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Wave Propagation around Thin Structures using the MFS

L. Godinho!, A. Tadeu' and P. Amado Mendes'

Abstract: This paper presents a strategy for
using the Method of Fundamental Solutions
(MFS) to model the propagation of elastic waves
around thin structures, like empty cracks or thin
rigid screens, located in a homogeneous elastic
medium. The authors make use of a simple ap-
proach for modeling these propagation conditions
using the MFS together with decomposition of
the domain into distinct regions. This approach
makes it possible to avoid the undetermined sys-
tem of equations that arises from imposing bound-
ary conditions at both sides of a thin structure.
The numerical implementation of the MFS is per-
formed in the frequency domain, making use of
the Fundamental Solutions defined by Tadeu and
Kausel (2000) for the propagation of elastic waves
generated by a 2.5D load located in an unbounded
domain. Using this formulation, it is then possi-
ble to model 3D structures which have a constant
cross-section in the z direction. This calculation is
performed by decomposing the 3D response into
a sequence of 2D responses computed for differ-
ent wave-numbers along z.

The first part of the paper describes the formula-
tion of the method in detail, also presenting the
Fundamental Solutions used. Then, the method
is verified by comparing its results against those
given by a frequency domain formulation of the
Traction Boundary Element Method (TBEM).

A final section of the paper presents a sample ap-
plication which illustrates the applicability of the
method to study the wave propagation around a
thin rigid screen, embedded in a fluid medium.
For this case, time domain responses are com-
puted and presented in the form of snapshots.

Keyword: MFS, thin structures, domain de-
composition.
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1 Introduction

The use of numerical methods has proved to
be extremely useful in many physical problems,
since they allow the simulation of complex ge-
ometries and material behaviors. Over the past
years, the Finite Element Method (FEM) and the
Finite Difference Method (FDM) have been ex-
tensively used in almost every domain of science
and engineering. However, in some specific do-
mains other numerical methods have proved to
be more effective. Some of these methods, like
the Boundary Element Method, have been the ob-
ject of extensive research. In fact, for the anal-
ysis of acoustic or elastic wave propagation, the
BEM has emerged in the past twenty years as
one of the dominant techniques, particularly in
configurations that involve unbounded or semi-
infinite media (see, for example, Tadeu and God-
inho, 2003).

One of the most important advantages of the BEM
over its counterparts, especially the FEM and
FDM, is that it only requires the discretization
of the boundary interfaces. One drawback of the
method is its mathematical complexity, since it
requires the prior knowledge of the fundamental
solutions, i.e Green’s functions, for the physical
problem. These fundamental solutions can only
be determined for certain specific types of dif-
ferential equations, and it becomes very difficult
to derive them when the physical domain to be
analyzed is not homogeneous. A second draw-
back of the BEM is that its formulation requires
the evaluation of singular and hyper-singular in-
tegrals along the boundary. Handling these in-
tegrations generally requires elaborate numerical
schemes together with mathematical manipula-
tion of the expressions, or, in some cases, their
analytical evaluation. For a few cases, such as fre-
quency domain wave propagation problems that
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use straight boundary elements, analytical solu-
tions for these integrals have been proposed by
Tadeu et el (1999a, 1999b), when the integrations
involve the loaded element.

Latterly, a significant effort has been put into
the development of a different class of numerical
methods, usually known as meshless or mesh-free
methods. In essence, these new methods require
neither domain nor boundary discretization. A
few examples of these techniques are: the method
of fundamental solutions (MFS) [Fairweather et
al. (1998), Golberg et al. (1999)], the radial ba-
sis functions (RBF) collocation method [Kansa
(1990)], and the Meshless Local Petrov-Galerkin
method [Atluri (2004)].

The authors of the present paper focus on the use
of the MFS to study wave propagation in solids
and fluids. The formulation of this method is
mathematically very simple, although it requires
prior knowledge of the fundamental solutions for
the physical problem to be studied. It can be
viewed as an indirect BEM since it is solved after
satisfying the boundary conditions. However, no
numerical integration is needed along the bound-
aries, which avoids the difficulty posed by sin-
gular and hyper-singular integrations. Previous
work by the authors of this paper [Godinho et al
(2006)] has studied the performance of the MFS
for simulating the propagation of acoustic waves
in a fluid domain with an inclusion, concluding
that the method can be very efficient, even sur-
passing the performance of the BEM for this type
of problem.

