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Cyclic Softening Modeling with the Distribution of Non Linear Relaxation
(Dnlr) Approach
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Abstract: Being of particular interest in this
work, a complicated phenomenon related to
cyclic softening of metallic polycrystals is mod-
eled. As in the Waspaloy, this phenomenon
can take place when a non-proportional tension-
torsion cyclic loading of 90◦ out-of-phase is fol-
lowed, after cyclic steady state, by a uniaxial one
(tension-compression) with the same maximum
equivalent plastic strain. By using the DNLR
(Distribution of Non Linear Relaxation) model
recently proposed by the authors describing the
cyclic plasticity of metals, a new extension is here
developed. It is recognized that such an extension
can satisfactorily reproduce this softening phe-
nomenon. It is noteworthy that this model de-
scribes such a phenomenon with a minimum num-
ber of material parameters in comparison with
other phenomenological models. After calibra-
tion of the model parameters for the Waspaloy,
the constitutive equations of the model are then
implemented in a commercial finite element code
to simulate the model response vis-à-vis a given
structure made from the Waspaloy. Finally, it is
found that the new extension as well as the finite
element predictions give a fairly well accordance
with the available experimental results.

Keyword: DNLR, Cyclic Plasticity, Relax-
ation, Complex Loading, Cyclic Softening, Finite
Element Predictions.

1 Introduction

When mechanical structural components are sub-
jected to complex loading situations, it has been
shown that the cyclic deformation behavior for
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metallic materials are highly sensitive to the
type of these in-phase or out-of-phase loading
paths [Abdul-Latif, Clavel, Ferney, and Saanouni
(1994); Abdul-Latif (1996); Benallal and Mar-
quis (1987); Blackmon, Socie, and Leckie (1983);
Clavel, Pilvin, and Rahouadj (1989); Doong
and Socie (1991); Fatemi and Kurath (1988);
Kanazawa, Miller, and Brown (1977); Lamba
and Siddebottom (1978a); Lamba and Siddebot-
tom (1978b); McDowell (1985) and many others].
This seems to be due to distinct important features
related to metallurgical changes at highly stressed
or strained regions affected generally by the ap-
plied cyclic loading conditions.

The DNLR model [Cunat (2001); Dieng (2002);
Dieng, Abdul-Latif, Haboussi, and Cunat (2005);
Dieng, Haboussi, Loukil, and Cunat (2005);
Loukil (1996)] based on the generalization of the
Gibbs’s relation [Gibbs (1970)] away from the
equilibrium for a spatially uniform system is used.
It adopts also the fluctuation theory to analyze
the material dissipation due to its internal reor-
ganizations. In this approach, it is assumed that
the local behavior within the representative vol-
ume element (RVE) is determined by a thermody-
namic potential, which contains all the necessary
informations about the system. The incremental
constitutive equations are directly obtained from
the knowledge of the second order derivatives of
the non equilibrium potential function (general-
ized Tisza’s matrix coefficients) completed by ki-
netic modeling of internal reorganizations. In or-
der to treat a continuous medium, the definition of
a local potential is adopted. Taking into consid-
eration the exchange among different RVEs, this
allows to construct a theory of the fields where
one finds probably its limit when the local gra-
dients on the intensive values become highly im-
portant. In such a case, the volume element be-
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havior can be appropriately represented by an av-
eraging intensive value. Moreover, another char-
acteristic of the DNLR approach is the spectral
analysis of dissipation phenomena related to mi-
crostructural internal reorganizations where it is
assumed that the departure from equilibrium can
be analyzed as a function of the former equilib-
rium state and the kinetics of the relaxation phe-
nomena like in chemical reactions [Cunat (2001)].
An excess term of energy (or entropy) plays a role
of composition adaptation in order to establish a
partial equilibrium or a constrained equilibrium.
The obtained deviation from the equilibrium cor-
responds to the fluctuation used in this approach.
For practical reason, the specificity of the DNLR
is to consider a modal representation, which is
based on the introduction of a quasi-infinite num-
ber of dissipative modes using only two adjustable
parameters for describing the corresponding ini-
tial relaxation spectrum by means of fluctuation
theory. The complex return to equilibrium is de-
picted by a spectral analysis in which normal dis-
sipative modes are able to reproduce the whole
phenomenon of relaxation. Consequently, the ki-
netic law of each individual mode is described as
a first order non-linear one and developed in the
framework of the activated state theory.

