,−A4,−B4

7 B1,−B2 A0,−A1,B1,A2,B2,−A3,−B4

8 B1,−B2 A0,B1,B2,−A3,−B3,A4

9 B1,A2,−B2 A0,B1,−A2,B2,−B3

10 −A0,A2 A0,−A2

11 −A0,A2 −A0 ,A2

12 −B1,A2,B2 −A0 ,B1,A2,B2,−B3

13 −B1,B2 −A0 ,B1,B2,A3,−B3,−A4

14 −B1,B2 −A0 ,A1,B1,−A2,B2,A3,−B4

15 −B1 A1,B1,−A2,−B2,A3,B3,A4,−B4

16 A0,A1,B1,−A2,−B2,−A3,B3,A4

17 A0,A1,−A2,−B2,−A3

18 B2

19 −B1 −A0 ,A1,−A2

20 A0,−B1,−A2,−A3 −A0 ,A1,−A2,−B2,−A3,−A4
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Table 5: Fourier Coefficients above noise level for 40% damage

Damage Location Mode 1 Mode 2 Mode 3
1 A0,B1,−A2 A0,−A1,A2,−B2,A3 A1,−B1,A2,B2,−A3,−A4

2 B1 A0,−A1,A2 −B1

3 B2,−A3

4 −A0,−A1,A2,−B2 −A0,−A1,A2,B2,−A3,−B3,−B4,A5

5 −A0,−A1,B1,A2,−B2,B3 −A0,−A1,−B1,A2,B2,−B3,A4,−B4,A5,B5

6 −A1,B1,A2,−B2,B3 −A0,−B1,A3,−B3,A4,B4,B5

7 B1,−B2 A0,−A1,B1,A2,B2,−A3 −B1,A3

8 B1,−B2 A0,B2,−A3,−B3 B1,B2,−B3

9 B1,A2,−B2 A0,−A2,−B3 −A0,−A1,B1,A2,B2,A3,−B3,B4,−B5

10 −A0,A2 A0,−A2 −A1,B1,B2,A3,−B3,−A4,B4,A5,−B5

11 −A0,A2 −A0,A2 −A1,−B1,−B2,A3,B3,−A4,−B4,A5,B5

12 −B1,A2,B2 −A0,A2,−B3 −A0,−A1,−B1,A2,−B2,A3,B3,−B4,B5

13 −B1,B2 −A0,B2,A3,−B3 −B1,−B2,B3

14 −B1,B2 −A0,A1,B1,−A2,B2,A3 B1,A3

15 A1,B1,−A2,−B2,B3 −A0,B1,A3,B3,A4,−B4,−B5

16 A0,A1,B1,−A2,−B2,B3 −A0,−A1,B1,A2,−B2,B3,A4,B4,A5,−B5

17 A0,A1,−A2,−B2 −A0,−A1,A2,−B2,−A3,B3,B4,A5

18 −B2,−A3

19 −B1 −A0,A1,−A2 B1

20 A0,−B1,−A2 −A0,A1,−A2,−B2,−A3 A1,B1,A2,−B2,−A3,−A4

example, in Tab.6 it is mentioned that damage in
element 1 causes measurable changes in Fourier
coefficients B1 and -A2 which can be seen from
Fig.6. The negative sign before A2 points to a de-
crease relative to the undamaged case. Note that
damage in element 20 causes measurable changes
in -A1 and -A2 and both have negative signs.
Thus the antisymmetric coefficients such as b1

are needed to differentiate between damage in el-
ement 1 and element 20. Note that using mode
1 alone does not allow differentiation between
many of the elements. However, the differentia-
tion between different elements becomes possible
using higher modes.