A specific class of problems within the field of
wave propagation involves the propagation of
both elastic and acoustic waves around cracks or
thin rigid bodies. Studying this type of geometry
usually requires even more complex boundary el-
ement formulations, such as the Traction Bound-
ary Element Method (TBEM), to avoid the sin-
gularities that arise in the classic boundary ele-
ment formulation for these situations. In recent
work by Tadeu et al (2006) and Amado Mendes
et al (2006), this methodology has been exten-
sively developed and implemented to model wave
propagation around thin structures with rigid or
free boundaries, located inside fluid or elastic do-
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mains. But a very simple alternative can be used,
which consists of decomposing the propagation
domain into different sub-domains, in such a way
that the two opposite boundaries of the thin struc-
tures face different sub-domains. This general
technique has been known for some years [see, for
example, Brebbia and Dominguez (1989)], and it
can be applied to a wide variety of physical prob-
lems. In theory, it can also be used together with
the MFS, thus allowing the simulation of such
configurations. However, a recent study by Leitao
and Alves (2006) concluded that, in the specific
case of 2D static torsion in solids with a crack,
the described approach does not yield accurate re-
sults, and the simulation of such problems would
require the use of so-called enrichment functions.

In the present paper, the authors study the ap-
plicability of a domain decomposition technique
together with the MFS to simulate wave propa-
gation in solids and fluids with embedded thin
structures. In all cases, the medium is assumed
to be two-dimensional, while the dynamic source
is three-dimensional (e.g. a point load). Such a
situation is frequently referred to as a two-and-a-
half-dimensional problem (or 2-1/2-D for short),
and solutions can be obtained for this by means
of a 2D spatial Fourier transform in the direction
in which the geometry does not vary [Tadeu and
Godinho (1999)].

For the purpose of this study, the MFS and TBEM
solutions for the analysis of a semicircular crack
inside an unbounded solid domain and for a semi-
circular rigid thin screen located within an un-
bounded fluid will be compared.

First, the three-dimensional problem is formu-
lated. Then, a brief description of the mathemati-
cal formulation of the MFS is given, together with
the fundamental solutions for the problems to be
solved. There follows an explanation of the do-
main decomposition approach used here. Then, a
selection of numerical results is presented to as-
sess the accuracy of the proposed approach. A
sample numerical application is then presented,
which identifies the most important characteris-
tics of wave propagation around a thin structure.
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2 2.5D Frequency domain problem formula-
tion

Consider a cylindrical elastic inclusion of infi-
nite extent, subjected to a harmonic point pressure
source at position (xg,0,0), oscillating with fre-
quency w. The incident field can be expressed by
means of the now classical dilatational potential ¢

Ae (at— (x_x0)2+y2+zz>
¢inc = > (D
\/(x—xo) +y? + 22

where the subscript inc denotes the incident field,
A is the wave amplitude, ¢ is the compressional
wave velocity of the medium, and i =/ —1.

Defining the

effective wavenumbers
ky = \/‘&’—i—k%, Imky, < 0 by means of the
axial wavenumber k,, and Fourier-transforming

equation (1) in the z direction, we obtain
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where HS,Z)(- -+) are second Hankel functions of
order n.

If an infinite set of periodically placed sources
along the z direction at equal intervals, L, is con-
sidered, the incident field may be written as

¢inc(wvxvya =5 Z ¢1na w,x,y,k;)e ) ke
m=—oo
(3)
with k., = <fm, that converges and can be ap-

proximated by a finite sum of terms.

3 Formulation of the MFS
3.1 General formulation

For the MFS, the solution is approximated
throughout the domain in terms of a linear combi-
nation of fundamental solutions for the governing
equation. So, in an acoustic domain, the pressure
field can be written as

ZQn N, YW x k) @)
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where (xf,i), yf,i)) are the coordinates of NS distinct
source points placed along a fictitious boundary of
the medium i (see Figure 1); Q,, and P, are the am-
plitudes to determined for the source points. The
functions GU)(---) are the fundamental solutions
for acoustic wave propagation in the medium i.
For 2.5D problems, these solutions can be given
as

a) xn?y"”x y7 -

——H <\/ w—z—k2 \/x x)?+ (y— yn)>

withIm( (j?—j—k%)) <0

In order to avoid singularities, the fictitious
sources are placed outside the domain of the prob-
lem. Two different approaches have been de-
scribed in the literature for choosing their po-
sitions: fixed, and adaptive [Fairweather et al
(1998); Golberg et al (1999)]. In the present pa-
per, the source points are chosen a priori using a
fixed scheme. Since only circular geometries will
be studied, the source points are equally spaced
around circles with the same center as the inclu-
sion.