From a modeling standpoint, the constitutive
equations already proposed by many research pro-
grams for reproducing the uniaxial cyclic behav-
ior are generally capable to correlate successfully
the experimental results. Nevertheless, modeling
of multiaxial deformation features becomes a dif-
ficult task due to the complexity of the material
response under non-proportional loading paths.
In other words, high cyclic non-proportionality
leads to a high hardening (isotropic and/or kine-
matic) behavior complexity due to the effects of
the change in plastic strain rate direction. It is well
known that this change in direction has a primor-
dial role in inducing extra slip systems activation
for several metallic materials. Many cyclic plas-
ticity and viscoplasticity models have therefore a
complex mathematical form and posses, in gen-
eral, a large number of material constants which
need a wide experimental database to be identi-
fied. The DNLR approach gives, at least, a partial

solution for such modeling difficulties, i.e., it does
not use any internal state variables for the plastic
strain and hardening (isotropic and/or kinematic)
and has relatively low model parameters.

Recently, the DNLR formalism has been devel-
oped in the objective to reproduce the cyclic be-
havior of metallic materials under various sim-
ple and complex loading paths [Dieng, Haboussi,
Loukil, and Cunat (2005)] without damage. Its
capability to reproduce several phenomena such
as: Bauschinger and strain memory effects, ad-
ditional hardening, etc, was appropriately illus-
trated. As far as the ratcheting phenomenon is
concerned, a not yet published work of the authors
confirms that the model shows again its powerful
to describe this cyclic phenomenon. The origi-
nality of such a model is related to its capability
to reproduce the principal mechanical cyclic phe-
nomena under simple and complex loading con-
ditions with relatively few model parameters (8
adjustable parameters and 2 parameters of elas-
ticity). Though, other approaches use with this
intention a score of 20 coefficients (for exam-
ple, Abdul-Latif, Clavel, Ferney, and Saanouni
(1994); Abdul-Latif (1996); Benallal and Marquis
(1987)).

In this work, the cyclic softening phenomenon
observed in the Waspaloy case [Clavel, Pilvin,
and Rahouadj (1989)], which cannot be described
by the model presented in [Dieng, Abdul-Latif,
Haboussi, and Cunat (2005)], is modeled. As a
matter of fact, this phenomenon is experimentally
observed when a non-proportional cyclic load-
ing of 90◦ out-of-phase is applied up to stabiliza-
tion, then followed by a uniaxial cyclic loading
of tension-compression, with the same equivalent
maximum plastic deformation. In the first phase
of non-proportional loading, a phenomenon of ad-
ditional hardening is obviously recorded during
which an activated slip systems multiplicity oc-
curs. On the other hand, an evanescent hardening
is observed during the second phase of uniaxial
loading. This is undoubtedly related to decreas-
ing of the slip systems multiplicity [Clavel, Pilvin,
and Rahouadj (1989)]. Thus, a special empha-
sis is placed on an extension of the DNLR model
developed in [Dieng, Abdul-Latif, Haboussi, and
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Cunat (2005)] so as to describe this complicated
phenomenon correctly. A finite element imple-
mentation of the model is then realized so as to as-
sess the capability of such modeling to reproduce
the softening effects at the structural scale. After
the implementation of the model equations in a
commercial finite element code, the recorded pre-
diction for a given structure made from the Was-
paloy reveals a fairly well accordance with the ex-
periments.

The present work consists of two essential parts,
the first one deals with the material modeling as-
pect, i.e., model constitutive equations. After the
identification of the model constants for the Was-
paloy, a quantitative study is carried out in the sec-
ond part of this study.

2 Presentation of the DNLR formalism

2.1 General statement

The Distribution of Non Linear Relaxations
(DNLR) formalism initially introduced by Cunat
(2001), is based on the thermodynamic of the ir-
reversible processes and the theory of the fluctu-
ation. In this formalism, the existence of a gen-
eralized thermodynamic potential (Ψ) is postu-
lated. It is obtained by Legendre transform of
the internal energy according to selected experi-
mental loading paths. It contains all the informa-
tion of the system including that for those situa-
tions away from equilibrium. This postulate con-
stitutes, in fact, a double generalization of the fun-
damental Gibbs’s relation [Gibbs (1970)] for sys-
tems out-of-equilibrium, in the sense that (i) it is
admitted that the potential preserves its status (of
potential) out-of-equilibrium in accordance with
the thermodynamic of De Donder (1920), (ii) the
entropy remains to define the out-of-equilibrium
situation of the system, and the temperature is its
dual variable. The latter recovers its usual signi-
fication in equilibrium. Hence, starting from the

potential Ψ = Ψ
(

γ, z
)

, it is possible to write the

following equations describing the evolution of
the system out-of-equilibrium for a given RVE:(