It is clear from Tab.4 through Tab.9 that more
modes are needed to isolate damage as the size
of damage decreases. Thus 50% damage can be
isolated using the Fourier coefficients of only the
first two modes, while the first three modes are
needed for 40%, 30% and 20% damage. Damage
size of 15% needs the first five modes and dam-
age of 10% is harder to detect and requires the
Fourier coefficients of the first six modes. In gen-
eral, lower modes such as first three can be mea-
sured with good accuracy. Hence we can say that

the proposed method can be effectively applied
for detecting and isolating damage of size greater
than 20%, though it can be applied to even smaller
damages. Another interesting result to note from
Tab.4 through tab.9 is that, for a given mode, the
Fourier coefficients at lower damage level are a
subset of those at higher damage level. For exam-
ple, in Tab.9 damage of 10% at element 1 leads to
the signature -A1, A2 for mode 2. For 15% dam-
age the signature is -A1, A2, -B2. For 20% dam-
age the signature is -A1, A2, -B2. For 30% dam-
age the signature is A0, -A1, A2, -B2, A3. For 40%
damage it is A0, -A1, A2, -B2, A3 and for 50%
damage it is A0, -A1, A2, -B2, A3, A4. Thus we
see that as the damage size at element 1 increases
from 10% to 50%, new Fourier coefficients be-
come measurable thus requiring less number of
modes for damage isolation. The changes in the
Fourier coefficients due to damage is well above
the considered noise level. Hence these can be
considered as the unique signatures of each lo-
cation and damage pair. In other words, these
unique signatures can be used for detecting dam-
age location and damage size. Tab.4 - 9 can be
used to develop pattern recognition algorithm for
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Table 6: Fourier Coefficients above noise level for 30% damage

Damage Location Mode 1 Mode 2 Mode 3
1 B1,−A2 A0,−A1,A2,−B2,A3 A1,−B1,B2,−A3,−A4

2 B1 A0,−A1

3 B2

4 −A0,A2 −A1,A2,B2,−A3,−B3,−B4

5 −A0,−A1,A2,−B2 −A1,−B1,A2,B2,−B3,A4

6 −A1,B1,A2 −B1,A3,−B3,A4

7 B1 A0,−A1,A2,−A3 −B1,A3

8 B1 A0,B2,−A3,−B3 B1,B2

9 B1 A0,−A2,−B3 −A1,B1,A2,B2,A3,−B3

10 A2 −A1,B1,B2,A3,−B3,−A4
11 A2 −A1,−B1,−B2,A3,B3,−A4
12 −B1 −A0,A2,−B3 −A1,−B1,A2,−B2,A3,B3

13 −B1 −A0,B2,A3,−B3 −B1,−B2

14 −B1 −A0,A1,−A2,A3 B1,A3

15 A1,B1,−A2 B1,A3,B3,A4

16 A0,A1,−A2,−B2 −A1,B1,A2,−B2,B3,A4

17 A0,−A2 −A1,A2,−B2,−A3,B3,B4

18 −B2

19 −B1 −A0,A1

20 −B1,−A2 −A0,A1,−A2,−B2,−A3 A1,B1,−B2,−A3,−A4

Table 7: Fourier Coefficients above noise level for 20% damage

Damage Location Mode 1 Mode 2 Mode 3
1 B1 −A1,A2,−B2 −B1,B2,−A3

2 B1

3 B2

4 B2,−A3

5 A2 −B1,B2,−B3

6 A2 −B1,A3,−B3

7 A2 −B1

8 B1 A0

9 A0,−A2 B1,B2,−B3

10 B2,A3,−B3

11 −B2,A3,B3

12 −A0,A2 −B1,−B2,B3

13 −B1 −A0

14 −A2 B1

15 −A2 B1,A3,B3

16 −A2 B1,−B2,B3

17 −B2,−A3

18 −B2

19 −B1

20 −B1 A1,−A2,−B2 B1,−B2,−A3
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Table 8: Fourier Coefficients above noise level for 15% damage

Damage Location Mode 1 Mode 2 Mode 3 Mode 4 Mode 5
1 B1 −A1,A2,−B2 −B1,B2 −A2,A3,−B3 −B1,−B2,B3