(6)

Similarly, for an elastic inclusion inside an elas-
tic infinite domain the displacement field can be
written as

) AE Vo 2) (2)
u; ZZPWGU (@77, yn,%,, k)

n=1 j=1
(N
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In these equations, G;j(®,X,,yn,X,¥,k;) (i,j =1,
2, 3) are the displacements in direction j at (x,y),
caused by a unit point force applied at (x,yy,).
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Figure 1: Physical domain and fictitious bound-
ary.

The fictitious sources are placed outside the prop-
agation domain of the problem to avoid singulari-
ties.

The fundamental solutions for this problem are
known, and their mathematical derivation can be
found in Tadeu and Kausel (2000). For complete-
ness, the mathematical expressions of these fun-
damental solutions are presented in equations (9)
to (14).

1
Gy =A [kaoﬁ ——Bi+ nyz] 9)
1
Gyy=A [kfﬂoﬁ ——Bi+ y)%Bz] (10)
G.. = A [k}Hop — k2 By (11)
ny - ny - '}/x’}/yABZ (12)
G.. = G = ik.7:AB; (13)
Gy, = G, = ik, },AB; (14)

where A and u are Lamé constants, p is the mass
density, oo = /(A +2u)/p is the P wave veloc-
ity, B = \/u/p is the S wave velocity, k, = 0/ a
and k; = @/f are the compressional and shear

wave numbers, ko = /k3 —kZ, kg = \/ki —kZ,

1 o _
A= Y= g5 = with i = 1,2, Hyg =
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HY (kar), H,p = H (kpr) and B, = kyH,p —
K .

3.2 Domain decomposition for modeling thin
structures

The approach used here to model wave propaga-
tion around a thin structure (crack or rigid screen)
is based on the decomposition of the domain in
two different sub-domains, as illustrated in Fig-
ure 2. If the thin structure is a rigid screen located
in an acoustic domain, the interface between the
two sub-domains will be a curve, designated as
C, containing the thin structure, 7', and a fictitious
interface, named F. In order to correctly describe
the behavior of the thin screen, null particle veloc-
ities must be ascribed to both sides of the screen
(T) and continuity of pressure and velocity should
be imposed along F.

A similar procedure should be followed when the
thin structure is a crack located inside an elastic
medium, for which case boundary conditions of
null stresses (for a crack) should be ascribed to
both sides of the interface 7', while continuity of
both displacements and stresses must be enforced
along F. This situation is schematically repre-
sented in Figure 3.
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Figure 2: Schematic representation of the domain
decomposition for an acoustic medium.
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Figure 3: Schematic representation of the domain
decomposition for an elastic medium.

4 Performance of the proposed MFS ap-
proach

The above-defined formulations have been im-
plemented in computer codes, and their accuracy
tested by comparing the results they provide with
alternative numerical formulations. For the pur-
pose of this comparison, a Traction Boundary El-
ement code was used as a reference, since it a very
accurate approach that allows very efficient anal-
ysis of wave propagation around cracks and rigid
thin structures, requiring only the discretization of
these discontinuities. For the sake of brevity, the
formulation of this method will not be described
here. However, it is described in detail in Amado
Mendes et al (2006) and Tadeu et al (2006).

In the next sub-sections, a detailed comparison
between the results given by the MFS domain de-
composition technique and the reference solutions
will be given, so that the accuracy and applicabil-
ity of the proposed approach can be assessed.

4.1 Acoustic wave propagation

Figure 4 gives a schematic representation of the
test problem. For this problem, a semi-circular
rigid thin screen with a radius of 1.0m is assumed
to be located inside an infinite acoustic medium
(which is taken to be water). The screen is illu-
minated by a 2D source (=0.0 rad/m), placed at
x=-2.0m and y=0.1m, while the response is calcu-
lated at a receiver located at x=0.5m and y=0.5m.
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The response computed at this receiver, for 100
frequencies ranging from 20 Hz and 2000 Hz,
using the TBEM formulation with 300 elements
(used as a reference), is represented in Figure 5.

Receiver
(-0.5m; 0.5m)

@

Source
(-2m; 0.1m)

0 4=1000 kg/m?
0 ,=1500 m/s

Figure 4: Geometric configuration analyzed.
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Figure 5: Solution computed using 300 traction
boundary elements.

