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Numerical Analysis of the Effect of Diffusion and Creep Flow on Cavity
Growth

J. Oh1, N. Katsube2 and F.W. Brust3

Abstract: In this paper, intergranular cavity
growth in regimes, where both surface diffusion
and deformation enhanced grain boundary diffu-
sion are important, is studied. In order to continu-
ously simulate the cavity shape evolution and cav-
ity growth rate, a fully-coupled numerical method
is proposed. Based on the fully-coupled numeri-
cal method, a gradual cavity shape change is pre-
dicted and this leads to the adverse effect on the
cavity growth rate. As the portion of the cavity
volume growth due to jacking and viscoplastic de-
formation in the total cavity volume growth in-
creases, spherical cavity evolves to V-shaped cav-
ity. The obtained numerical results are physically
more realistic compared to results in the previous
works. The present numerical results suggest that
the cavity shape evolution and cavity growth rate
based on the assumed cavity shape, spherical or
crack-like, simply cannot be used in this regime.

Keyword: cavity growth, diffusion, creep flow,
intercrystalline fracture

1 Introduction and Literature Review

At high temperature, cavity initiation and cavity
growth are important phenomena in understand-
ing the failure mechanism, and in predicting the
lifetime of various parts in service in the area of
a power plant and aero space applications, among
others. Such nucleation and growth phenomena
are explained by a diffusion of atomic flux (from
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cavity surface to grain boundary), creep flow, and
grain boundary sliding. Because of the complex-
ity of the physical phenomenon, in most of the
previous works, one of the two extreme cases, fast
grain boundary diffusion or fast surface diffusion,
with or without the consideration of grain material
creep flow, is assumed.

When grain boundary diffusivity is much faster
than surface diffusivity (surface diffusion con-
trolled process), the cavity shape will be similar
to a crack because the atomic flow rate along the
cavity surface is not fast enough to reduce the
surface curvature at the cavity tip. On the other
hand, when surface diffusivity is much faster than
grain boundary diffusivity (grain boundary diffu-
sion controlled process), the cavity shape will be
a spherical cap shape.

The basic model for predicting a grain boundary
diffusion dominant cavitation process was first
proposed by Hull and Rimmer (1959) (see Fig.
1(a)). Speight and Harris (1967) and Weertman
(1973) included proper boundary conditions in
the Hull-Rimmer (1959) model. Their model pre-
dicts the cavity growth rate in the rigid surround-
ing material with the assumption of a grain bound-
ary diffusion controlled process. Vitek (1978) cal-
culated cavity growth rates taking into consider-
ation the deformation of the surrounding elastic
material. Raj (1975) considered the events occur-
ring during the elastic transient time. However,
in the above models, plastic material deformation
of the grain material is neglected, and the surface
diffusivity is assumed to be much faster than the
grain boundary diffusivity.

Beere and Speight (1978) and Edward and Ashby
(1979) attempted to model the combined effect of
creep flow of the surrounding grain material and
the grain boundary diffusion process on the cavity
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Figure 1: (a) Hull-Rimmer type diffusion flow along cavity surface and grain boundary. The grain boundary
separate as rigid bodies. (b) The effect of creep flow on grain boundary diffusion. The deformation of the
grain material causes local accomodation at the cavity tip.

growth. However, in these two models, it is as-
sumed that elastic material surrounds the cavity.
Needleman and Rice (1980) established a numer-
ical approach based on the variational principle
for creep flow and grain boundary diffusion cou-
pled problems and obtained a finite element solu-
tion for the cavity growth rate. Figure 1(b) shows
the effect of the creep flow on the grain boundary
diffusion and the updated spherical cavity profile
based on the assumption of the fast surface diffu-
sion.

The assumption of the grain boundary controlled
cavitation may not always be satisfied, and elon-
gated rupture cavities are sometimes observed.
Thus, Chuang and Rice (1973), Chuang et al.
(1979), and Pharr and Nix (1979) analyzed the
surface diffusion controlled process (no defor-
mation or grain boundary diffusion included).
Chuang et al. (1979) studied crack-like cavity
volume growth by solving the Nernst-Einstein
surface diffusion equation. Assuming an initial
crack-like cavity shape, they obtained the steady
state solution for cavity growth. Martinez and Nix
(1982) extended the Finite Difference approach
by Pharr and Nix (1979) to study cavity evolu-

tion from an initial spherical-shaped cavity to a
crack-like cavity and verified their results against
the experimental data by Goods and Nix (1978).

Since the development of the variational princi-
ple approach by Needleman and Rice (1980), fur-
ther studies have been performed to analyze the
combined phenomena of the grain boundary dif-
fusion and the surface diffusion (Pan and Cocks
(1993a, 1993b, 1995), Cocks and Pan (1993),
Suo and Wang (1994), and Sun, Suo and Cocks
(1996)). The main problems in coupling the sur-
face and grain boundary diffusions are to satisfy
three physical boundary conditions at the cavity
tip, i.e., the continuity of the chemical potential,
equilibrium dihedral angle, and matter conserva-
tion law. While they successfully overcome these
problems, the diffusion element used by the above
researchers can be used only for a rigid material.

Despite its apparent importance, a fully coupled
continuous cavity growth analysis has never been
attempted. The numerical studies of these com-
bined effects on the cavity growth will provide a
basic understanding of these synergies, and they
will be useful in identifying the critical conditions
where the combined effects become important.
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In this work, the fully-coupled numerical method
is proposed to study cavity shape evolution and
cavity growth rate, where the surface and grain
boundary diffusion and material viscoplastic de-
formation are considered. The proposed fully-
coupled method continuously describes the cav-
ity shape change and cavity growth in the regimes
where both surface diffusion and deformation en-
hanced grain boundary diffusion are important. It
is shown that the cavity growth rate based on the
fully-coupled method is faster than that based on
the combined cavity shape assumption in the cav-
ity shape transition region. This is attributed to the
gradual cavity shape change from the spherical to
the crack-like.

In addition, it is shown that the spherical cav-
ity evolves to the V-shaped cavity under condi-
tions where both surface diffusion and deforma-
tion enhanced grain boundary diffusion are im-
portant. It is attributed to the jacking and cavity
shape change due to viscoplastic deformation in
the fully-coupled method. The cavity shape evo-
lution from the spherical cavity to the V-shaped
cavity, which was experimentally observed but
has never been predicted, is numerically predicted
in this work.

Recent work by Yuan and Zhang (2006) consid-
ered the effect of cavity nucleation as well as
growth in incompressible transversely isotropic
nonlinearly elastic materials. Both nucleation and
the effects of non-isotropic material response are
not considered here.

It is shown that the cavity shape change is di-
rectly connected to the life prediction of the struc-
ture. Therefore, the fully-coupled method which
can monitor the continuous cavity shape change
is crucial for accurately predicting the remaining
life of the structure.

2 Methodology

The atomic flow rates are proportional to driving
forces, which are chemical potential gradients of
the atom. When tensile stress is applied on the
grain boundary, atoms diffuse from the cavity sur-
face to the grain boundary due to the chemical po-
tential gradient. As atoms diffuse from the cav-

ity wall to the grain boundary, the grain boundary
should accommodate the diffused atoms.

The chemical potential of the atom on the cavity
surface ‘μs’ and that on the grain boundary ‘μgb’
respectively, are given by

μs = −γs(κ1 +κ2)Ω
μgb = −σNΩ

(1)

κ1

κ2 κ1

κ2

Figure 2: Principal curvatures at cavity tip, 1 in
the plane perpendicular to the grain boundary and
2 in the plane of the grain boundary, are shown,
where arrow shows the tangent direction of each
curvature. Intersection of the grain boundary and
the cavity surface is shown by Γ (Γ is in the plane
of the grain boundary).

The atomic volume, surface tension at cavity sur-
face, two principal curvatures of the cavity sur-
face, and normal stress along the grain bound-
ary are respectively represented by ‘Ω’, ‘γs’, ‘κ1’,
‘κ2’, and ‘σN’. In Fig. 2, the definition of the two
principal curvatures for the axis-symmetric cavity
surface is shown. The driving force of the sur-
face diffusion denoted by ‘Fs’ and that of the grain
boundary diffusion denoted by ‘Fgb’, respectively,
are

Fs = −∂ μs

∂S

Fgb = −∂ μgb

∂ r

(2)

where ‘S’ is the curvilinear coordinate along the
cavity surface and ‘r’ is the radial coordinate from
the center of the cavity. Assuming the linear ki-
netic law, the surface and grain boundary atomic
flow rates, denoted by ‘ js’ and ‘ jgb’, respectively,
are given by Eq. (3).

js = MsFs

jgb = MgbFgb
(3)



132 Copyright c© 2007 Tech Science Press CMC, vol.6, no.3, pp.129-157, 2007

Cavity surface profile update
Finite Difference Method

Cavity shape evolution due to atomic flow
Calculate approximate chemical potential at the cavity tip(σo)

Cavity growth rate calculation
Finite Element Method 

Cavity shape evolution due to creep flow and jacking effect
Calculate atomic flow rate(jo)

Initial spherical-cap shape cavity

jo σo

Cavity surface profile update
Finite Difference Method

Cavity shape evolution due to atomic flow
Calculate approximate chemical potential at the cavity tip(σo)

Cavity growth rate calculation
Finite Element Method 

Cavity shape evolution due to creep flow and jacking effect
Calculate atomic flow rate(jo)

Initial spherical-cap shape cavity

jo σo

Figure 3: Illustration of numerical calculation structure for single cavity growth model. The unified nu-
merical method, which combines finite element method and finite difference method, starts with the known
spherical-cap shape cavity geometry. For the given time step, which is chosen to be sufficiently short, finite
element method and finite difference method are employed to simulate cavity shape evolution.

where ‘Ms’ and ‘Mgb’ are given by

Ms =
Ds

kT
, Ds = Dsoδs exp(− Qs

RT
),

Mgb =
Dgb

kT
, Dgb = Dgboδgb exp(−Qgb

RT
).

