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The Computation of Modified Landau-Lifshitz Equation under an AC Field

Chein-Shan Liu1 2

Abstract: An accurate magnetization requires
that both the reversible and irreversible compo-
nents be modeled. The classical Landau-Lifshitz
model deals with only the irreversible component
of magnetization. We first subject the Landau-
Lifshitz equation to an AC external field by per-
forming a computation through the closed-form
solution and the resulting hysteresis loop is dis-
played to show its deficiency. Then we modify the
Landau-Lifshitz model into a new one by includ-
ing a reversible part and an irreversible part ac-
companying with the switching criteria between
these two states. With the new solutions we dis-
play the influence of parameters on the hysteresis
loops of magnetic materials under AC fields.

Keyword: Landau-Lifshitz equation, Magneti-
zation, Hysteresis loop

1 Introduction

In order to simulate the hysteretic phenomenon of
ferromagnetic materials, there have been several
physical models currently in use. However, the
following model:

Ṁ = −γM×Heff − γα
Ms

M× (M×Heff) (1)

proposed by Landau and Lifschitz (1935) is still
the most popular one being used widely and plays
a central role in the description of the micro-
magnetic dynamics of ferromagnetic media.

From the above equation it is apparent that M ·
Ṁ = 0; hence, the magnitude of magnetiza-
tion vector M(t) is conserved, i.e., ‖M(t)‖ =
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Ms=constant. Throughout this paper, a dot be-
tween two vectors stands for their scalar product,
and ‖ • ‖ denotes the magnitude of vector. The
two material parameters of γ > 0 and α ≥ 0 are,
respectively, the absolute value of gyromagnetic
ratio and the damping constant [Bertotti, Mayer-
goyz and Serpico (2001)]. The effective field Heff

is the sum of applied field, demagnetizing field,
anisotropy field and exchange field.

The Landau-Lifshitz equation is essential to the
interpretation of the dynamics of domain wall
[Zhai (1997)], ferromagnetic resonance [Fetisov,
Patton and Sygonach (1999)], and the magne-
tization switching in thin film recording me-
dia [Schrefl, Fidler, Süss and Scholz (2000)].
Recently, some analytical results were obtained
by Bertotti, Serpico and Mayergoyz (2001) and
Bertotti, Mayergoyz and Serpico (2004) for the
magnetic body exhibiting rotational symmetry
about a certain axis and the external field being
circularly polarized in the perpendicular plane.
Besides that very few exact solutions are known
for the nonlinear large magnetization motions.
Usually, the majority of nonlinear studies are car-
ried out by the numerical integration techniques
[Serpico, Mayergoyz and Bertotti (2001); Krish-
naprasad and Tan (2001); Frank (2004); Liu and
Ku (2005); d’Aquino, Serpico and Miano (2005)].

In many technical applications of ferromagnetic
materials the coercivity is considered to be one
of the most important parameters in applied mag-
netism. The coercivity is responsible for the non-
zero value of the external magnetic field required
to reduce the total magnetic moment of the fer-
romagnetic sample to zero. The coercivity being
in a close correlation with the hysteresis losses of
the ferromagnetic material is usually determined
from the width of the hysteresis loop as shown in
Fig. 1, where Ms, Mr and Hc are respectively the
saturation magnetization, the remanent magneti-
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zation and the coercive magnetic field. In this pa-
per we study the Landau-Lifshitz equation (1) un-
der an AC field Heff = H0

eff sinΩt, where H0
eff is a

constant amplitude vector in three positive direc-
tions and Ω is the excitation frequency [Vértesy
and Magni (2003)]. Rivkin and Ketterson (2006)
have studied the magnetization reversal using var-
ious rf magnetic pulses, numerically showing that
the switching is possible with simple sinusoidal
pulses. Lee and Yuan (2007) have used an os-
cillating field to study the magnetization reversal,
showing that the oscillating field reduces the co-
ercivity significiantly.

sr

c

Figure 1: A typical hysteresis loop of magnetiza-
tion.