β̇
−Ȧ

)
=

(
au b

b
t

g

)(
γ̇
ż

)
(1)

where γ represents the perturbation imposed on
the system (observable variables on the RVE), β
the corresponding response. The internal variable
z and the affinity variable A describe the internal
reorganization of the system and the induced dis-
sipation. The following matrices connect these
dual variables:

au =
∂ 2Ψ
∂γ∂γ

(
γ , z
)

; b =
∂ 2Ψ
∂γ∂ z

(
γ , z
)

and g =
∂ 2Ψ
∂ z∂ z

(
γ , z
) (2)

When the coefficients of these coupling matrices
are constant, one finds the traditional description
of the quadratic potential which leads to the linear
models (generalized Zener or Poynting-Thomson
model [Poynting and Thomson (1902)]). Note
that close to equilibrium, the affinity A and the
flux variable ż are linearly dependent through the
constant matrix L of Onsager. To define this ki-
netic in the presence of non-linearity, the Onsager
relation is generalized as:

ż = L (z)A (3)

L depends a priori on z. Moreover, by taking into
consideration the relaxed state (Ȧr = 0 and z = zr)
the De Donder’s relation [DeDonder (1920)] lays
down a proportionality rule between the affinity A
and the internal variables (z− zr) via the coupling
matrix g given by:

A = −g(z− zr) (4)

The intrinsic dissipation of the affinity A and the
flux variable ż should be positive according to
the second law of thermodynamic Aż > 0, which
leads to the definition of relaxation time matrix:

τ−1
= Lg (5)

By diagonalizing this relaxation time matrix ac-
cording to Meixner (1949), one can deduce the
following expression from equations (3) to (5) :

ż j = −z j − z j,r

τ j (6)

where τ j is the j eigenvalue of τ corresponding to
the dissipation mode j. Afterward, an analysis of
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the dissipation modes distribution is proposed in
the linear and nonlinear cases. For each mode, the
relaxation time τ j will be defined and its contribu-
tion to the overall material response, symbolized
hereafter by p j

0, will be clarified as well as the
relation between p j

0 and τ j determining the relax-
ation spectrum.

2.2 Distribution of the dissipation modes: lin-
ear kinetics case

The relaxation times of the dissipation modes are
linearly determined for a RVE close to equilib-
rium. Indeed, when the RVE is submitted to a
perturbation γ, it reacts by an instantaneous re-
sponse affecting moderately the entropy configu-
ration. Internally, the system is then not in equi-
librium and its state can be regarded as a fluctu-
ation around the equilibrium state. In this work,
the description of the return to a new equilibrium
state (fluctuation regression) according to the ac-
tivated transitory state theory of Eyring (1936) is
adopted. Therefore, the relaxation time for the
mode j of regression is defined as follows:

τ j,r = μ exp

(
ΔF j,r

RT

)
(7)

where μ is an atomic reference frequency for lo-
cal jumps which can be approximated by the term
(h/kBT ) (h is the Planck constant, kB the Boltz-
mann constant, T the temperature and R the ideal
gas constant). In spite of such a theoretical limi-
tation, this approximation is resolved, at least par-
tially, by the adjusting of the free energy parame-
ter.

ΔF j,r is the Helmoltz’s free activation energy for
the j mode at the relaxed state for the initial posi-
tion of the activation col (FIG. 1). Such a col cor-
responds to a metastable equilibrium state and in-
dicates the magnitude of the energy barrier which
should be crossed by the material system to reach
a new stable equilibrium state.

To evaluate the weight p j
0 on the overall reponse

of each dissipative mode, Cunat (2001) used the
equipartition principle of the entropy of Prigogine
(1968). Consequently, the relation between the j
mode weight p j

0 and its corresponding relaxation
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Figure 1: Activation col evolution

time is given by:

p j
0 = B

√
τ j,r and

N

∑
j=1

p j
0 = 1

with
1
B

=
N

∑
j=1

√
τ j,r

(8)

where N represents the number of modes. Equa-
tions (8) permit to define the initial distribution
spectrum of the dissipation modes (see FIG. 2)
and to describe the response generated by the
loading condition. Numerically, the chosen con-
tinuous spectrum (N → ∞) is replaced by a dis-
cretized one, where N is taken equal to 50 over
D= 6 decades of time scale (this adopted value is
justified by the fact that the model response is no
longer sensitive to the of D when the latter ex-
ceeds 6). The activation energies used in this dis-
cretization correspond to:

ΔF j,r = ΔFr
max −RT

D(N − j)
N −1

ln(10)

for which 10−6 ≤ τ j,r

τ r,max ≤ 1 (9)

According to (9), ΔFr
max, which represents the re-

laxation time of the slowest mode of dissipation,
is thus sufficient, as the spectrum width D is fixed,
to approximate a continuous distribution of char-
acteristic times with N = 50.
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Figure 2: Initial distribution of relaxation times