(4)

In the above equation, ‘Ds’, ‘Dgb’, ‘k’, ‘T ’,
‘Dsoδs’, ‘Dgboδgb’, ‘Qs’, ‘Qgb’, and ‘R’ respec-
tively, are the surface diffusivity, grain boundary
diffusivity, Boltzman constant, absolute temper-
ature, surface diffusion coefficient, grain bound-
ary diffusion coefficient, activation energy for sur-
face diffusion, activation energy for grain bound-
ary diffusion, and gas constant.

In this work, cavity growth rates and cavity shape
evolution are calculated by combining finite el-
ement and finite difference methods for a given
time step. First, an extended version of the FE
method by Needleman and Rice (1980) is used
to evaluate the cavity growth rate. This consists
of the contribution due to the atomic flow rate
from the cavity surface to the grain boundary and
that due to the cavity shape change caused by de-
formation and the phenomena called “jacking”.
The “jacking” effect refers to the upward move-

ment of the grain boundary and the cavity sur-
face perpendicular to the grain boundary due to
the atomic diffusion from the cavity surface to the
grain boundary.

Second, the open ended finite difference method
by Pharr and Nix (1979) is used to update the cav-
ity shape for a given atomic rate jo ( jo = jgb at
the cavity tip). After the cavity shape evolves for
the current time step, the chemical potential of the
atom at the cavity tip is calculated approximately
from the value of principal curvatures of the node
next to the cavity tip. At the next time step, the
cavity tip stress (σo) is calculated from the cav-
ity tip curvatures and will be used as an input for
the FEM portion of the analysis. The same proce-
dure is repeated until cavity coalescence occurs.
In Fig. 3, the structure of this numerical proce-
dure is shown.

In combining the FEM and FDM method, numer-
ical determination of the cavity tip position is nec-
essary. The following numerical procedure is de-
veloped for this purpose. After modeling the grain
boundary diffusion and grain material deforma-
tion (Finite Element analysis), the original cavity
tip node moves upward due to the “jacking” ef-
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fect. However, before starting the cavity evolution
simulation (Finite Difference analysis), this node
needs to move back to somewhere on the grain
boundary since the cavity tip node must always be
on the original grain boundary. The new position
is determined so that the local tension equilibrium
condition shown in Fig. 4 is satisfied.

γs

γs

γgbαο 2γs cosαο =  γgb

γs

γs

γgbαο 2γs cosαο =  γgb

Figure 4: Equilibrium dihedral angle (αo) satisfy-
ing the local tension equilibrium condition, where
γs and γgb are cavity surface tension and grain
boundary surface tension, respectively.

As shown in Fig. 4, the force equilibrium con-
dition between the cavity surface tension (γs) and
the grain boundary tension (γgb) determines the
equilibrium angle αo. The position of the cav-
ity tip node is numerically determined to satisfy
this equilibrium angle. In order to physically ex-
plain this nodal movement and the associated lo-
cal cavity shape change, additional matter diffu-
sion within the cavity surface needs to be intro-
duced.

In Fig. 5, this additional matter diffusion accom-
panied by the “jacking” phenomena is explained.
In Fig. 5(a), the movement of the cavity sur-
face and the grain boundary after FEM analysis
at time t + Δt is shown. The cavity surface and
the grain boundary move up due to the volume of
the diffused atoms and new cavity surface is cre-
ated. In order to maintain the equilibrium angle at
the newly created cavity surface, local rearrange-
ment of atoms (the additional matter flow δ js) be-
comes necessary. In Fig. 5(b), the cavity surface
satisfying the equilibrium angle is shown, where
the additional matter flow δ js is considered. This
surface shape is used for the FDM analysis.

2.1 Finite Element Method

As the starting point, the finite element formu-
lation by Needleman and Rice (1980) is imple-

Original cavity surface

Cavity surface after FEM analysis
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Diffused atoms from 
cavity surface (jo)Newly created 

surface

Original cavity surface

Cavity surface after FEM analysis
Before js is considered

Diffused atoms from 
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surface
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Cavity surface after FEM analysis
After js is considered

αo

Cavity surface after FEM analysis
Before js is considered
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Cavity surface after FEM analysis
After js is considered

αo

Cavity surface after FEM analysis
Before js is considered

js

(b)

Figure 5: (a) The cavity surface and the grain
boundary shape at time t + Δt after FEM analy-
sis is done. The additional flow δ js is not consid-
ered. The grain boundary and the cavity surface at
time t moves up due to the volume of the diffused
atoms. The newly created cavity surface at the
cavity tip is not at equilibrium angle. (b) The cav-
ity surface and the grain boundary shape at time
t + Δt before starting FDM analysis. The addi-
tional flow δ js is necessary to satisfy the equilib-
rium angle at the newly created surface.

mented to consider the effect of viscoplastic ma-
terial deformation and grain boundary diffusion
on cavity growth. With this approach, the diffu-
sive flux along the cavity surface was not consid-
ered and the cavity shape could not be changed
from the initial spherical cap shape. Following
Needleman and Rice (1980), the functional,‘Fgb’,
is given by,

Fgb =
∫

V
ω(ε̇kl)dV −

∫
ST

TividS

+
∫

Agb

jα jα
2MgbΩ

dA+
∫

Γ
σomα jαdΓ (5)

for all kinematically associated fields, ‘vi’, ‘ε̇kl’,
and ‘ jα ’, which are material velocity, strain rate,
and flow rate, respectively. Greek subscripts (α)
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have the range 1, 2 (repeated indices represent the
summation) and refer to a local set of cartesian
coordinates in the grain boundary. In addition,
‘Ti’, ‘ω(ε̇kl)’, and ‘Agb’ represent tractions, stress
power rate, and the grain boundary surface. As
shown in Fig. 6, ‘m’ is the unit normal vector to
the arc (‘Γ’, see Fig. 2) of the intersection of the
grain boundary and the cavity surface, and ‘σo’ is
the normal stress at the cavity tip (stress compo-
nent normal to the grain boundary), respectively.
The last term in Eq. (5) comes from the condi-
tion of continuity of the chemical potential at the
cavity tip.

Cavity surface

σo (normal stress at the cavity tip)

Grain boundary

mα

Cavity surface

σo (normal stress at the cavity tip)

Grain boundary

mα

Figure 6: Sintering stress (σo) and the unit normal
vector (mα ) at the cavity tip.

In order to have a bounded flux at the cavity tip,
the chemical potential must be continuous at the
cavity tip. Therefore, the normal stress at the
cavity tip (‘σo’), which is known as the sintering
stress of the cavity, is a function of the specific
surface tension (‘γs’) and cavity principal curva-
tures at the cavity tip (‘κ1 and κ2’ shown in Fig.
2) as follows.

σo = γs(κ1 +κ2). (6)

A cylinder containing a cavity at the center as
shown in Fig. 7 represents the unit cell model for
FE analysis. The material is assumed to be incom-
pressible, and this leads to the velocity boundary
condition on the outer boundary of the cylinder
(r = b). Due to the symmetric geometric condi-
tion, only one quarter of the unit cell is sufficient
for the analysis. The far-field stress state is as-
sumed to be uniaxial. The remote creep strain rate
in the z-direction is represented by ‘ε̇∞’, and the
corresponding remote stress in the z-direction is
denoted by ‘σ∞’.

In this analysis, the grain material is assumed to
be elastic and non-linear viscous, with the nonlin-
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flux
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Figure 7: Unit cell model with a spherical-cap
shaped cavity with the major radius ’a’, the minor
radius ’c’, and the cavity half distance ’b’. The
boundary conditions on the grain boundary sat-
isfy the linear kinetic law for the atomic flux and
the matter conservation law. The boundary con-
ditions on the outer surface of the grain material
satisfy the axis-symmetric condition.

ear creep specifically of the power law form

σ = Λε̇1/n (7)

in the uniaxial tension where ‘Λ’and ‘n’ are ma-
terial constants. Following Needleman and Rice
(1980), we consider an incremental form of a
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functional,ΔFgb, given by

ΔFgb =
∫

V
σ : ΔddV −

∫
ST

T ·ΔvdS

+
∫

Agb

1
2MgbΩ

Δj ·ΔjdA+
∫

Γ
σom ·ΔjdΓ (8)

for all kinematically associated fields, the rate of
deformation tensor, ‘d’, the velocity, ‘v’, and the
volumetric flux, ‘j’.

Based on the matter conservation law, the incre-
mental volumetric flux crossing the unit length in
the grain boundary,‘Δ jgb’, are related to the in-
cremental grain boundary velocity, ‘ΔvN ’. Due
to the axis-symmetric nature of problem, the rele-
vant components of the flux and velocity, respec-
tively, reduce to ‘Δ jr’ and ‘Δvz’.

Δ jgb = Δ jr =
2
r

b∫
r

r′Δvz(r′, z = 0)dr′. (9)

Using the above equation, the last two terms of
the functional becomes,

ΔFd =
4π

MgbΩ

b∫
a

1
r

⎛
⎝ b∫

r

r′Δvz(r′,0)dr′
⎞
⎠

2

dr

+ 4πσo

b∫
a

r′Δvz(r′,0)dr′. (10)

In this work, linear shape functions are employed
for the incremental normal velocities as follows.

Δvz =
N

∑
i=1

Φi(r)Δvzi (11)

where

Φi(r) =
r− ri−1

ri − ri−1
for ri−1 ≤ r ≤ ri

Φi(r) =
ri+1− r
ri+1− ri

for ri ≤ r ≤ ri+1

Φi(r) = 0 for r < ri−1 or r > ri+1

(12)

and ‘N’ and ‘Δvzi’ are the total number of nodal
points and the incremental nodal velocity at point
‘i’.