In this paper we first give an outline of the linear
representation of the Landau-Lifshitz equation in
Section 2. The linearization is important for get-
ting the closed-form solution in Section 3. In Sec-
tion 4 we display a magnetic hysteresis loop ob-
tained from the Landau-Lifshitz equation to show
that the solution does not give a physically rel-
evant hysteresis loop and explain what the rea-
son to cause this deficiency; hence, we propose
a modification of the Landau-Lifshitz equation
by including a reversible part and an irreversible
part accompanying with the switching criteria be-
tween these two states. With the new solutions we
show the influence of the parameters on the hys-
teresis loops, which are more closely correlated
with the typical hysteresis loops for most mag-
netic materials. Finally, we draw some conclu-
sions in Section 5.

2 Linear representation

Let us define a unit vector

m :=
M

‖M‖ =
M
Ms

, (2)

and use a new time scale t ′ = γMst and a new
field H = Heff/Ms for saving notations, and then
Eq. (1) can be rearranged to

dm
dt ′

= Ĥm+αH−αH ·mm, (3)

where

Ĥ :=

⎡
⎣ 0 −H3 H2

H3 0 −H1

−H2 H1 0

⎤
⎦ (4)

is skew-symmetric, and Hi, i = 1,2,3, are three
independent components of H.

Liu (2004) has proved that the Landau-Lifshitz
equation (3) can be linearized to (see also Ap-
pendix A)

dX
dt ′

= AX (5)

in the four-dimensional Minkowski space with
X ∈ M

4 satisfying the cone condition of XTgX =
0, where T denotes the transpose and g is a
Minkowski metric given by

g =
[

I3 03×1

01×3 −1

]
(6)

with I3 the third order identity matrix. In above,
we have defined

X =
[

Xs

X0

]
=

⎡
⎢⎢⎣

X1

X2

X3

X0

⎤
⎥⎥⎦ := X0

[
m
1

]
(7)

as the augmented state vector, and

A : =

[
Ĥ αH

αHT 0

]

=

⎡
⎢⎢⎣

0 −H3 H2 αH1

H3 0 −H1 αH2

−H2 H1 0 αH3

αH1 αH2 αH3 0

⎤
⎥⎥⎦

(8)

as the system matrix, satisfying the Lie algebraic
property of ATg+gA = 0, which is known as the
Lie algebra for the Lorentz group SOo(3,1) [Liu
(2001)].
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3 Closed-form solution

Now we search the closed-form solution of Eq. (1)
under the AC field Heff = H0

eff sinΩt. Let us define
a new amplitude vector

H0 =
H0

eff

Ms
, (9)

and a new excitation frequency

ω =
Ω

γMs
. (10)

Then, Eq. (5) can be written as

dX
dt ′

= sinωt ′BX, (11)

where

B =

[
Bs

s Bs
0

(Bs
0)

T 0

]
:=

[
Ĥ0 αH0

α(H0)T 0

]

=

⎡
⎢⎢⎣

0 −H0
3 H0

2 αH0
1

H0
3 0 −H0

1 αH0
2

−H0
2 H0

1 0 αH0
3

αH0
1 αH0

2 αH0
3 0

⎤
⎥⎥⎦

(12)

is a constant matrix, satisfying the Lie algebraic
property of BTg+gB = 0.

There is a useful property for B:

(Bs
s)

kBs
0 = 0, (13)

where k is any positive integer.

Considering the transformation of time variables
by

dτ
dt ′

= sinωt ′, (14)

and then using Eq. (11) we obtain a constant linear
system:

dX
dτ

= BX. (15)

Up to here we have transformed the nonlinear
equation (1) to a time-varying linear system (5)
and then to a constant linear system (15).

We solve Eq. (15) by decomposing it into two
parts:

dXs

dτ
= Bs

sX
s +X0Bs

0, (16)

dX0

dτ
= Bs

0 ·Xs. (17)

Differentiating Eq. (17), inserting Eq. (16) for the
differential of Xs and utilizing Eq. (13), we obtain

d2X0

dτ2 = ‖Bs
0‖2X0. (18)

The general solution of the above equation is

X0(τ) = C1 cosh‖Bs
0‖(τ −τi)
+C2 sinh‖Bs

0‖(τ − τi), (19)

where τi is an initial time, and C1 and C2 are de-
termined by

C1 = X0(τi), C2 =
1

‖Bs
0‖

Bs
0 ·Xs(τi). (20)

Taking advantage of X0 derived above, and using
Eq. (16) the solution for Xs can be obtained as
follows:

Xs(τ) = exp[Bs
s(τ −τi)]Xs(τi)