Figures 6, 7, 8 and 9 present the error occurring
when the response is computed using the MFS
domain decomposition technique, with the ficti-
tious sources placed at 0.05xR, 0.15xR, 0.25xR
and 0.35xR from the boundary. In these figures,
the error is represented as a 3D plot, with a loga-
rithmic scale on the vertical axis, and one horizon-
tal axis representing the excitation frequency and
the other representing the number of collocation
points used. For smaller distances, the response
seems to become more accurate as the number
of collocations points increases, for the full fre-
quency domain. Figures 6 and 7 show that when
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the distance from the sources to the boundary is
very small the technique is less accurate. Com-
paring these two figures, the difference between
the error amplitudes is very significant, with much
better results being obtained when the distance
is set to 0.15xR. As the distance to the bound-
ary increases further, an alteration in the results
becomes apparent: error peaks occur at high fre-
quencies and there is a greater number of colloca-
tion points (see Figure 8). This behavior is much
more pronounced for a distance of 0.35xR, when
the response obtained with more than 150 collo-
cation points is nearly unusable (Figure 9). In fact
the equation system generated for these settings is
less well conditioned, and so the results are inac-
curate.

errar

260 |
2000

1000

150

100 0

collocation points frequency

Figure 6: Error for the MFS with sources placed
0.05xR from the boundary.

To have an objective quantification of the global
accuracy of the results, the RMS of the error has
been computed along the analyzed frequency do-
main for each combination of collocation points
and distance to the boundary. For this purpose,
the RMS error is defined as

fV:Fl (pi— 171')2
NF ’

ErMS = (15)
where NF' is the number of computed frequencies,
p; is the pressure calculated for the MFS for the
i" frequency, and p; is the reference solution for
the same frequency, computed using the TBEM.
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Figure 7: Error from using the MFS with sources
placed 0.15xR from the boundary.
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Figure 8: Error from using the MFS with sources
placed 0.25xR from the boundary.

The corresponding results are displayed in Fig-
ure 10. This plot clearly shows that there is a
region of optimal performance for intermediate
distances between sources and boundary, between
0.1xR and 0.2xR. For this distance range, the re-
sults provided by this technique are accurate, and
seem to converge to the response computed us-
ing the TBEM as the number of collocation points
increases. Outside this region, the RMS error
quickly increases, especially for larger distances
and higher numbers of collocation points.

The same analysis was also performed for the
case when the source has a sinusoidal variation
along the Z axis, defined by k,=0.5 rad/m. For
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Figure 9: Error from using the MFS with sources
placed 0.35xR from the boundary.

distance

Figure 10: RMS of the error in the frequency do-
main, for different numbers of collocation points
and for different distances from the sources to the
boundary.

this source type, the reference solution computed
using the TBEM formulation with 300 elements
is displayed in Figure 11a, while the RMS er-
ror computed in the frequency domain for dif-
ferent numbers of collocation points and for dif-
ferent distances between the virtual sources and
the boundary is displayed in Figure 11b. The
RMS error computed for the different combi-
nations of distances/collocation points shows a
similar behavior to that previously observed for
k,=0.0 rad/m. In fact, a valley is once more clearly
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visible in the 3D plot, corresponding to a region of
optimal performance. Again, this occurs for dis-
tances between the sources and the boundary of
0.1xR to 0.2xR, for which the accuracy increases
smoothly with the number of collocation points.

4.2 Elastic wave propagation

A large number of tests has been run to study the
efficiency of the method in the analysis of wave
propagation around a thin crack inside an elas-
tic domain. The most relevant results obtained
are presented below. Figure 12 shows the geo-
metric configuration and the physical properties
used in these tests, with a semi-circular crack of
radius 0.2m located inside an otherwise infinite
and homogeneous elastic medium. The propaga-
tion domain has been decomposed into two sub-
domains, with equivalent physical properties. A
2.5D source oscillating at frequencies between
40 Hz and 4000 Hz is placed in the outer domain,
illuminating this system. The response is com-
puted at a single receiver, also placed in the outer
medium, at x=-0.2 m and y=0.2 m.

Figures 13a and 13b show the reference response
(in terms of X and Y displacements, respec-
tively) computed for a source characterized by
k,=0.0 rad/m (2D case) using a TBEM formula-
tion with 300 elements.

Figures 14a and 14b depict the RMS of the error
computed in the frequency domain. As in the pre-
vious sub-section, these 3D plots use a logarith-
mic scale on error axis (z), while linear scales are
used on the x (number of collocation points) and y
(distance from the sources to the boundary) axes.
Both plots exhibit very similar shapes, with larger
errors obtained for sources placed very close to
the boundary and for sources placed further away
from it. A valley shaped region, with lower error
levels, can be clearly identified, indicating that the
most accurate results may be obtained when the
fictitious sources are placed at intermediate dis-
tances. Within this region, the results seem to im-
prove as more collocation points are used. As in
the previous section, the best results seem to be
obtained for distances between 0.1xR and 0.2xR.