After some algebraic manipulations, ΔFd be-
comes

ΔFd =
N

∑
i=1

N

∑
j=1

Ci jΔvziΔvz j +
N

∑
i=1

piΔvzi (13)

where the stiffness matrix ‘Ci j’ and ‘pi’ are given
by,

Ci j =
4π

MgbΩ

b∫
a

1
r

gi(r)g j(r)dr

pi = 4πσogi(a)

(14)

with

gi(r) =
b∫

r

r′Φi(r′)dr′. (15)

Numerical integration is performed to evaluate the
components ‘Ci j’ and ‘pi’. The stiffness matrix
from the functional (8) is constructed and then the
effect of creep flow along the grain boundary on
the grain boundary diffusion is analyzed numer-
ically. The cavity growth rate is calculated for
the given stress (‘σ∞’), grain boundary mobility
(‘Mgb’, see Eq. (4)), cavity tip geometry (‘k1 and
k2’, see Fig. 2), and material constitutive relation,
Eq. (7). The solution of this problem gives two
results: the diffusive flux (‘ jo’) at the cavity tip
and the velocity of nodes along cavity surface due
to “jacking” effect and viscoplastic deformation
of the surrounding material.

2.2 Finite Difference Form

For the second step in the solution process, the
cavity evolution due to the surface diffusion is
solved. As discussed earlier, Needleman and Rice
(1980) assumed that a spherical cavity shape was
maintained during the cavity growth for the grain
boundary diffusion controlled problem. However,
experimental results (Goods and Nix (1978) and
Raj (1978)) have shown that the shape of a cav-
ity becomes a crack rather than a sphere under the
surface diffusion controlled condition. Therefore,
an analysis, which includes the surface diffusion
process, will produce physically more general re-
sults than the problems analyzed by Needleman
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Figure 8: Boundary conditions along the cavity surface for the finite difference method.

and Rice (1980). In this numerical procedure, the
cavity profile will be updated at each time step,
satisfying boundary conditions.

Figure 8 shows the axis-symmetric spherical-
shaped cavity with boundary conditions at the
cavity top and the cavity tip. Due to the symme-
try, only one quarter of the cavity is sufficient for
the cavity evolution simulation. At the cavity top,
the atomic flux, ‘ js’, and the angle, ‘α’, are zero
because of the symmetry condition. At the cavity
tip, the angle, ‘αo’ (see Fig. 4) between the cavity
surface and grain boundary remains unchanged to
maintain the local force equilibrium condition. In
addition, the cavity tip flow, ‘ js’, is the same as
the flow to grain boundary, ‘ jo’. Following the nu-
merical simulations by Martinez and Nix (1982),
the cavity tip node moves freely to satisfy this
boundary condition. The four boundary condi-
tions imposed for the cavity evolution are:

{
α = 0

js = 0
at the cavity top

{
α = αo = cos−1

(
γgb
2γs

)
js = jo

at the cavity tip

(16)

For a given step time, the cavity shape evolves in
a manner satisfying the matter conservation law
and the above boundary conditions.

From Eqs. (1)1, (2)1, and (3)1, the atomic flow

driven by the chemical potential difference along
cavity surface, ‘ js’, is

js = MsΩγs
d(κ1 +κ2)

dS
(17)

where ‘dS’ is the surface arc element in the direc-
tion of the flux. The diffusive flux (‘ jo’) at the
cavity tip is given from the previously discussed
finite element portion of the analysis. The cav-
ity surface velocity, ‘vN ’, is determined from the
matter conservation law as follows.

vN =
1
r

d( jsr)
dS

(18)

Equations (18) and (19) are the kinetic equations
which can describe cavity evolution.

The basic numerical scheme of the finite differ-
ence method is used to calculate the movement
of each point on the cavity surface satisfying the
matter conservation law along the cavity surface.
Figure 9 shows total ‘n’ discrete points along the
cavity surface. Point ‘1’ is located at the cavity
top and point ‘n’ is at the cavity tip. The direction
of positive arc length ‘S’ is also shown.

Figure 10 and 11 show the definition of the normal
direction of each node. It is necessary to calculate
the principal curvatures and the atomic flux to ob-
tain the velocity at each node. The ‘ith’ point on
the cavity surface has coordinates ‘(ri(t), zi(t))’
at time t. The normal direction at a node is con-
structed geometrically as the line passing the node
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  +S

Node 1

Node n

n-1

+S

Node 1

Node n

n-1

Figure 9: Discretized cavity surface is schemati-
cally represented, which is used in the finite dif-
ference method.

(ri(t),zi(t))

(ri(t+ t),zi(t+ t))
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βi

vN· t

i+1

i-1

(ri(t),zi(t))

(ri(t+ t),zi(t+ t))

αi

βi

vN· t

i+1
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Figure 10: Finite difference numerical scheme
showing how the ith point on the cavity surface
moves to the new position (hollow point) after
time increment Δt and the definition of the angle
βi.

nn

Figure 11: Definition of the surface normal vector
(n) at the node on the cavity surface.

and center of circle, which passes ‘i− 1th’, ‘ith’,
and ‘i+1th’ nodes.

The first primary curvature ‘κ1’ is chosen to be
in the plane of the figure and it is approximated
to be the same as the inverse of the radius of the
inscribed circle. The sign of the curvature is pos-
itive when the center of circle is inside the cavity
and negative when it is outside. The second pri-
mary curvature is given by

(κ2)i =
cosβi

ri
(19)

on the assumption of the axis-symmetric geome-
try, where angle ‘βi’ is described on Fig. 10.

The atomic flux at the ‘ith’ point is obtained by
Eq. (17) using the finite difference method

( js)i = MsΩγs

[
(κ1 +κ2)i − (κ1 +κ2)i−1

]
[ΔS]ii−1

(20)

where ‘[ΔS]ii−1’ represents the distance between
‘ith’ point and ‘i− 1th’ point. Differentiation of
Eq. (18) gives the more detailed form of displace-
ment velocity :

vN =
(

d js
dS

+
js
r

sinβ
)

. (21)

Using the open ended finite difference method,
the above equation can be approximated as

(vN)i =

(
( js)i+1 − ( js)i

[ΔS]i+1
i

+
( js)i

ri
sinβi

)
(22)

where ‘[ΔS]i+1
i ’ is the distance between ‘ith’ point

and ‘i + 1th’ point. In the above equation, ‘(vN)i’
is obtained by using ‘( js)i’ and ‘( js)i+1’, where
‘( js)i’ is obtained from the curvatures at ‘ith’
point and ‘i−1th’ point and the distance between
these two points. Normal velocity representation,
Eq. (22), is centralized since information from
‘i−2th’, ‘i−1th’, ‘ith’, ‘i+1th’, and ‘i+2th’ feeds
into Eq. (22). The normal velocity is calculated
from Eq. (22) and the normal direction is also
obtained from the geometric information at each
point on the cavity surface.

An appropriate time increment ‘Δt’, which de-
pends on the flux at the cavity tip, is chosen. The
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points on the cavity surface moves by an amount
‘vNΔt’ to its new coordinates, which are approxi-
mated as

ri(t +Δt) = ri(t)+(vN)iΔt cosβi

zi(t +Δt) = zi(t)+(vN)iΔt sinβi
(23)

All points along the cavity surface moves in a
manner based on the scheme described above.

The 1st and nth points (the points at the cavity
top and at the cavity tip), however, move differ-
ently because of the boundary conditions. First,
the point at the cavity top moves to satisfy the
two boundary conditions, the angle β = π/2 and
the flux ( js)1 = 0. Since β = π/2 from the geo-
metric symmetry boundary condition, it is reason-
able to set an imaginary node by reflecting point
2 across the z-axis to calculate ‘κ1’ at cavity top.
The second primary curvature ‘κ2’ is the same as
‘κ1’ due to the axis-symmetric cavity geometry
i.e. (κ2)1 = (κ1)1 . When r = 0, the matter con-
servation requires that vN = 2 d js

dS and it can be ap-
proximated by

(vN)1 = 2

(
( js)2 − ( js)1

[ΔS]21

)
. (24)

The other end point, the ‘nth’ point, should move
along the r-axis satisfying the local tension equi-
librium. Therefore, the velocity calculation ac-
cording to Eq. (22) is not attempted for this point.
Instead, after the ‘n− 1th’ point moves to a new
position, the ‘nth’ point floats to a new position
in order to satisfy the surface tension equilibrium.
It is based on the physical phenomenon that the
atoms near the cavity tip instantaneously move to
satisfy the local surface tension. The distance be-
tween the ‘nth’ and ‘n−1th’ point was kept within
‘0.1aI’ where ‘aI’ is the initial void radius. This
guarantees that both the equilibrium condition of
surface tension at the cavity tip and the cavity
growth rate are accurately predicted throughout
the numerical simulation. The flux at the ‘nth’
point, ‘( js)n’, is set equal to ‘ jo’ obtained from
the finite element analysis and that is used to cal-
culate velocity of ‘n−1th’ point, ‘(vN)n−1’ as in
Eq. (22).

By trial and error, it was found that 15 points,
which are equally spaced along the cavity surface,

are sufficient for an accurate analysis. If ‘Δβ ’ ex-
ceeds 18o, a new node is inserted to reduce ‘Δβ ’,
while the point is removed if ‘Δβ ’ becomes less
than 2o. This procedure reduces the number of
points at low curvature regions and increases the
number of points at high curvature regions. In ad-
dition, ‘[ΔS]i+1

i ’ is restricted not to become too
large in the region of high curvature. The time
increment ‘Δt’ is limited so that the cavity radius
increment ‘Δa’ does not exceed ‘0.005aI’.