2.3 Nonlinear kinetics extension

To generalize the description of those situations
away from equilibrium, the relaxation times are
modified with the aim of taking into account the
temporal nonlinearities due to coupling phenom-
ena. The j-relaxation time is obtained from the
activated transitory state theory of Eyring (1936)
adopted for our problem:

τ j = μ exp

[
ΔF j,r +Δ

(
ΔF j

)
RT

]

= τ j,r exp

[
Δ
(
ΔF j

)
RT

] (10)

Δ
(
ΔF j

)
represents the variation of the free energy

of activation corresponding to the activation col
evolution due to the non linearity effects (FIG. 1).
Besides, it is assumed that Δ

(
ΔF j

)
is the same for

the whole modes (cooperative effect) and will be
given for the mechanical problem by:

Δ
(
ΔF+)= Kσ J2 (σ −σ r) (11)

where Kσ =−V +(cm3/mol.at.) is the average ac-
tivation volume parameter and J2 (.) is the equiv-
alent von-Mises stress. The considered non-
linearity corresponds to the memory effects of the
second order. Combined to the first order one,
the latter permits to describe phenomena such as
the distortion of yield surfaces [Loukil (1996);
Dieng, Haboussi, Loukil, and Cunat (2005)] or

the cyclic hardening behavior of metallic materi-
als under non-proportional loading paths [Dieng,
Abdul-Latif, Haboussi, and Cunat (2005)].

2.4 Mechanical behavior

For purely mechanical problems, the perturbation
γ corresponds to the strain ε and the response β
to the stress σ . The mechanical constitutive equa-
tions are therefore expressed as follows:⎡
⎢⎣ σ̇ j = p j

0au ε̇ − σ j−σ j,r

τ j

σ j,r = p j
0arε

σ̇ = ∑N
j=1 σ̇ j

(12)

It is important to mention here that the model (12)
is derived from a global statistical analysis of the
material system response. The modal stress σ j

does not correspond to particular physical phe-
nomena (no simple physical meaning of usual mi-
croplasticity) but represents a statistical averaging
quantity of the microstate stress. According to the
relaxation spectrum (see FIG. 2), the lowest is the
mode, the highest is its contribution to the global
response of the material system.

au et ar are functions of the elastic modulus
(Eu,Er) and the Poisson’s ratios (νu,ν r) for an
isotropic material which is the case here. The
parameters with superscript u correspond to the
unrelaxed regime of the material response involv-
ing delay effects. The superscript r corresponds
to the relaxed regime where the material responds
instantaneously to the external loading, i.e. mi-
crostructural variations generated by the external
loading without delay. The relaxation time of the
j mode is obtained from equations (10) and (11)
by:

τ j = μ exp

(
ΔF j,r

RT

)
exp

(
Kσ J2 (σ −σ r)

RT

)
(13)

The expression Kσ J2 (σ −σ r) characterizes the
variation from equilibrium of the equivalent
stress. An exponential evolution of the activation
volume parameter with respect to the accumulated

inelastic strain p =
∫ t

0 J2

[(
au
)−1 σ j(s)−σ j,r(s)

τ j(s)

]
ds,

inspired from the hardening description used
in the classical plasticity models [Lemaître and
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Chaboche (1985)], has been proposed by the au-
thors [Dieng, Abdul-Latif, Haboussi, and Cunat
(2005)]. This formulation pointed out hereafter
allows the description of the cyclic softening and
hardening phenomena (model 1):

Kσ = Kσ0 (1+Aw exp(−Bwp)) (14)

where Kσ0 is the initial value of Kσ . Aw and Bw

are material parameters controlling the amplitude
and the rate of cyclic hardening, respectively.

The mathematical expression of Kσ (equation 14)
shows, at least, a limitation concerning the de-
scription of the softening phenomenon due to the
change in the loading direction after a phase dur-
ing which an additional hardening is recorded as
a result of a biaxial non-proportional loading. For
this purpose, a new mathematical definition is
proposed in the present paper (model 2):

Kσ = Kσ0 [1+Aw exp(−Bwp)
+H(p− p0) (1−exp(−Bw2(p− p0)))] (15)