2 B3

3 B2 −A2,A3,−B3 −A1,−B2,A3,B3

4 B2 −A2,A3 −B2,B3

5 A2 −B1,B2,−B3 A1,−A2

6 A2 −B1 −A2,−B2,A3,B3,−B4

7 −A1,A3 −B2,B3,A4,−B4

8 A0 −A2,A3,−A4 −B2,A4

9 B1,B2,−B3 A1,−A2,−B4

10 A3 A1,−A3 B2,B3,A4,−B4

11 A3 −A1,A3 −B2,−B3,A4,B4

12 −B1,−B2,B3 −A1,A2,−B4

13 −A0 A2,−A3,A4 B2,A4

14 A1,−A3 B2,−B3,A4,B4

15 −A2 B1 −A2,B2,A3,−B3,B4

16 −A2 B1,−B2,B3 −A1,A2

17 −B2 A2,−A3 B2,−B3

18 −B2 A2,−A3,−B3 −A1,B2,A3,−B3

19 −B3

20 −B1 A1,−A2,−B2 B1,−B2 A2,−A3,−B3 B1,B2,−B3

Table 9: Fourier Coefficients above noise level for 10% damage

Damage Location Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6
1 B1 −A1,A2 −B1,B2 A3 −B2,B3 A3,−A4

2 A3,−A4

3 −A2,A3 −B2,B3 A3,−A4

4 B2 −A2,A3 −B2,B3

5 B2 A3,−A4,B4

6 −B1 B3,−B4 −A2,A3,−A4

7 A3 −B2,B3,−B4

8 A3 −B2 −A4

9 B2 A1 −B4

10 A3 B2,A4 −A2,A4

11 A3 −B2,A4 A2,−A4

12 −B2 −A1 −B4

13 −A3 B2 A4

14 −A3 B2,−B3,B4

15 B1 −B3,B4 A2,−A3,A4

16 −B2 −A3,A4,B4

17 −B2 A2,−A3 B2,−B3

18 A2,−A3 B2,−B3 −A3,A4

19 −A3,A4

20 −B1 A1,−A2 B1,−B2 −A3 B2,−B3 −A3,A4
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Figure 3: Variation of Fourier coefficients for the 1st mode of a fixed-fixed beam



Fourier Analysis of Mode Shapes of Damaged Beams 91

0 5 10 15 20

01020304050
−0.02

0

0.02

DAMAGE LOCATION
DAMAGE SIZE 0 5 10 15 20

01020304050
−0.1

0

0.1

0 5 10 15 20

01020304050
−0.95

−0.9

−0.85

0 5 10 15 20

01020304050
−0.05

0

0.05

0 5 10 15 20

01020304050
0.15

0.2

0.25

0 5 10 15 20

01020304050
−0.02

0

0.02

0 5 10 15 20

01020304050
0.02

0.04

0.06

0 5 10 15 20

01020304050
−0.01

0

0.01

0 5 10 15 20

01020304050
0.01

0.02

0.03

0 5 10 15 20

01020304050
−5

0

5

x 10
−3

0 5 10 15 20

01020304050
0.005

0.01

0.015

0 5 10 15 20

01020304050
0

0.005

0.01

0 5 10 15 20

01020304050
−5

0

5

x 10
−3

a0
a1

a2
a3

a4

a5
a6

b1

b2

b3 b4

b5

b6

Figure 4: Variation of Fourier coefficients for the 2nd mode of a fixed-fixed beam
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damage detection. In fact, these tables provide a
rule base for the development of an expert system
or fuzzy logic system.

It should be noted that the accuracy of measured
mode shapes continues to improve due to ad-
vances in measuring and signal processing tech-
nology. Therefore, the method discussed in this
paper can be used for damage detection of real-
istic beam type structures. In addition, though
this paper has focussed on the fixed-fixed beam,
the method is also applicable to fixed-pinned and
pinned-pinned beams which are also spatially pe-
riodic.

7 Conclusions

A new method for damage detection and isola-
tion using damage index in the form of a vector
of sensitive Fourier coefficients for each damage
size and location for beams fixed at both ends is
developed in this paper. The method uses Fourier
analysis of mode shapes in the spatial domain. Fi-
nite element analysis of a damaged beam is used
to study the effect of damage location and size on
spatial Fourier coefficients. It is found that the
Fourier coefficients are sensitive to both damage
size and location. In particular, the higher har-
monic Fourier coefficients are quite sensitive to
damage location. The Fourier coefficients of the
first three modes can be used to isolate moderate
levels of damage in the beam even in the presence
of noise in the mode shapes. The Fourier coeffi-
cients in the spatial domain can therefore be used
as damage indicators for fixed-fixed beams.
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