The proposed numerical method provides a phys-
ically based cavity growth rate where two im-
portant aspects of the cavity growth mechanism
are considered. First, it includes the effect of
the viscoplastic material deformation on the sin-
gle cavity growth. Second, the cavity profile is
updated so that the physical boundary conditions
such as the matter conservation law, equilibrium
dihedral angle, and continuous chemical poten-
tial condition are satisfied. In section 3.1 and
3.2, the proposed numerical method is verified for
two extreme cases; grain boundary diffusion con-
trolled cavity growth and surface diffusion con-
trolled cavity growth. In section 3.3 and 3.4, cav-
ity shape evolution of an initial spherical cavity
is numerically analyzed and cavity growth pre-
dictions using the current numerical method are
compared with experimental results.

3 Results

3.1 Modeling of Grain Boundary Diffusion
Controlled Cavity Growth

When the surface diffusion is very fast, the grain
boundary diffusion controls cavity growth and
the spherical-shaped cavity maintains its origi-
nal shape while it grows. Based on these as-
sumptions, Needleman and Rice (1980) calcu-
lated cavity growth rates and final rupture time of
a spherical-shaped cavity. Chen and Argon (1981)
proposed an approximate cavity growth equation,
which reproduces the Needleman and Rice (1980)
numerical results within an error of 30%. In
the following, grain boundary diffusion controlled
cavity growth is calculated using the current nu-
merical methods, and we verify the proposed nu-
merical method by comparing the obtained result
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with the work by Needleman and Rice (1980) and
that by Chen and Argon (1981).

In this study, numerical analysis of an ini-
tial spherical-shaped cavity was carried out for
aI/b = 0.1 and aI/L = 0.316, where ‘L’ is defined
by

L =
(

Mgbσ∞Ω
ε̇∞

) 1
3

. (25)

The parameter ‘L’ is introduced by Rice (1979)
and it physically represents “effective diffusion
length”. When the effective diffusion length ‘L’ is
smaller than the cavity half-distance ‘b’, it is ap-
proximately assumed that atoms diffuse from the
cavity tip to ‘L’ instead of diffusing from the cav-
ity tip to ‘b’. Chen and Argon (1981) considered
the “effective diffusion length” effect in the cavity
growth rate equation. The equilibrium dihedral
angle was chosen to be 70o and the creep expo-
nent was taken to be 4.5. These conditions are
the same as those used by Needleman and Rice
(1980). In order to reproduce fast surface dif-
fusion assumption employed by Needleman and
Rice (1980), a large value of diffusivity ratio,
Ds/Dgb = 171, is chosen in this numerical sim-
ulation.

In Fig. 12(a) and (b), the nondimensionalized
cavity radius, ‘a/b’, is plotted as a function of
nondimensionalized time ‘t ε̇cr

e ’, where ‘ε̇cr
e ’ is

the equivalent creep strain rate. Proposed nu-
merical results with or without jacking effect are
compared with the work by Needleman and Rice
(1980) and those by Chen and Argon (1981). Cav-
ity growth rates by Needleman and Rice (1980)
are only available for a/b = 0.1, 0.33, and 0.67.
Therefore, the cavity growth rate for other ‘a/b’
values are obtained by the interpolation method
suggested by Needleman and Rice (1980). Al-
though they proposed an extrapolation method to
calculate cavity growth rates for a/b > 0.67, it
was not used here.

From Fig. 12, it is clear that the proposed numer-
ical method exactly reproduces Needleman and
Rice (1980) result by choosing a large surface
diffusivity. In addition, it also demonstrates that
the assumption of the maintenance of the spheri-
cal cavity shape during the growth (which is em-

ployed by Needleman and Rice (1980)) is valid
under the fast-surface diffusion condition. The
proposed unified numerical method can simulate
cavity growth by considering only atomic diffu-
sion contribution (denoted as V̇1) to the total cav-
ity volume (V̇tot = V̇1 + V̇2) increase. When the
cavity volume increase rate due to ‘jacking’ and
deformation (denoted as V̇2) is not included, the
present model overestimates cavity coalescence
time. Needleman and Rice (1980) pointed out
the importance of cavity shape change due to
‘jacking’ and deformation. The analysis with and
without this effect quantitatively demonstrates the
importance of V̇2 contribution. The result by
Chen and Argon (1981) shows significant devi-
ation from those by Needleman and Rice (1980)
and by the proposed model in t ε̇cr

e > 0.2. This
deviation may be attributed to their assumption
that the grain boundary displacement (‘jacking’
effect) due to matter flow is constant over diffu-
sion distance ‘L’.

Figure 13 shows nondimensionalized cavity vol-
ume growth rates, ‘V̇/

(
ε̇cr

e a3
I

)
’, as a function of

nondimensionalized cavity radius ‘a/b’. Cavity
volume growth rates predicted by the current nu-
merical method match well with the Needleman
and Rice (1980) numerical result at a/b = 0.1,
0.33, and 0.67. Chen and Argon (1981) equation
underestimates cavity volume growth rate when
a/b > 0.5 under the assumption of fast surface
diffusivity.

As opposed to the work by Needleman and Rice
(1980), the continuous cavity growth is numeri-
cally predicted. Only the initial cavity radius is
required in the present work. One to one match
between our simulation and the results by Needle-
man and Rice (1980) demonstrates the validity of
the approach provided here.

3.2 Modeling of Surface Diffusion Controlled
Cavity Growth

When surface diffusion controls cavity growth,
the cavity tends to elongate in the direction nor-
mal to the applied stress and the cavity shape also
tends to become crack-like. In the following, sur-
face diffusion controlled cavity growth is calcu-
lated using the fully-coupled numerical method
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Figure 12: (a) Nondimensionalized cavity major radius as a function of nondimensionalized time for aI/L =
0.316, aI/bI = 0.1, and Ds/Dgb = 171 (fast surface diffusion). When a/b is 0∼0.5, the present numerical
results (with jacking effect) reproduce the Needleman and Rice results. In this range, the Chen and Argon
results also match with the Needleman and Rice results. When jacking effect is not considered, present
result deviates with the other three results. That implies jacking effect is significant in this a/L range.
(b) Nondimensionalized cavity major radius as a function of nondimensionalized time for aI/L = 0.316,
aI/bI = 0.1, and Ds/Dgb = 171 (fast surface diffusion). When a/b is 0.5∼1.0, the present results still match
well with the Needleman and Rice results. However, Chen and Argon result starts to deviate from the
Needleman Rice results.
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Figure 13: Nondimensionalized cavity volume growth rate as a function of nondimensionalized cavity major
radius for aI/L = 0.316, aI/bI = 0.1, and Ds/Dgb = 171 (fast surface diffusion). Present results match well
with the Needleman and Rice results (reported at a/b = 0.1, 0.33, and 0.66). Chen and Argon results start
to deviates when a/b is larger than 0.5.
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and we verify our approach against the results
by Martinez and Nix (1982) and Chuang et al.
(1979).

For this purpose, we use the same parameters as
in Martinez and Nix (1982). The diffusivity ratio
is expressed as

f =
Dgb

Ds
. (26)

Nondimensionalized time and nondimensional-
ized stress are given by

T =
t

a4
I /MsΩγs

(27)

Σ =
σaI

γs
. (28)

In order to compare the results from the current
fully-coupled method to those from the previous
works (Martinez and Nix (1982), Chuang et al.
(1979)), where the material deformation is not
considered, the remote normal stress is set to be
small so that the resulting viscoplastic deforma-
tion is negligible. The ratio of the applied normal
stress to Young’s modulus,σ∞/E, is chosen to be
10−4 and initial ‘aI/bI’ is 0.1. The capillarity an-
gle at cavity tip is assumed to be 70o and the creep
exponent is taken to be 4.5.

In Fig. 14, a log-log plot of the nondimensional-
ized rupture time vs. nondimensionalized applied
stress is shown. For f = 1 and f = 10 (surface
diffusion controlled region), the current numeri-
cal results agree well with the results of Martinez
and Nix (1982) (denoted as M & N) and Chuang
et al. (1979) (denoted as C & R). In reality, the f
values of most metals do not exceed 10.

Martinez and Nix (1982) reported stress expo-
nents for fracture, which is the slope of the Fig.
14, as -1.7 and -2.2 for f = 1 and f = 10, re-
spectively. The corresponding values based on the
proposed methods are determined to be -1.69 and
-2.19 for f = 1 and f = 10, respectively. These
analyses are performed here in the region where
the creep deformation is of second order inpor-
tance. However, the small differences between
these values can be attributed to the creep effect,
which is automatically included in the proposed
method.

Since the proposed method is fully coupled, the
sintering stress (the normal stress at the cavity tip)
and the stress along the grain boundary can be
calculated including the viscoplastic deformation.
In addition, this detailed stress distribution can
be continuously monitored as the cavity changes
its shape. Figure 15 shows the stress distribu-
tion along the grain boundary when a/b = 0.1,
0.3, 0.5, 0.7, and 0.9 for f = 1 and f = 10, re-
spectively. f = 10 implies more surface diffu-
sion controlled than f = 1 as in Eq. (26). The
normal stress along the grain boundary increases
as the cavity grows for both cases ( f = 1 and
f = 10) since the grain boundary area decreases.
For f = 10, the sintering stress (σo), increases as
the cavity grows. For f = 1, the sintering stress
decreases when a = 0.3 and 0.5. As shown in Eq.
(6), the sintering stress is proportional to the sum-
mation of the two curvatures (κ1 and κ2). There-
fore, the difference between the sintering stress
for f = 1 and f = 10 reflects the difference in the
cavity surface geometry near the tip, which can be
further analyzed as follows.