+
∫ τ

τi

exp[Bs
s(τ −ξ )]X0(ξ )dξBs

0, (21)

where Xs(τi) is an initial value of Xs. By applying
the Cayley-Hamilton theorem for Bs

s and through
some calculations as given in Appendix B we get

exp[Bs
s(τ −τi)] = I3 + sin‖H0‖(τ −τi)

Bs
s

‖H0‖
+

[
1−cos‖H0‖(τ −τi)

] (Bs
s)

2

‖H0‖2
. (22)

Inserting Eq. (19) for X0 into Eq. (21) and utiliz-
ing Eqs. (13) and (22), we obtain

Xs(τ)

=
{

I3 + sin‖H0‖(τ −τi)
Bs

s

‖H0‖

+
[
1−cos‖H0‖(τ −τi)

] (Bs
s)

2

‖H0‖2

}
Xs(τi)

+
{

C1

‖Bs
0‖

sinh‖Bs
0‖(τ −τi)

+
C2

‖Bs
0‖

[cosh‖Bs
0‖(τ −τi)−1]

}
Bs

0.

(23)
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We can insert

τ −τi =
−1
ω

[cosωt ′ −cosωt ′i ]

=
−γMs

Ω
[cosΩt −cosΩti]

(24)

into Eqs. (19) and (23) and then divide the latter
one by the former one to obtain m(t) as follows:

m(t)

=

{{
I3 + sin‖H0‖(τ −τi)

Bs
s

‖H0‖

+
[
1−cos‖H0‖(τ −τi)

] (Bs
s)

2

‖H0‖2

}
m(ti)

+
{

1
‖Bs

0‖
sinh‖Bs

0‖(τ −τi)

+
Bs

0 ·m(ti)
‖Bs

0‖2 [cosh‖Bs
0‖(τ −τi)−1]

}
Bs

0

}
/{

cosh‖Bs
0‖(τ −τi)

+
Bs

0 ·m(ti)
‖Bs

0‖
sinh‖Bs

0‖(τ −τi)

}
.

(25)

From the above equation M(t) = Msm(t) can be
calculated. In the next section we will use the
above equation to simulate the magnetic hystere-
sis.

4 A modification

In the following calculations we are fixed the gy-
romagnetic ratio to be γ = 221021 m/As, the satu-
rated magnetization to be Ms = 1000000

√
3 A/m

and the three components of the initial values of
M to be M1 = M2 = 1000000 A/m and M3 =
−1000000 A/m. In addition that we use α =
0.004, Ω = 150000 rad/s, and H0

eff(1)= H0
eff(2) =

0 A/m and H0
eff(3) = 1500 A/m in Fig. 2.

As shown in Fig. 2 the hysteresis loop computed
by the Landau-Lifshitz equation is not practical,
since the dissipative term always works when α >
0, and which can be seen that the hysteresis loop
attains its saturation state very soon. Although the
third component M3 can turn its direction from

-2000 -1000 0 1000 2000
H3

eff (A/m)
-1000000

0

1000000

2000000

M3(A/m)

Figure 2: The hysteresis loop computed by the
Landau-Lifshitz equation is not practical.

negative to positive under the vertical AC field,
however, the third component M3 is standing on a
constant value too long even the vertical AC field
changes its direction from positive to negative.
Recalling that MsH0

eff/‖H0
eff‖ is a limiting state

of the Landau-Lifshitz equation when H0
eff acts

in one direction. Therefore, we can say that the
hysteresis loop calculated by the Landau-Lifshitz
equation has a drawback that the magnetization
orbit is confined near to a limiting state too long
even the external AC field changes its direction
to cause the limiting state vector changing its di-
rection. This situation makes the hysteresis curve
in Fig. 2 obtained from the Landau-Lifshitz equa-
tion is quite not similar to the usual one as shown
in Fig. 1.

The above conditions give us an incentive to mod-
ify the Landau-Lifshitz equation. As discussed by
Della Torre (1999) the dynamical magnetization
process can be divided into a reversible part and
an irreversible part. Thus, we modify the Landau-
Lifshitz equation into two parts:

Ṁ = −γM×Heff − γα
Ms

M× (M×Heff),

if ‖M‖ = Ms and Heff ·M > 0, (26)

Ṁ = −γM×Heff + γαMsHeff,

if ‖M‖ < Ms or Heff ·M ≤ 0. (27)
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Figure 3: The numerical results obtained by a modification of the Landau-Lifshitz equation.