The Heaviside threshold function, H(p− p0), is
used for the hardening-softening transition phe-
nomenon taking place during the change in cyclic
loading direction from complex to simple load-
ing. The evolutions of Kσ versus the accumulated
inelastic strain (p) for the two models (1 and 2)
are represented in FIG. 3. It is important to keep
in mind that this cyclic behavior change can be
reproduced by the new model 2 parameters (p0

and Bw2). The parameter p0 represents a certain
value of accumulated inelastic strain after which
the softening process occurs. Hence, this parame-
ter can be experimentally measured. Furthermore,
the parameter Bw2 describes the rate of the soften-
ing phenomenon.
Finally, the model 2 contains 10 adjustable pa-
rameters for an isotropic material (including 2
elastic parameters). Two additional parame-
ters are thus introduced compared to the model
proposed by the authors [Dieng, Abdul-Latif,
Haboussi, and Cunat (2005)] (noted model 1).
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Figure 3: Modification made on the activation
volume Kσ to describe the hardening-softening
phenomenon

3 Application of the model

3.1 Interpretations of the studied phenomenon

Several researchers studied (for example, Abdul-
Latif, Clavel, Ferney, and Saanouni (1994); Fer-
ney, Hautefeuille, and Clavel (1991); Stoltz and
Pineau (1978)) the mechanical behavior of Was-
paloy (Nickel-based alloy) under proportional and
non-proportional cyclic loadings. The size of the
precipitates γ ′

is obtained by two heat treatments,
which are: under-aged (UA) and over-aged (OA)
states. Indeed, the size of the precipitates, directly
influenced by the heat treatment, is of great im-
portance on the mechanical behavior of this alloy
as shown in Ferney (1994).

Generally, the mechanical behavior of the UA
state can be characterized by shearing process
of γ ′

precipitates. During proportional loading
paths, the plastic strain localizes tightly in intense
slip bands of the plane {111} and the directions
<110> [Abdul-Latif, Clavel, Ferney, and Saa-
nouni (1994); Ferney (1994)]. The activated slip
systems are pairs of perfect dislocation types with
the absence of twining. Moreover, in-between
intense slip bands, very few dislocations are ob-
served [Ferney, Hautefeuille, and Clavel (1991)]
in accordance with the localization of the defor-
mation process. Because of small (but numerous)
stacking faults scattered in-between bands, there-
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fore, the main part of the extra-hardening comes
from the isotropic component. According to Fer-
ney (1994), this is due to the interaction between
the stacking faults, which exists on different slip
systems (latent hardening). It is shown that slip
system multiplication enhances isotropic harden-
ing. In this UA state, two microstructural mecha-
nisms take place: the plastic strain localization in
the form of slip bands as well as the cyclic soften-
ing which follows this strain localization [Pineau
(1979)]. These two mechanisms provoke a local
degradation of the precipitates. It is worth em-
phasizing that the repeated shearing phenomenon
of the precipitates during cyclic loading is consid-
ered as a base to interpret the existence of these
two mechanisms [Pineau (1979)]. According to
Pineau, the shearing process of precipitates (often
orderly) leads probably to the loss of hardening
order of the alloy. This explanation has been ob-
viously adopted by Calabrese and Laird (1974).
In spite of the wide study performed by Ferney
(1994) on this UA Waspaloy, a fundamental ques-
tion arises concerning the remarkable cyclic hard-
ening: an abrupt decreasing of the isotropic hard-
ening evolution during the first cycles and the
softening phenomenon recorded after the steady
state in all applied cyclic loading types (simple
and complex). Undoubtedly, these physical phe-
nomena are governed by a mechanism (or mecha-
nisms) of the second phase shearing process being
coupled with the dislocation motion mechanisms
[Abdul-Latif (1996)]. Note that these phenom-
ena cannot be reproduced by the current theoret-
ical development. Hence, their effects can not be
taken into consideration during the present identi-
fication processes.

Experimentally, an increase of the non-
proportionality of the loading path induces a
phenomenon of additional hardening. In order
to interpret this phenomenon provoked by this
non-proportionality, Clavel et al. [Clavel, Pilvin,
and Rahouadj (1989)] pointed clearly out that
a 90◦ out of phase angle between tension and
torsion strains generates a substantial increase
in the number of slip traces in the case of the
UA state. According to Ferney et al. [Ferney,
Hautefeuille, and Clavel (1991)], an out-of-phase

angle of 90◦ leads to a multiplication of the
number of traces by a factor close to 2. It is now
well known that the multiplication of slip systems
provokes principally an additional hardening of
isotropic nature. On the other hand, the origin of
the kinematic hardening of the Waspaloy alloy
comes almost from two levels of incompatibility:
granular and intergranular. In the current state
of knowledge, it proves to be difficult to give
a physical interpretation to the intergranular
kinematic work hardening. Nevertheless, Ferney
(1994) shows that the over-aged state induces a
substantial increase in the kinematic part whose
origin is primarily intragranular.