Since a cavity becomes crack-like as it grows for
both cases ( f = 1 and f = 10), the first primary
curvature (κ1) increases at the cavity tip. The
second primary curvature (κ2), which is calcu-
lated according to Eq. (19), decreases as the ra-
dius increases. For f = 10, the sintering stress
increases as the cavity grows because the increase
of the first primary curvature is dominant com-
pared to the decrease of the second primary cur-
vature. However, for f = 1, the decrease of the
second primary curvature (κ2) leads to sintering
stress decrease when a = 0.3, 0.5. These anal-
yses imply that the cavity shape for f = 10 be-
comes sharper than that for f = 1. This point
is clearly demonstrated by continuously monitor-
ing the cavity shape change. Figure 16(a) and (b)
show the cavity shape when a = 0.1, 0.3, 0.5, and
0.7 for f = 1 and f = 10, respectively. Figure
16 clearly demonstrates that the cavity shape for
f = 10 becomes sharper than that for f = 1. The
nodal points on the cavity surface were marked
along the cavity surface. Initially, 15 nodes are
used along the cavity surface with the same sep-
aration distance. As the cavity shape becomes
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Figure 14: Nondimensionalized grain boundary rup-
ture time (when a/b reaches to 1) vs. nondimension-
alized applied stress under different diffusivity ratios
( f = Dgb/Ds), for aI/bI = 0.1, σ∞/E = 10−4, and
cavity tip angle=70o. Chuang et al. (1979) (C & R)
analytically calculated surface diffusion controlled
cavity growth rate on the assumption of crack-like
cavity. Martinez and Nix (1982) (M & N) used Fi-
nite Difference Method to evaluate the cavity shape
evolution. When f = 1 and 10 (surface diffusion con-
trolled region), the present results match well with
both M & N and C & R.
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Figure 15: The nondimensionalized normal stress
of each element above the grain boundary vs. the
nondimensionalized grain boundary length is shown
for σ∞/E = 10−4 and cavity tip angle 70o. When
a/b = 0.1, stress distribution is the same for both
f = 1 and f = 10 (surface diffusion controlled) cases.
The stress along the grain boundary increases as the
cavity grows for both cases, f = 1 and f = 10, since
the grain boundary area decreases. For f = 10, the
sintering stress (σo), which is the normal stress at the
cavity tip, increases as the cavity grows. For f = 1,
the sintering stress decreases when a = 0.3 and 0.5.

more crack-like, additional nodal points are au-
tomatically created along the high curvature area
based on the nodal ‘removal-creation’ algorithm
employed in this work.

As opposed to the work by Martinez and Nix
(1982), the cavity coalescence time is numerically
obtained with the deformation consideration. One
to one match between our simulation and the re-
sults by Martinez and Nix (1982) and Chuang et
al. (1979) demonstrates that our approach is valid
for the simulation of the surface diffusion domi-
nant cavity growth.

Due to fully coupled nature of our method, the
detailed stress distribution including the deforma-
tion can be analyzed as shown in Fig. 15. In prac-
tical applications, an applied remote load does not
remain constant, which can change grain bound-
ary stability. The detailed stress analysis as in Fig.
15 will be crucial in predicting grain boundary

rupture without cavity coalescence.

3.3 Transition from quasi-equilibrium mode to
crack-like mode

Based on the results from section 3.1 and 3.2,
the proposed numerical model is validated against
two extreme cases; grain boundary and surface
diffusion controlled cavity growth cases. In sec-
tion 3.2, the continuous cavity shape change is
monitored, but the viscoplastic deformation ef-
fect on the cavity growth is not included. Since
the viscoplatic deformation effects on the cav-
ity volume growth rate is important in the de-
formation enhanced diffusion regime as shown
in section 3.1, it is necessary to study the cav-
ity shape change while considering creep defor-
mation. In this section, we perform analyses in
regimes where both surface diffusion and defor-
mation enhanced grain boundary diffusion are im-
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(a) (b)
Figure 16: Evolution in the cavity shape for σ∞/E ≈ 10−4 and cavity tip angle 70o, (a) f = 1 (surface
diffusion controlled), (b) f = 10 (more surface diffusion controlled case). In all cases aI/bI = 0.1 and the
cavity changes to crack-like. The node removal-creation procedure is clearly shown for both cases. Cavity
shape becomes more crack-like when f = 10.

portant.

In order to include the effect of the material vis-
coplastic deformation on the cavity growth, the
remote normal stress is set to be large so that the
ratio between the initial cavity radius, aI, and the
effective grain boundary diffusion length, L, is
larger than 0.1. Three different (aI/L) ratios, 0.1,
0.316, and 1.0, are chosen, and the grain bound-
ary and surface diffusivity are chosen so that the
cavity is subjected to shape change. Previously
Chen and Argon (1981) successfully calculated
the cavity radius growth rate in this regime based
on the assumed (spherical or crack-like) cavity
shape. As opposed to their work (Chen and Argon

(1981)), in the proposed fully-coupled method,
the cavity shape is determined as a result of the
numerical simulation. In order to examine the ef-
fect of continuous cavity shape change on the cav-
ity growth rate, we organize our numerical results
using the same nondimensional parameter α , de-
fined by

α =

⎛
⎝ 4πh(ψ)(

4sin
(ψ

2

)) 3
2

⎞
⎠×

((
Dgb

Ds

)(
σ∞L

γs

)) 1
2

,

(29)

as in the work by Chen and Argon
(1981) where h(ψ) = V/

(
4πa3/3

)
=
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Figure 17: Nondimensionalized cavity growth rate vs. nondimensionalizedcavity radius is shown for aI/L =
0.1 and α = 16.2. An initial spherical cavity evolves to a crack like cavity with much higher da/dt values
compared to the prediction by Chen and Argon (1981); the maximum difference occurs when a/L = 0.18,
where the current result predicts 1624 and the analysis by Chen and Argon (1981) predicts 951.
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Figure 18: Nondimensionalized cavity growth rate vs. nondimensionalizedcavity radius is shown for aI/L =
0.1 and α = 10.0. An initial spherical cavity evolves to a crack like cavity with much higher da/dt values
compared to the prediction by Chen and Argon (1981); the maximum difference occurs when a/L = 0.28,
where the current result predicts 565 and the analysis by Chen and Argon (1981) predicts 350.
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Figure 19: Nondimensionalized cavity growth rate vs. nondimensionalizedcavity radius is shown for aI/L =
0.316 and α = 5.82. Initial nondimensionalized cavity growth rates predicted by the fully-coupled method
are slightly higher than those by Chen Argon (1981). As a/L increases, cavity growth rates do not follow
those based on the assumed cavity shape.
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Figure 20: Nondimensionalized cavity growth rate vs. nondimensionalizedcavity radius is shown for aI/L =
1.0 and α = 1.0. Since the cavity volume change due to creep flow (jacking effect and the cavity shape
change due to creep flow) is significant in this a/L range, the analysis by Chen and Argon (1981), which
assumes that the cavity volume growth rate is all related with the atomic flow rate at cavity tip, can not
accurately predict the cavity major radius rate and cavity shape change.
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(1/(1+cosψ)−cosψ/2)/sinψ .

Figure 17∼20 show the nondimensionalized cav-
ity growth rate vs. the nondimensionalized cav-
ity radius for various cases. In order to prop-
erly model the cavity shape transition from the
spherical to the crack-like, the smaller α , which
means higher surface diffusivity, is chosen for the
higher a/L values. The cavity growth rate pre-
dictions based on the spherical cavity shape as-
sumption, the crack-like cavity shape assumption,
and the sphere and crack-like combined assump-
tion by Chen and Argon (1981) are included for
the comparison purpose.

In Fig. 17 (aI/L = 0.1 and α = 16.2), the overall
cavity growth rate predicted by the fully-coupled
method is larger than that by Chen and Argon
(1981) prediction. The maximum difference oc-
curs at a/L = 0.18, where the proposed method
predicts 1624 and the result by Chen and Argon
(1981) predicts 951, and the ratio, ȧcurrent/ȧC&A,
between the cavity growth rate from the proposed
method, ȧcurrent, and that by Chen and Argon
(1981), ȧC&A, is 1.71. The result matches only
at the initial point (a/L = 0.1) and at the final
point (a/L = 0.5). Since the initial cavity shape is
spherical in the fully-coupled method, it matches
with the prediction based on the spherical shape
assumption by Chen and Argon (1981). The fact
that the two predictions match at the final point
implies the crack-like cavity shape at a/L = 0.5.
This result implies that, as opposed to an abrupt
change from a sphere to a crack, gradual shape
change occurs between these two points. This
demonstrates the adverse effect of gradual cav-
ity shape change on the cavity growth rate, and
the cavity growth rate based on the assumed cav-
ity shape simply cannot be used in this transition
range.

In Fig. 18 (aI/L = 0.1 and α = 10), the proposed
numerical analysis predicts faster cavity growth
rates in the transition range and the gradual tran-
sition is again observed. The maximum differ-
ence occurs at a/L = 0.28, where the proposed
result predicts 565 and the result by Chen and
Argon (1981) predicts 350. The cavity growth
rate ratio, ȧcurrent/ȧC&A, at a/L = 0.2, 0.25, 0.28,
0.3, 0.35, and 0.4 is 1.5, 1.6, 1.61, 1.6, 1.4, and

1.3, respectively. The cavity growth rate pre-
dicted by the fully-coupled method is larger than
the prediction based on the assumed cavity shape
(sphere) for a/L = 0.14 ∼ 0.7. The smaller α
value means larger surface diffusion as in Eq.
(30). Therefore, the cavity shape tends to remain
spherical at least in the initial stage of growth.
This is clearly demonstrated in the initial region,
a/L = 0.1 ∼ 0.14, where the prediction by the
fully-coupled method matches with the prediction
based on the spherical cavity shape assumption.
The fact that the two predictions closely match
for a/L = 0.5 ∼ 0.7 implies the crack-like cav-
ity shape in this range. This result again demon-
strates the adverse effect of gradual cavity shape
change on the cavity growth rate.