The first equation corresponds to the irreversible
part, while the second equation corresponds to the
reversible part. Eq. (26) is the same as Eq. (1), but
equipped with a saturation condition ‖M‖ = Ms

and a switching condition Heff ·M > 0.

From Eq. (26) we have

Ṁ = −γM×Heff − γα
Ms

[M ·HeffM−‖M‖2Heff].

(28)

By using ‖M‖2 = M2
s in the irreversible state, the

above equation further reduces to

Ṁ = −γM×Heff + γαMsHeff − γα
Ms

M ·HeffM.

(29)

It can be seen that the last term in the above dis-
appears in Eq. (27). The last term is a dissipa-
tive one, and correspondingly the term γαMsHeff

is a conservative one. Liu (2000) has established
a general setting of the dynamical system, which
is controlled by the difference of the conservative
force and the dissipative force.

Reversible and irreversible changes in the mag-
netization may occur together during the magne-
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tization process. The irreversible processes are
usually associated with the dissipation of energy
through domain wall motion or moment switch-
ing in single domain particles, while the reversible
processes are usually linked with moment rotation
or doamin wall displacement in a single poten-
tial well. Consideration of the energy changes in-
volved in these different processes leads to a nat-
ural separation between the magnetization gained
for the system involving generation of heat (irre-
versible magnetization) and that where no heat is
generated (reversible magnetization).

Let us compare Eq. (27) with the modified Bloch
equation, which takes the relaxation effect into ac-
count:

Ṁ = −γM×Heff +
χ0

τy
Heff − 1

τy
M, (30)

where χ0 is the susceptibility of the magnetic
material and τy is the relaxation time during the
precession. If we let χ0/τy = γαMs and ignore
the last term in Eq. (30), which reflects the irre-
versibly relaxed phenomenon of magnetization,
then we get Eq. (27). In passing, we note the
differences between the modified Bloch equation
and the Landau-Lifshitz equation: Eq. (30) is lin-
ear but Eq. (26) is nonlinear, and ‖M‖ = Ms is
an invariance of Eq. (26) but not an invariance of
Eq. (30). These two equations are identical only
when Heff is proportional to M.

For Eq. (27) we have the following closed-form
solution:

M(t) =
{

I3 + sin‖H0‖(τ −τi)
Bs

s

‖H0‖

+
[
1−cos‖H0‖(τ −τi)

] (Bs
s)

2

‖H0‖2

}
M(ti)

+ α(τ − τi)H0
eff, (31)

where Bs
s was defined by Eq. (12) and τ − τi was

defined by Eq. (24).

Now, we are in a good position to simulate the
magnetization hysteresis with the above formu-
lae: Eq. (25) applicable in the irreversible state
and Eq. (31) applicable in the reversible state. We
use the same parameters values as those used in
Fig. 2 to show a typical magnetization response

in Fig. 3. As shown in Fig. 3(a) the magnetiza-
tion magnitude ‖M‖ is varied between the irre-
versible state with ‖M‖ = Ms and the reversible
state with ‖M‖ < Ms. As shown in Figs. 3(b)
and 3(c) the first and the second components of
M have high frequency oscillation, while the hys-
teresis loop shown in Fig. 3(d) for the vertical
component reveals a certain stable behavior. Fur-
thermore, the first and the second components al-
most hold a constant oscillating amplitude dur-
ing the reversible state and upon entering the ir-
reversible state they fast tend to zero after the
first half cycle of the AC input field and then re-
main in the zero values until the end of the input;
hence, in the steady state the direction of magne-
tization is along only in the vertical direction, and
the switching of magnetization direction is rather
fast when the AC field changes its direction.

When keeping all the parameters values un-
changed, in the following calculations we merely
change α = 0.01 by considering a larger damp-
ing constant in Fig. 4, Ω = 300000 rad/s by con-
sidering a higher exciting frequency in Fig. 5,
and H0

eff(3) = 2000 A/m by considering a larger
amplitude of AC field in Fig. 6. As usual a
larger damping constant renders a smaller hys-
teresis loop, a higher exciting frequency renders a
larger hysteresis loop, and of course a larger am-
plitude of excitation leads to a larger hysteresis
loop.
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Figure 4: The hysteresis loop is plotted under α =
0.01, Ω = 150000 rad/s, and H0

eff(3) = 1500 A/m.
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Figure 5: The hysteresis loop is plotted under
α = 0.004, Ω = 300000 rad/s, and H0

eff(3) =
1500 A/m.