3.2 Identification processes

The constitutive equations of the model (Table
1) are programmed into a special computer code:
SiDoLo [Pilvin (1995)] in order to calibrate the
material constants by using an appropriate exper-
imental database for the UA of Waspaloy [Clavel,
Pilvin, and Rahouadj (1989); Ferney (1994)].
Experimentally, the tests have been carried out
at room temperature on a servo-hydraulic IN-
STRON machine (type 1340) using thin-walled
tubes (internal diameter: 15.8 mm, external diam-
eter: 18 mm). To identify the model parameters,
two cyclic tests are chosen: tension-compression
(TC), and out-of-phase tension-torsion, with a si-
nusoidal waveform, and a phase lag of 90◦ be-
tween the two sinusoidal signals (TT90). The ax-
ial and shear strains (ε(t),γ(t)) are defined by:

ε(t) = ε0 sinwt

γ(t) = γ0 sin(wt−ϕ)
(16)

with γ0
ε0

=
√

3 ; ε0 and γ0 are the amplitudes of
the axial and shear strains respectively, w the fre-
quency of an oscillation and ϕ is the phase an-
gle between the two strains. The maximum von-
Mises equivalent plastic strain was maintained
constant at 0.5 percent during the test. This gives
for uniaxial tension-compression test,

ε p
eqmax

=
ε p

max −ε p
min

2
= 0.5% (17)
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Table 1: Governing equations and parameters of the proposed model 2

Stress evolution⎡
⎢⎣ σ̇ j = au ε̇ p j

0 − σ j−σ j,r

τ j

σ̇ =
50

∑
j=1

σ̇ j

Relaxed stress evolution

σ̇ j,r = p j
0ar ε̇ σ̇ r =

50

∑
j=1

σ̇ j,r

Relaxation time expression

τ j =
h

KBT
exp

[�F+, j,r

RT

]
exp

[
Kσ

J2 (σ −σ r)
RT

]
Non linearity function:
Kσ = Kσ0 [1+Aw exp(−Bwp)+H(p− p0) (1−exp (−Bw2(p− p0)))]
Accumulated inelastic strain:

p =
∫ t

0
J2

[(
au)−1 σ j(s)−σ j,r(s)

τ j(s)

]
ds

j mode weight, p j
0 :

p j
0 =

√
τ j,r

∑ j

√
τ j,r

10 parameters for isotropic material
au(Eu, νu) ; ar(Er, ν r) ; ΔFr

max ; Kσ0; Aw; Bw; Bw2; p0.

and

ε p
eqmax

= max

⎛
⎝
√

ε2
p +

γ2
p

3

⎞
⎠= 0.5% (18)

for biaxial tension-torsion test.

In this work, the used databases are related to two
types of cyclic loading. In fact, a biaxial tension-
torsion test (TT90) with a phase angle (ϕ) equals
to 90◦ being applied up to cyclic steady state.
Then, a uniaxial of tension-compression (TC), as
second phase, is performed with the same max-
imum equivalent plastic strain by cancelling the
shear strain component. The description of the
cyclic behavior of the Waspaloy under such a type
of loading sequence (referred to TT90-TC) by the
developed model represents the main goal of this
work.

Generally, the identification process is a hard task
especially in the case of non-linear material be-
havior. The computer code used to calibrate all
the model parameters is based on the resolution
technique of the non-linear optimization problem
using iterative method to identify these parame-
ters. As in [Dieng, Abdul-Latif, Haboussi, and

Cunat (2005)], to perform this process, several cy-
cles up to stabilization are chosen. The identifica-
tion process begins by determination of the initial
value of the model parameters. These initial pa-
rameters should be chosen based on the available
experimental results. The following procedures
are adopted to appropriately achieve this task: the
experimental values of the Young’s modulus and
the Poisson’s ratio (E = Eu instantaneous Young’s
modulus, ν = νu instantaneous Poisson’s ratio)
are determined from the first cycle of TC (pre-
cisely the first loading in tension) and the Pois-
son’s ratio is initially defined by having an al-
most standard value of 0.3. The six other pa-
rameters are identified by giving for each one
an initial value based on a parametric study as
well as on the form of the hysteresis loops. The
used technique to identify the six other parame-
ters is based on the fact that limiting values (max-
imum and minimum) are given for each param-
eter. By fixing all the identified parameters ini-
tially calibrated (Eu and νu), these parameters are
thus determined by conducting several iterations.
Table (2) summarizes the calibrated coefficients
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Table 2: Identified parameters