In Fig. 19 ((aI/L) = 0.316 and α = 5.82), the
cavity growth rate predictions are compared for
a/L = 0.316 ∼ 2.5. In this case, the larger a/L
range compared to the previous two cases is con-
sidered. The larger a/L value means the smaller
effective diffusion length ‘L’ for the same cavity
radius ‘a’. As ‘L’ decreases, the effect of the de-
formation on the cavity growth becomes more im-
portant. The cavity growth rate predicted by the
fully-coupled method is faster than that by Chen
and Argon (1981) for a/L = 0.316 ∼ 0.79. This
implies the transition from spherical to crack-like
occurs in this range. For a/L = 0.79 ∼ 2.5, the
cavity growth rate predicted by the fully-coupled
method is completely different from that (Chen
and Argon (1981)) based on the assumed cavity
shape. The cavity growth rate predicted by the
fully-coupled method is slower than that by Chen
and Argon (1981) for a/L = 0.79 ∼ 2.22 and is
faster than that by Chen and Argon (1981) for
a/L = 2.22 ∼ 2.5. This implies that the cavity
shape does not converge to crack-like shape.

In the cavity growth rate calculation based on the
assumed cavity shape (Chen and Argon (1981)),
it is assumed that the cavity volume growth rate
(V̇1 and V̇2) is all related with the atomic flux at
cavity tip, ‘ js(tip)’. Therefore, Chen and Argon
(1981) assumed two types of final cavity shape:
spherical cavity shape when the surface diffusion
is fast or crack-like cavity shape when the surface
diffusion is slow. However, the volume growth
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rate V̇2, which is the cavity volume growth rate
due to deformation, contributes to the elongation
of the cavity in the loading direction. Therefore,
as a/L increases and the surface diffusion controls
the cavity growth, the final cavity shape cannot be
simply assumed to be spherical or crack-like. The
cavity shape evolution will be further investigated
later in this section.

In Fig. 20 ((aI/L) = 1.0 and α = 1.0), the cavity
growth rate predicted by the fully-coupled method
is completely different from that by Chen and
Argon (1981) for a/L = 1.0 ∼ 9.0. In this a/L
range, the volume growth rate due to deformation
and jacking, V̇2, becomes more important com-
pared to the previous three cases. The cavity
growth rate predicted by the fully-coupled method
is slower than the prediction (Chen and Argon
(1981)) based on the assumed cavity shape for
the entire a/L range. This implies that the cav-
ity growth rate based on the assumed cavity shape
simply cannot be used for this case.

Figure 21∼24 show the cavity aspect ratio vari-
ation (c/a) versus a/L for the cases shown in
Fig. 17∼20, where ‘c’ is the cavity minor ra-
dius (as shown in Fig. 7). The aspect ratio varia-
tion based on the spherical cavity shape assump-
tion, the crack-like cavity shape assumption, and
the sphere and crack-like combined assumption
(Chen and Argon (1981)) are included for the
comparison purpose. The initial aspect ratio is
0.615 for all cases.

In Fig. 21 (aI/L = 0.1 and α = 16.2), the ini-
tial aspect ratio predicted by the fully-coupled
method is 0.615 and the final aspect ratio is 0.32.
The initial aspect ratio based on the crack-like
shape assumption is 0.96 and the final aspect ra-
tio is 0.23 while the aspect ratio based on the
spherical shape assumption remains 0.615. The
aspect ratio change based on the combined cav-
ity shape assumption shows the abrupt change at
a/L = 0.18. The aspect ratio predicted by the
fully-coupled method decreases gradually in the
transition range. This demonstrates that the ini-
tial spherical shape cavity gradually changes to
crack-like cavity. In addition, the gradual de-
crease of the aspect ratio predicted by the fully-
coupled method explains the faster cavity growth

rate compared to the cavity growth rate based on
the combined cavity shape assumption as shown
in Fig. 17. The final aspect ratio predicted by
the fully-coupled method does not match with the
aspect ratio based on the crack-like assumption at
a/L = 0.5 even if the cavity growth rate converges
as shown in Fig. 17.

In Fig. 22 (aI/L = 0.1 and α = 10), the final as-
pect ratio predicted by the fully-coupled method
is 0.37. The initial aspect ratio based on the crack-
like shape assumption is 1.56 and the final aspect
ratio is 0.25. The aspect ratio predicted by the
fully-coupled method is similar as the initial value
for a/L = 0.1 ∼ 0.16. This demonstrates that the
surface diffusion is fast enough to maintain the
spherical shape for this range. It explains the rea-
son why the cavity growth rate match for the ini-
tial transition range as shown in Fig. 18. The as-
pect ratio based on the combined cavity shape as-
sumption shows the abrupt change at a/L = 0.31.
The aspect ratio predicted by the fully-coupled
method decrease gradually for a/L = 0.16 ∼ 0.7.
It implies again that the initial spherical shape
cavity gradually changes to crack-like cavity for
this case. The final aspect ratio predicted by the
fully-coupled method, 0.37, is higher than that for
the previous case shown in Fig. 21, 0.32, since
the lower α value is employed in this case.

In Fig. 23 (aI/L = 0.316 and α = 5.82), the
final aspect ratio predicted by the fully-coupled
method is 0.4. The initial aspect ratio based on the
crack-like shape assumption is 1.46 and the final
aspect ratio is 0.09. The aspect ratio change based
on the assumed cavity shape shows the abrupt
change at a/L=0.8. The aspect ratio predicted by
the fully-coupled method decrease gradually and
then saturate to 0.4. The aspect ratio from the
fully-coupled analysis does not follow that based
on the crack-like shape assumption. This demon-
strates that the cavity does not change to crack-
like shape. In addition, it explains the difference
in the cavity growth rate as shown in Fig. 19.

In Fig. 24 ((aI/L)= 1.0 and α = 1.0), the final as-
pect ratio predicted by the fully-coupled method
is 1.24. The initial aspect ratio based on the crack-
like shape assumption is 1.61 and the final aspect
ratio is 0.047. The aspect ratio change based on
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Figure 21: Cavity aspect ratio variation during evolution of spherical-cap shape cavity for aI/L = 0.1 and
α = 16.2 is shown. The aspect ratio by the fully-coupled method decrease gradually.
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Figure 22: Cavity aspect ratio variation during evolution of spherical-cap shape cavity for aI/L = 0.1 and
α = 10.0 is shown. Cavity maintains the initial aspect ratio until a/L reaches 0.16, since surface diffusivity
is higher compared to the case of Fig. 1.21 (lower α value).
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Figure 23: Cavity aspect ratio variation during evolution of spherical-cap shape cavity for aI/L = 0.316 and
α = 5.82 is shown. The aspect ratio by the fully-coupled method saturates at much higher value (c/a = 0.4)
than that based on the crack like cavity shape assumption (c/a = 0.09).
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Figure 24: Cavity aspect ratio variation during evolution of spherical-cap shape cavity for aI/L = 1 and
α = 1 is shown. The cavity aspect ratio by the fully-coupled method does not follow those based on the
assumed cavity shape. It clearly shows that the initial spherical-cap shape cavity does not evolve to become
crack like cavity.
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Figure 25: Cavity evolution from spherical-cap shape to V-shape for aI/L = 1, α = 1 is shown. Initial
spherical-cap shape cavity maintains its original shape until a/L = 3. When a/L reaches to 5, cavity shape
changes to V-shape, since surface diffusivity is slow and material creep flow effect is significant.

the combined cavity shape assumption shows the
abrupt change at a/L = 2. The aspect ratio pre-
dicted by the fully-coupled method is completely
different from that based on the assumed cavity
shape. This demonstrates that the cavity shape
evolves to the different shape. The cavity shape
evolution for this case is further investigated as
follows.

Figure 25 shows cavity shapes for the case of
(aI/L) = 1.0 and α = 1.0 when a/L = 1, 3, 5, 7,
and 9. The cavity shape is completed by using the
axis-symmetric condition. When a/L = 3, the ini-
tial spherical-shaped cavity maintains its original
shape with slightly increased aspect ratio. When
a/L = 5 and 7, some nodes have negative cur-
vature value because of cavity elongation at the
cavity tip in the r-direction due to material dif-
fusion and cavity elongation at the cavity top in
z-direction due to the ‘jacking’ and creep defor-
mation. When a/L = 9, cavity shape becomes V-
shaped.

3.4 Comparison of numerical cavity growth
prediction with experiments

Based on the results from section 3.3, it is demon-
strated that the result by the fully-coupled method
is physically more reasonable than that based on

the combined cavity shape assumption in regimes
where both surface diffusion and deformation
enhanced grain boundary diffusion are impor-
tant. In this section, the fully-coupled method
is employed to predict the experimental result by
Goods and Nix (1978).

Goods and Nix (1978) used silver in their study
of cavity growth and recorded fracture time ‘t f ’,
and fracture strain ‘ε f ’, for each constant stress
creep test at several temperatures between 200oC
and 550oC. These experimental data and test con-
ditions (test temperature, T, and the remote stress,
σ∞) for each test are shown in Table 1, and the
physical constants for silver are shown in Table
2. In this study we assumed that the initial cav-
ity radius, ‘aI’, is to be 0.785μm and ‘a f ’, is to
be 1.1μm, which was first reported in Goods and
Nix’s [1978] experiment and was later modified
due to geometric consideration by other authors
(Chen and Argon (1981), Pharr and Nix (1979)).