-2000 -1000 0 1000 2000
H3

eff (A/m)
-2000000

-1000000

0

1000000

2000000

M3(A/m)

Figure 6: The hysteresis loop is plotted under α =
0.01, Ω = 150000 rad/s, and H0

eff(3) = 2000 A/m.

5 Conclusions

According to the linearization of the Landau-
Lifshitz equation derived by Liu (2004), we have
derived here a closed-form solution of the magne-
tization when subjected to an AC field along the
vertical direction, which can simulate the switch-
ing of magnetization direction of a magnetic thin
film. However, we found that the Landau-Lifshitz
equation can not simulate the hysteresis loop of
usual type very well. Therefore, we proposed a
modification by considering the decomposition of
the magnetization into an irreversible part and a

reversible part and derived the switching criteria
of these two states. According to the closed-form
solutions we have simulated the magnetic hystere-
sis loops, which are closer to the real ones under
different parameters values.
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Appendix A

In this appendix we derive Eq. (5). Upon defining
the integrating factor of

X0 := exp

(
α

∫ t′

0
[H(ξ ) ·m(ξ )]dξ

)
, (A1)

Eq. (3) can be arranged to

d
dt ′

(X0m) = X0Ĥm+αX0H. (A2)

On the other hand, from Eq. (A1) it follows that

d
dt ′

X0 = αX0H ·m. (A3)

Let us introduce

X =
[

Xs

X0

]
:=

⎡
⎢⎢⎣

X1

X2

X3

X0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

X0m1

X0m2

X0m3

X0

⎤
⎥⎥⎦

=: X0
[

m
1

]
,

(A4)

such that Eqs. (A2) and (A3) are combined
together into a single equation (5).

Appendix B

In this appendix we derive Eq. (22). From
Eq. (12) we obtain a characteristic equation for
Bs

s:

det (λ I3−Bs
s) = λ 3 +‖H0‖2λ = 0, (B1)

where det denotes the determinant and λ is the
eigenvalue of Bs

s. By the Cayley-Hamilton theo-
rem Bs

s also satisfies the above equation, that is,

(Bs
s)

3 +‖H0‖2Bs
s = 0. (B2)

Splitting the exponential series of exp[Bs
s(τ − τi)]

into odd and even powers, leads to

exp[Bs
s(τ −τi)] =

I3 +(τ −τi)Bs
s +

(τ −τi)3

3!
(Bs

s)
3 +

(τ −τi)5

5!
(Bs

s)
5

+ · · ·+ (τ −τi)2n+1

(2n+1)!
(Bs

s)
2n+1 + · · ·

+
(τ −τi)2

2!
(Bs

s)
2 +

(τ −τi)4

4!
(Bs

s)
4

+ · · ·+ (τ −τi)2n

(2n)!
(Bs

s)
2n + · · ·

(B3)
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However, by applying Bs
s to Eq. (B2) repeatedly,

we obtain the following recurrence relations:

(Bs
s)

3 = −‖H0‖2Bs
s, (Bs

s)
4 = −‖H0‖2(Bs

s)
2,

(Bs
s)

5 = ‖H0‖4Bs
s, (Bs

s)
6 = ‖H0‖4(Bs

s)
2, . . ..

(B4)

Replacing the higher order terms in Eq. (B3) by
the above formulae we obtain

exp[Bs
s(τ −τi)] =

I3 +
[
(τ −τi)‖H0‖

−(τ −τi)3‖H0‖3

3!
+

(τ −τi)5‖H0‖5

5!
+ · · ·

+
(−1)n(τ −τi)2n+1‖H0‖2n+1

(2n+1)!
+ · · ·

]
Bs

s

‖H0‖
+

[
(τ −τi)2‖H0‖2

2!
− (τ −τi)4‖H0‖4

4!
+ · · ·

+
(−1)n+1(τ −τi)2n‖H0‖2n

(2n)!
+ · · ·

]
(Bs

s)
2

‖H0‖2 .

(B5)

Recalling that

sinθ =
∞

∑
k=0

(−1)k θ 2k+1

(2k +1)!
,

1−cosθ =
∞

∑
k=1

(−1)k+1 θ 2k

(2k)!
,

and from Eq. (B5) we can derive Eq. (22).