Parameters Model 1 Model 2

Eu (MPa) 215000.00 215000.00
νu 0.32 0.32
Er (MPa) 40078.47 21388.12
ν r 0.495 0.495
ΔFr

max (J/mol.at.) 105246.30 105300.00
Kσ0 (cm3/mol.at.) -21.99 -20.75
Aw 0.94 0.70
Bw 2.39 5.76
Bw2 – 0.89
p0 – 0.62

of the Waspaloy. Note that the initial values of
these coefficients (except the new ones: Bw2 and
p0) which are used in the identification process,
have been already defined by the authors [Dieng,
Abdul-Latif, Haboussi, and Cunat (2005)]. The
two new model 2 parameters responsible for de-
scribing the cyclic softening phenomenon should
be calibrated (specially Bw2). Actually, an ap-
propriate technique is used to successfully deter-
mine the value of both new parameters. In fact,
the value of p0 (as accumulated inelastic strain
just before the beginning of the cyclic softening)
is experimentally measured. Then, by fixing all
other identified parameters, Bw2 is therefore iden-
tified by conducting several iterations and the best
results are obtained when the deviation between
the experimental and theoretical results becomes
minimal (FIG. 4).

3.3 Numerical integration and finite element
implementation

Usually, the level of sophistication of the model
implemented should be weighed with accuracy
and efficiency considerations as well as the qual-
itative and quantitative knowledge of the mate-
rial. A fairly accurate representation of the Was-
paloy behavior is required to make analysis re-
sults meaningful. In the present work, the idea
is to assess the validity and the feasibility of the
finite element simulation of the cyclic softening
phenomenon captured under a complex straining
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Figure 4: Evolution of the maximum equivalent
stress under TT90 loading followed by TC: Com-
parison between the experimental results and the
two models responses

(TT90-TC). In order to carry out structural calcu-
lations with the model 2, the related constitutive
equations are implemented in a commercial finite
element code (Msc Marc/Mentat). Such an imple-
mentation is conducted as a local process through
the user’s subroutine. It is well known that these
equations are necessary for each individual finite
element integration point of the structure mesh-
ing. In this section, the numerical integration of
the model is demonstrated and discussed.

The integration of the nonlinear constitutive equa-
tions (12) is performed using the simplest way of
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the Euler explicit scheme. An incremental ap-
proach is programmed and the stress response of
the RVE at time (t + Δt) is explicitly function of
the strain increment.

For the model constitutive equations, the material
point response represents the sum of N contribu-
tions for different modes. From a numerical point
of view, to successfully capture the contribution
of one mode j, the used time increment should be
lower than the corresponding relaxation time. In
this case, the CPU time may be very expensive for
a general calculation due to the size of the lowest
relaxation time (3 hours for a tensile test for one
material point on a ultra 5 Sun computer). It has
been fortunately remarked [Dieng (2002)] that the
modes with weak relaxation times have a consid-
erably slight effect on the overall response (less
that 0.5%) due to their weights. In the light of
this fact, the CPU time problem is therefore over-
came by neglecting the latter contribution during
the calculation process.

3.4 Numerical simulation of a thin-walled tube

The mechanical behavior of the Waspaloy at room
temperature is numerically studied in this sec-
tion. As given above, all experiments are carried
at room temperature using thin-walled tubes (in-
ternal diameter: 15.8 mm, external diameter: 18
mm, see FIG. 5-a). Since the structure behavior
can not be axisymmetric with respect to TT90-
TC test, all the elasto-plastically deformed zone
(weakest zone) made from the Waspaloy is thus
modeled (see, FIG. 5-b). The specimen is subdi-
vided into 144 elements with a 8 nodes cubic el-
ement. It is rigidly fixed (cantilever) at one of its
extremities, while the second extremity is cycli-
cally loaded with an axial and tangent displace-
ments having a sinusoidal form with 90◦ out-of-
phase angle between the two displacements. This
leads consequently to the fact that each of the ex-
tremity section nodes is submitted to such a load-
ing path. The application of this loading path pro-
vokes three types of shear, one is planar and the
others are transversal. The transversal ones per-
turb slightly the simulated response in (x,y) plane
due to the coupling effect generated by the equiva-

lent stress in the shift function (exp
(

Kσ J2(σ−σ r)
RT

)
)

involved in equation (13). The numerical evo-
lution of the maximum equivalent cyclic Mises
stress during cycling prediction is compared with
both experimental and model 2 results as shown
in FIG. 6. It is noticeable now that the struc-
tural calculation shows a successful description of
the cyclic plasticity behavior of the Waspaloy, no-
tably the cyclic softening phenomenon.
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Figure 5: Finite Element specimens

0

200

400

600

800

1000

1200

1400

1600

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time (s)

M
a
x
im

u
m

 e
q

u
iv

a
le

n
t 

s
tr

e
s
s
 (

M
P

a
)

Finite element based on model 2

Theory model 2 response

Experiment

Figure 6: Evolution of the maximum equivalent
stress under TT90 loading followed by TC: Com-
parison between the experimental result, finite el-
ement and the model 2 responses

4 Remarks and Conclusion

Let us discuss now the different quantitative ap-
plications conducted in this work. After program-
ming the two models (1 and 2) and identifying
their related parameters, some issues should be
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now discussed in order to demonstrate the capa-
bility of the new extension to describe not only
the classical cyclic plasticity phenomena but also
the more complicated one (i.e., cyclic softening).