In order to use the experimental results in verify-
ing the fully-coupled method, the normalized cav-
ity growth rate, 4πh(ψ)

ε̇a
da
dt , versus the normalized

cavity radius, a/L, are obtained from the exper-
imental results by Goods and Nix (1978). Fol-
lowing the procedure by Chen and Argon (1981),
the normalized cavity growth rate 4πh(ψ)

ε̇a
da
dt is as-
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Table 1: Experimental conditions reported by Goods and Nix (1978) and a/L value

Test no. T (K) σ∞ (Pa) t f (Sec.) ε f ε̇(∼= ε f /t f ) (/Sec.) L (m) a/L
1 823 1.38E+06 3.07E+05 0.006 1.95E-08 1.07E-05 0.07
2 823 2.76E+06 5.58E+04 0.008 1.34E-07 7.10E-06 0.11
3 823 3.45E+06 2.52E+04 0.006 2.50E-07 6.22E-06 0.13
4 823 4.83E+06 1.10E+04 0.006 5.82E-07 5.25E-06 0.15
5 823 6.89E+06 2.20E+03 0.006 2.91E-06 3.46E-06 0.23
6 823 8.69E+06 1.29E+03 0.009 6.59E-06 2.85E-06 0.28
7 823 1.09E+07 3.20E+02 0.010 3.09E-05 1.83E-06 0.43
8 823 1.38E+07 1.35E+02 0.019 1.44E-04 1.19E-06 0.66
9 673 6.89E+06 7.70E+04 0.006 8.18E-08 4.58E-06 0.17

10 673 9.74E+06 1.75E+04 0.012 6.57E-07 2.56E-06 0.31
11 673 1.38E+07 4.99E+03 0.020 4.07E-06 1.57E-06 0.50
12 673 2.07E+07 9.24E+02 0.022 2.42E-05 9.90E-07 0.79
13 673 2.76E+07 3.90E+02 0.033 8.51E-05 7.17E-07 1.09
14 673 3.45E+07 1.80E+02 0.025 1.36E-04 6.61E-07 1.19
15 673 4.48E+07 5.62E+01 0.027 4.82E-04 4.73E-07 1.66
16 573 1.09E+07 3.42E+05 0.012 3.36E-08 2.97E-06 0.26
17 573 1.72E+07 2.70E+04 0.016 6.07E-07 1.32E-06 0.60
18 573 2.76E+07 4.50E+03 0.017 3.87E-06 8.32E-07 0.94
19 573 3.45E+07 2.14E+03 0.024 1.12E-05 6.28E-07 1.25
20 573 4.48E+07 6.00E+02 0.033 5.45E-05 4.05E-07 1.94
21 573 5.52E+07 8.10E+02 0.030 3.70E-05 4.94E-07 1.59
22 573 6.89E+07 3.15E+02 0.025 7.94E-05 4.12E-07 1.90
23 573 8.68E+07 1.85E+01 0.007 3.89E-04 2.62E-07 3.00
24 473 2.17E+07 3.96E+05 0.013 3.18E-08 1.07E-06 0.73
25 473 3.45E+07 5.04E+04 0.032 6.29E-07 4.62E-07 1.70
26 473 4.83E+07 1.76E+04 0.028 1.59E-06 3.79E-07 2.07
27 473 6.89E+07 3.31E+03 0.014 4.23E-06 3.08E-07 2.55

Table 2: Material properties of silver

γs ψ Dgbo δgb Qgb Ω Dso δs Qs

J/m2 Deg. m2/sec m J/mole m3 m2/sec m J/mole

1.14* 70* 1.2E-5* 5E-10* 90016.2* 1.71E-29*
2.5E-061

4.5E-062

1.4E-063

2.57E-10*
845001

491002

674003

* Goods, S. H.; Nix, W. D. (1978): Acta metall, 26, 739,
Chuang, T. Z. et al. (1979): Acta metall, 27, 265,
Robinson, J. T.; Peterson, N. J. (1972): Surf. Sci., 31, 586,
Turnbull, D. (1951): J. appl. Phys., 22, 634

1 Goods, S. H.; Nix, W. D. (1978): Acta metall, 26, 739
2 Chuang, T. Z. et al. (1979): Acta metall, 27, 265
3 Gjostein, N. A. (1974): Diffusion Seminar, ASM, Cleveland
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sumed to be constant due to short testing time and
can be approximated (Chen and Argon (1981)) by

4πh(ψ)
ε̇a

da
dt

∼= 4πh(ψ)
ε f

ln
a f

aI
, (30)

where ψ is assumed to be 70 degree (Table 2). In
calculating L from Eq. (25) and Eq. (4), creep
strain rate is approximated by ε f

t f
and the material

properties of silver, such as Dgbo, δgb, Qgb, and Ω
in Table 2, are used. The a/L value is approxi-
mated by aI/L and values for each test are shown
in Table 1.

In order to employ the fully-coupled method in
predicting the experimental result, it is necessary
to calculate two parameters: diffusivity ratio, α
(Eq. (29)), and the ratio between the initial sin-
tering stress and the remote stress, (σo)I/σ∞. The
initial sintering stress, (σo)I, is obtained using the
following relation,

σo = γs(κ1 +κ2) = γs(sinψ/aI + sinψ/aI)
= 2γs sinψ/aI (31)

where the relation shown in Eq. (6) and the initial
spherical cavity shape assumption are used. The
values of these two parameters, α and (σo)I/σ∞,
depend on test condition. In calculating these
parameters, physical constants for silver are re-
quired. As shown in Table 2, different values
for surface diffusion constants for silver, includ-
ing the values from Goods and Nix experiment
(1978), are reported. Goods and Nix (1978) cal-
culated the surface pre-exponent value, Dso, and
the surface activation energy, Qs, from the rupture
time vs. stress plot and the reciprocal of the time
to rupture vs. the reciprocal of the test temper-
ature plot, respectively. In order to obtain these
plots, they (Goods and Nix (1978)) used the con-
stant stress creep test results. Therefore physical
constants reported by Goods and Nix (1978) are
used in this study.

Ds and Dgb are obtained from Eq. (4) and Table 2.
The diffusivity ratio, Ds/Dgb is used in obtaining
the α value as in Eq. (30). These values for each
test are listed in Table 3. As shown in Table 3,
the largest α value is 24 and the smallest α value
is 16.2. (σo)I/σ∞ should be less than 1 under a

cavity growth condition. These values for test 1
or 2 are larger than 1 or very close to 1, which im-
plies no cavity growth. Therefore they are omit-
ted from further analysis. This leads to the largest
(σo)I/σ∞ value, 0.8, and the smallest (σo)I/σ∞
value, 0. In applying the fully-coupled method to
this experimental condition, initial spherical cav-
ity is assumed to have one of the following two
conditions: aI/L = 0.1, α = 16.2, (σo)I/σ∞ = 0.0
and aI/L = 0.12, α = 24, (σo)I/σ∞ = 0.8. The
reason for choosing the specific aI/L, α , and
(σo)I/σ∞ values for the two conditions is as fol-
lows.

The aI/L value is assumed to be around 0.1 since
the smallest aI/L value reported in Table 1 is
0.13. According to the reported results by Needle-
man and Rice (1980) and the current study, an
increase of the (σo)I/σ∞ value significantly de-
creases the cavity growth rate. Therefore, the cav-
ity growth rate with (σo)I/σ∞ = 0.0 is the fastest
and the cavity growth rate with (σo)I/σ∞ = 0.8 is
the slowest for a given constant α value. Com-
pared to the effect of the stress ratio, (σo)I/σ∞,
on the cavity growth rate, the effect of α value on
the cavity growth rate is not significant. There-
fore, any combination of α and (σo)I/σ∞ from
α = 16.2 ∼ 24, and (σo)I/σ∞ = 0.0 represent the
upper bound (fast normalized cavity growth rate)
and any combination of α and (σo)I/σ∞ from
α = 16.2 ∼ 24, and (σo)I/σ∞ = 0.8 represent the
lower bound (slow normalized cavity growth). In
this study, the condition,aI/L = 0.1, α=16.2, and
(σo)I/σ∞ = 0.0, is chosen to represent the upper
bound and the condition, aI/L = 0.12, α = 24,
and (σo)I/σ∞ = 0.8, is chosen to represent the
lower bound. This condition represents the nar-
rowest bound of any possible combination of α
and (σo)I/σ∞.

Figure 26 shows the normalized cavity growth
rate versus the normalized cavity radius for Goods
and Nix (1978) experiment, the prediction from
the fully-coupled method, and the prediction
based on the spherical cavity shape assumption
with (σo)I/σ∞ = 0.0 and 0.8. As shown in
Fig. (26), some of the experimental data points
(denoted by •) are bounded by the prediction
based on spherical cavity shape assumption with
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Table 3: α and the stress ratio between the initial sintering stress and the remote stress

Test no. Temp (K) Ds/Dgb α (σo)I/σ∞
1 823 2.40E-01 1.62E+01 1.98E+00
2 823 2.40E-01 1.87E+01 9.89E-01
3 823 2.40E-01 1.95E+01 7.91E-01
4 823 2.40E-01 2.12E+01 5.65E-01
5 823 2.40E-01 2.06E+01 3.96E-01
6 823 2.40E-01 2.10E+01 3.14E-01
7 823 2.40E-01 1.89E+01 2.50E-01
8 823 2.40E-01 1.71E+01 1.98E-01
9 673 2.35E-01 2.39E+01 3.96E-01
10 673 2.35E-01 2.13E+01 2.80E-01
11 673 2.35E-01 1.98E+01 1.98E-01
12 673 2.35E-01 1.93E+01 1.32E-01
13 673 2.35E-01 1.90E+01 9.90E-02
14 673 2.35E-01 2.03E+01 7.92E-02
15 673 2.35E-01 1.96E+01 6.09E-02
16 573 2.38E-01 2.41E+01 2.50E-01
17 573 2.38E-01 2.02E+01 1.58E-01
18 573 2.38E-01 2.03E+01 9.90E-02
19 573 2.38E-01 1.97E+01 7.92E-02
20 573 2.38E-01 1.81E+01 6.09E-02
21 573 2.38E-01 2.21E+01 4.95E-02
22 573 2.38E-01 2.26E+01 3.96E-02
23 573 2.38E-01 2.02E+01 3.14E-02
24 473 2.51E-01 1.99E+01 1.26E-01
25 473 2.51E-01 1.65E+01 7.92E-02
26 473 2.51E-01 1.77E+01 5.65E-02
27 473 2.51E-01 1.90E+01 3.96E-02

(σo)I/σ∞ = 0.0 and 0.8. However, some of the
experimental data points (denoted by �) are not
bounded by the prediction based on the spheri-
cal cavity shape assumption. This implies that
some of initial cavities considered in Goods and
Nix (1978) are already crack-like at the start of
the analysis and the cavity shape evolution from
the spherical to the crack-like needs to be consid-
ered in predicting the experimental data points.
As shown in Fig. 26, all the experimental data
points excluding test 1 and test 2 are bounded by
the fully-coupled method prediction for the two
extreme cases. This demonstrates validity of the
fully-coupled method developed in this work.