It is also interesting to see that the error level in-
creases significantly for larger distances between



124 Copyright ©) 2007 Tech Science Press

== |maginary part
o——o Real part

R e e

-0.5 vv

0 500 1000 1500 2000

Amplitude

Frequency (Hz)

(@)

errar

distance

(b)

Figure 11: Results for k, =0.5 rad/m: a) Reference
solution; b) RMS of the error along the frequency
domain.
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Figure 12: Geometry of the problem.

sources and boundary when the number of collo-
cation points also increases. In this case, the in-
creasing number of collocation points starts orig-
inating an ill-conditioned, thus reducing the accu-
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Figure 13: Results computed using 300 traction
boundary elements: a) X displacement; b) Y dis-
placement.

racy of the results.

In the examples presented here, only the case
where the axial wavenumber k,=0.0 rad/m, corre-
sponding to a 2D problem. However, other results
obtained in complementary testing (not shown)
indicate a similar behavior of the method for dis-
tinct values of k.

5 Numerical application example

To show the applicability of the methodology to
analyze wave propagation around a thin structure,
a numerical example is presented below. It con-
sists of a rigid screen placed in an infinite fluid
medium. The fluid is assumed to be water, with
a density of 1000 kg/m>, allowing an acoustic
wave propagation velocity of 1500 m/s. The thin
screen has a circular shape, as defined in Figure
15, with a small opening 0.5 m wide. This sys-
tem is excited by a line source placed at x=-0.9 m
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Figure 14: RMS of the error committed when us-
ing the MFS along the frequency domain: a) X
displacement; b) Y displacement.

and y=0.0 m. Responses have been computed
over a square grid of 50x50 receivers, equally
spaced between x=-2.0 m ; y=-2.0 m and x=2.0 m
; y=2.0 m, for a full range of frequencies from
20 Hz and 2560 Hz. These responses have been
transformed to the time domain, assuming that
the line source emits a Ricker pulse [Tadeu et
al (1999)] with a central frequency of 1000 Hz.
In this process, complex frequencies of the form
o, = w—in,withn =0.7Aw, are used to prevent
the “aliasing" phenomenon.

A number of snapshots, which illustrate the wave
propagation within this region, are displayed in
Figure 16.

At time t=0 ms, the source emits a Ricker pulse
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Figure 15: Schematic representation of the prob-
lem’s geometry.

which propagates away from it. Part of the cor-
responding wavefront then hits the inner bound-
ary of the screen, where it is reflected back to the
interior part of the domain. At the same time,
another part of the wavefront passes through the
small opening, and is diffracted at its edges to
generate a larger wavefront. This behavior can
clearly be seen in Figure 16a, where a snapshot
taken at t=2 ms is displayed. The generated wave-
fronts continue to propagate through the domain,
with more reflections being generated within the
confined domain. The outer wavefront propagates
around the rigid screen, even reaching receivers
placed in the shadowed zone behind the screen
(see Figure 16b, for t=6 ms). At later times,
the multiple reflections that occur within the con-
fined space also reach the opening, generating
new wavefronts that propagate in the domain sur-
rounding the rigid screen, such as the ones that
are visible in the Figure 16c¢ snapshot, taken at
t=14 ms.

Examination of the above pictures shows that the
presented simulation is consistent with the behav-
ior expected of the system, indicating a very good
behavior of the approach used here for the study
of wave propagation around a rigid screen.



126 Copyright ©) 2007 Tech Science Press

t=0.0025

(@)

t=0.006s

yim)

(b)

t=0.014s

=2 45 4 05 0 05 1 15 2
()

©
Figure 16: Snapshots taken for different time in-
stants.
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6 Conclusions

A numerical strategy, based on domain decom-
position, has been used to simulate the propa-
gation of waves in an acoustic and an elastic
medium containing thin structures, such as rigid
screens or empty cracks, using the Method of
Fundamental Solutions. The results provided by
this method were compared with reference solu-
tions computed using a Traction Boundary Ele-
ment formulation, making it possible to conclude
that the technique provides very good results if
the virtual sources are judiciously placed at spe-
cific distances from the boundaries. For a circular
geometry, the authors conclude that the best re-
sults are obtained when these virtual sources are
at a distance of approximately 0.1xR to 0.2xR
from the boundary. This conclusion was valid
both for elastic and for acoustic domains. It was
also possible to conclude that, for larger distances,
when a very large number of collocation points is
used, the response diverges, possibly because an
ill-conditioned equation system is generated. The
authors also conclude that when the sources are
too close to the boundary the results are less ac-
curate.

A numerical example of application was also pre-
sented, clearly showing that the methodology is
applicable to the case of a circular rigid screen lo-
cated inside a fluid medium.
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