It is well known that the cross hardening effect
appears when a proportional cyclic straining in a
given direction is replaced, after stabilization, by
another proportional one having different direc-
tion (for example, Benallal and Marquis (1987);
Krempl and Lu (1984)). Hence, the change in
the loading direction, with the same equivalent
strain range, leads to a strengthening during the
transition between the two loading sequences fol-
lowed by a progressive softening. However, in our
case, the non-proportional cyclic straining (TT90)
is applied up to steady state and then followed
by a uniaxial (TC) one with the same maximum
equivalent plastic strain. According to FIG. 4, the
same phenomenon is recorded for the Waspaloy,
i.e., an abrupt strengthening followed by a slow
softening. This strengthening is almost due to the
cross hardening effect. On the other hand, the
softening phenomenon is interpreted by the fact
that a partial decrease in the number of slip traces
takes place giving an intermediate value, rang-
ing between that of TC test (having the minimum
value) and the maximum value observed during
TT90 test [Clavel, Pilvin, and Rahouadj (1989)].

By consulting the identified parameters of both
models 1 and 2, the first remark reveals the
fact that several important differences are well
recorded during the actual identification espe-
cially for the model parameters Er and Bw. In
fact, such differences can be interpreted as fol-
lows. Because of the new parameters p0 and Bw2

(in reality, only one (Bw2) which needs identifica-
tion using the special software as the other (p0) is
measured), the calibration of all other model pa-
rameters (except Eu and νu) are conditioned by
the new ones and should be obtained by a best fit
between the theoretical and experimental results.
Moreover, according to the high sensitivity of the
model to the parameter (ΔFr

max) as shown in [Di-
eng, Abdul-Latif, Haboussi, and Cunat (2005)],
the relatively small change in its value leads con-
sequently to these changes in the other mentioned
parameters. Despite the difference between the

values of the two models parameters, one can
clearly notice that they have almost equivalent re-
sponses as shown in related figures of this work.

As far as the comparisons between the models and
experiments are concerned, FIG. 4 shows a com-
parison between the experimental results and the
predictions of the two models 1 and 2. For this
material, in the first phase, an out-of-phase angle
of 90◦ provokes an additional hardening mainly of
an isotropic nature. In this phase, the two models
can describe this hardening evolution. In fact, the
first model describes somewhat reasonably this
additional hardening due to those parameters al-
ready identified in [Dieng, Abdul-Latif, Haboussi,
and Cunat (2005)]. However, the model 2 de-
scribes in a more accurate manner this phase.
By canceling the shear strain component (sec-
ond phase of this loading path), a cross harden-
ing effect and a subsequent cyclic softening take
place. Once again, it is clear that the model 1 finds
rapidly its limitation in reproducing the softening
phenomenon, while the model 2 with the new ex-
tension predicts it correctly. This is undoubtedly
governed by the new proposed equation (15) in
which the parameter Kσ , strongly related to the
activation volume i.e. the atomic mobility, repre-
sents a fundamental key to answer this problem as
pointed clearly out in FIG. 3. Moreover, the cor-
related solutions of the two models are evidently
in good agreement with the experimental results
under uniaxial cyclic loading (TC) (FIG. 7 ) as
well as under biaxial cyclic loading (TT90) (FIG.
8). FIG. 6 confirms that the obtained numerical
predictions by finite element method show its suc-
cessful ability to reproduce the metallic structure
behavior under such complex cyclic phenomenon.

As final conclusions, these models (1 and 2) de-
scribe successfully the uniaxial and biaxial cyclic
behaviors of the Waspaloy at room temperature.
However, in order to predict a more compli-
cated phenomenon, i.e., the cyclic softening, it is
clear now that without the new extension of the
DNLR model, such a phenomenon cannot be rep-
resented. It is important to underline that model 2
is always able to suitably reproduce other cyclic
plasticity features for the same material. Once
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TC loading: Comparison between the experimen-
tal results and the two models responses
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more, the implementation of the new extension of
the DNLR model in the commercial finite element
code is appropriately performed. The obtained
numerical predictions by finite element method
predict fairly well the experiments.
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