In this study, the one-to-one match between the
experimental result and prediction by the fully-

coupled method is not possible, since the initial
cavity shape is not known and precise value of the
initial and final cavity radius is not reported for
each test. If these information are available, indi-
vidual test data can be predicted based on the fully
coupled method.

Chen and Argon (1981) successfully predicted the
experimental results by Goods and Nix (1978)
using the cavity growth rate prediction based on
the combined cavity shape assumption. However,
specific values of surface diffusion material prop-
erties employed for the analysis (Chen and Argon
(1981)) are not mentioned in their work and it is
not clear how two extreme values of α , 13 and
4, are chosen. In this study, the α and (σo)I/σ∞
values are based on the material data obtained by
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Figure 26: Normalized cavity growth rate vs. normalized cavity radius are shown. The experimental results
are bounded by the cavity growth rates predicted by the fully coupled method (aI/L = 0.1, α = 16.2,
σo/σ∞ = 0 (hollow circle) and aI/L = 0.12, α = 24, σo/σ∞ = 0.8 (hollow square)). Since different material
constants for surface diffusion are reported and the simple assumptions are employed on obtaining the data
points for the experimental results, the direct comparison between the each experimental data points and
the numerical simulation results is not possible. However, from the distribution of each data points in this
figure, it is clear that the cavity evolves from the spherical-cap shape to other shape in this range of a/L and
α values.

Goods and Nix (1978), and they are more care-
fully chosen compared to those by Chen and Ar-
gon (1981). In addition, Chen and Argon (1981)
assumed that the sintering stress is zero. In this
study, no such assumption is employed in obtain-
ing the results.

4 Discussion

Arai et al. (1996) reported cavity shape evolu-
tion from the spherical-shape to the V-shape un-
der load controlled cyclic test conditions. Since
the fully-coupled method developed in this work
is developed for the cases of constant loading, the
quantitative comparison between the experimen-
tal result (Arai et al. (1996)) and the prediction

based on the fully-coupled method is not readily
available. However, it is possible to make a qual-
itative comparison.

They (Arai et al. (1996)) argued that the sharp
creep strain rate increases upon stress reversal or
accumulated plastic strain can be possible rea-
sons for this cavity shape evolution. According
to our recent numerical study (Oh et al. (2007))
on the constrained cavity growth, it was shown
that, under load controlled cyclic test conditions,
the grain material experiences sharp creep strain
rate increases at stress reversals, which increases
creep flow effects on the cavity growth. In this
study, it was shown that the initial spherical cav-
ity evolves to the V-shaped cavity when the creep
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strain rate increases (a/L > 1.0). While the cyclic
loading condition used in the experiments was not
simulated, the cavity shape change from a sphere
to a V-shape qualitatively matches the experimen-
tal observation. This qualitative match can be at-
tributed to the fully coupled nature of our devel-
oped method combining the surface diffusion and
the deformation enhanced grain boundary diffu-
sion.

The material viscoplastic deformation, which
causes cavity shape change, “jacking” at the cav-
ity tip, and the decrease of the effective diffusion
length along the grain boundary, have never been
fully coupled with the surface/grain boundary dif-
fusion in the cavity growth study. In this work,
possible cavity shape evolution from the spherical
to the V-shaped is numerically predicted for the
first time and the adverse effect of gradual cavity
shape change on the cavity growth rate is demon-
strated.

In order to achieve the quantitative agreement
between the prediction from the fully-coupled
method and the experimental result (Arai et al.
(1996)), the following features need to be consid-
ered in the future. In this study, numerical sim-
ulations under uniaxial tensile loading condition
were studied. According to our recent numerical
study (Oh et al., will appear on J. of Eng. Mat.
Tech.) on the grain boundary cavitation, it was
shown that under uniaxial tensile loading condi-
tions, the multiaxial stress state develops around
the cavities on the cavitating grain boundary. The
effect of the multiaxial stress on the cavity growth
rate is numerically studied by Sham and Needle-
man (Sham and Needleman (1982), Sham and
Needleman (1983)). They reported that cavity
growth rate depends on the stress ratio between
the Mises type effective stress and the hydrostatic
stress state based on the assumption of fast sur-
face diffusion. In order to accurately predict the
cavity growth rate under multiaxial stress condi-
tion, the fully coupled method proposed in this
study needs to be expanded to include the multi-
axial stress state in the boundary condition.

In this study, a steady state creep flow rule is
employed to represent the material inelastic con-
stitutive relation. The steady state creep flow

rule, which is implemented in the proposed fully-
coupled method, is accurate enough when a con-
stant loading is applied or cavity is nucleated
when the strain hardening of the grain material is
saturated. However, in all practical loading condi-
tions, a cyclic loading condition is more realistic
than a constant loading condition. The recent nu-
merical study (Oh et al., will appear on J. of Eng.
Mat. Tech.) on the grain boundary cavitation
shows that strain hardening type creep flow rule
is more accurate than the steady state creep flow
rule in representing the material inelastic constitu-
tive relation under cyclic loading condition. Un-
der this condition, it is necessary to employ the
strain hardening type creep flow rule in the fully-
coupled method.

5 Conclusion

In this study, a unified numerical method is pro-
posed, where the surface and grain boundary dif-
fusion and material viscoplastic deformation are
considered. The proposed unified method is veri-
fied by comparing the obtained results for extreme
cases with the previous works (Needleman and
Rice (1980), Martinez and Nix (1982)).

In the first extreme case, the loading condition and
the material constants are chosen so that the de-
formation is not important and matter diffusion
is the dominant cavity growth mechanism. When
the surface diffusion controls the overall diffusion
process, it is shown that the cavity shape changes
from spherical-cap shape to crack-like shape as
shown by Martinez and Nix (1982). In addition, it
is shown that the cavity coalescence time matches
with the previous works (Chuang et al. (1979),
Martinez and Nix (1982)).

In the second extreme case, the loading condi-
tion and the material constants are chosen so that
matter diffusion is enhanced by the material vis-
coplastic deformation. When the grain boundary
diffusion controls the overall diffusion process,
the cavity is shown to maintain initial spherical
shape as it grows. As opposed to the work by
Needleman and Rice (1980), the continuous cav-
ity growth is numerically predicted based on the
given initial cavity geometry. Therefore, this re-
sult confirms the previous work (Needleman and
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Rice (1980)) where the spherical cavity is as-
sumed to maintain its spherical shape as it grows
under the fast surface diffusion. In the previous
numerical work (Needleman and Rice (1980)),
the cavity growth rate is discretely calculated for
chosen cavity radius. The cavity volume growth
rates are calculated at the same cavity radius as in
Needleman and Rice (1980). It is shown that one
to one match between our results and the previous
results (Needleman and Rice (1980)) is achieved.
This quantitative verification demonstrates the va-
lidity of our approach.

Upon verification of the proposed method by con-
sidering extreme cases, a fully coupled case of the
surface diffusion controlled cavity growth in the
deformation enhanced diffusion region is exam-
ined. When the diffusion is more important than
the phenomena called “jacking” (upward move-
ment of cavity surface) and material viscoplas-
tic deformation, the transitional shape change
from the initial spherical-cap shaped cavity to the
crack-like cavity is predicted. The cavity growth
rate in this transition range is found to be much
faster than that obtained by combining the cav-
ity growth rates with two extreme cavity shape
(Chen and Argon (1981)) (spherical and crack-
like). This demonstrates that the transitional cav-
ity shape change, which has never been examined
in the previous work, significantly accelerates the
cavity growth rates. Therefore, a fully coupled
model needs to be employed for accurate life pre-
diction.

When the “jacking” and material viscoplastic de-
formation is more important than diffusion, the
transitional shape change from the initial spher-
ical cavity to the V-shaped cavity is predicted.
While V-shaped cavity has never been predicted
in the previous work, Arai et al. (1996) ex-
perimentally observed the V-shaped cavity under
cyclic loading condition. Unfortunately, quanti-
tative comparison between the experimental re-
sults and the proposed method could not be made
due to unknown material parameters and different
loading condition. However, the proposed fully
coupled approach provides the research commu-
nity a possible mechanism of experimentally ob-
served transitional cavity shape change from a

spherical cavity to V-shaped cavity.

Upon obtaining physically reasonable result for a
fully coupled case of the surface diffusion con-
trolled cavity growth in the deformation enhanced
diffusion region, the fully-coupled method is em-
ployed to predict the experimental result (Goods
and Nix (1978)). The one-to-one match between
the experimental result and prediction based on
the developed method is not possible due to lack
of parameters such as initial cavity shape and di-
mension. However, it is shown that all the cav-
ity growth rates reported in the experiment are
bounded by the fully-coupled method prediction
for the two extreme cases. This demonstrates the
validity of the fully-coupled method in regimes
where both surface diffusion and deformation en-
hanced grain boundary diffusion are important. .

As a future work, it is desirable to include fea-
tures, such as the multi-axial stress state and the
strain hardening type creep flow rule, in the fully
coupled method so that it can be readily applied to
life prediction under cyclic loading condition. In
addition, recent implicit algorithms by Akamatsu,
Nakane, snd Ohno (2005) illustrate efficient tech-
niques for solving visco-plastic and creep prob-
lems along with including phase transformation
plasticity effects. The implementation of these
concepts will likely reduce solution times for the
problems considered here and will be considered
in future work as well.
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